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Abstract 

Glass forming ability (GFA) is a property of utmost importance in glass science and technology. In this 

paper, we used a statistical methodology--involving bootstrap sampling and the Wilcoxon test--to find 

out which glass stability parameters can better predict the glass forming ability. We collected or measured 

the necessary data for twelve stoichiometric oxide glasses that underwent predominant heterogeneous 

nucleation (the most common case). We found that some GS parameters could predict the GFA of these 

oxide glasses quite well, whereas others perform poorly. Parameter Kw was the top ranked, closely 

followed by the KH,  H’, ΔTrg, and Kcr. Our results corroborate previous reports carried out using a 

smaller number of glasses, much less GS parameters, and less rigorous statistics. We also found that 

using Tc instead of Tx improved the predictive power of these parameters. Finally, the Jezica, the only 

parameter considered here that predicts the GFA without requiring the production of a glass piece (i.e., 

without relying on any crystallization information), ranked reasonably well in our analysis. 

1 Introduction 

Glass forming ability (GFA) – usually taken as the minimum cooling rate necessary to form a glass 

piece of a certain size - is a property of utmost importance in glass science and technology. Substances 

with low GFA require specific cooling methods and have limitations on the maximum size of the glass 

pieces that can be obtained. Therefore, applications of glasses are bound to their GFA, and a poor GFA 

can be a major obstacle for developing novel vitreous compositions.  

From a purely scientific perspective, a non-crystalline substance below its liquidus temperature and 

with at least one stable crystalline nucleus is thermodynamically instable, as crystal growth in this 

condition takes place spontaneously [1]. Therefore, a rigorous definition of GFA must involve knowledge 

of the minimum cooling rate necessary to form a non-crystalline material without any stable crystalline 

nucleus. However, from a practical viewpoint, a non-crystalline substance is considered a glass if its 

crystalline fraction is below a certain threshold value, usually taken as 10−2 to 10−6. Therefore, the 

practical definition of GFA involves the knowledge of the minimum cooling rate, Rc, necessary to form 

a non-crystalline material having a crystalline fraction equal to the assumed threshold value. This is the 

definition we will use in this study. 
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One can estimate the Rc (and thus the GFA) by building a TTT diagram using crystal growth data 

with the assumption that surface (heterogeneous) crystallization from a certain number of sites 

overshadows volumetric (homogeneous) crystallization. However, the experimental process of data 

acquisition at several temperatures necessary for this method is very time-consuming. Other methods, 

such as those reported in references [2–10], also have inherent difficulties, making the task of estimating 

Rc laborious and subjected to large uncertainties [11]. 

In the past six decades, several glass stability parameters (GS, the resistance of a glass against 

crystallization upon heating) have been proposed to estimate the GFA [12–36]. These parameters are 

based on characteristic temperatures that can be measured by thermal analysis, such as glass transition 

(Tg), onset of crystallization (Tx), crystallization peak (Tc), and melting point (Tm). Measuring these 

temperatures is straightforward and much less time-consuming than constructing a TTT diagram. 

Because these characteristic temperatures are often determined during the heating path, it is more 

adequate to call all of them GS parameters instead of GFA parameters. However, a major problem with 

this procedure is that one has to make a glass sample to be able to measure the GS, hence it is not a truly 

predictive method. 

Previous studies on the possible correlation between the GS parameters and the GFA of oxide glasses 

concluded that only some of them are related to the GFA [10,24,37–40]. These studies, however, included 

a limited number of GS parameters (up to 15) and glasses (up to 8), and focused mainly on the data 

correlation via the coefficient of determination, R2. 

In this paper, we expand the analysis to 35 parameters proposed in the literature, perform the 

calculations using a larger number of glasses (12) and apply a more rigorous statistical procedure to test 

which parameters best predict the Rc (which is different from which parameter best correlates with the 

Rc). This will be explained in Section 3.2. It is important to emphasize that the word “predict” is used 

here in the statistical sense. All GS parameters depend on information acquired from calorimetry 

experiments using glass samples, which require the production of a glass piece. 

Although not a “glass stability” parameter itself, we also included in our analysis a recently proposed 

parameter denominated Jezica [11], (Tl)/Tl², where η(Tl) is the shear viscosity at the liquidus, Tl. This 

parameter depends only on properties of the equilibrium liquid instead of the characteristic temperatures 

determined from a previously prepared glass. Thus, Jezica is a parameter that can predict Rc without the 

need to make the glass, which sets it apart from the other parameters considered in this work. For the 

sake of simplicity, from now on we refer to “the GS parameters” instead of “the GS parameters and 

Jezica”.  

2 Equations for GS and GFA 

The GS parameters tested here and their respective references are shown in Table 1 with the notations 

regarding the melting temperature and the liquidus temperature (Tm and Tl) from the original source. In 

this paper, however, we are considering only the so-called stoichiometric glasses, that is, glasses that are 

isochemical with their stable crystalline phase. 
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Table 1 - GS parameters used in this study. Some parameters appear twice in the table, one using Tc 

and the other using Tx. We indicate which temperature is used between parentheses after 

the parameter name.  

Parameter Ref  Parameter Ref  Parameter Ref   

𝑇𝑟𝑔 =
𝑇𝑔

𝑇𝑚
 [12]  𝐾𝐻(𝑇𝑥) =

𝑇𝑥 − 𝑇𝑔

𝑇𝑚 − 𝑇𝑥
 [13]  𝐾𝐻(𝑇𝑐) =

𝑇𝑐 − 𝑇𝑔

𝑇𝑚 − 𝑇𝑐
 [24]* 

  

∆𝑇𝑥 = 𝑇𝑥 − 𝑇𝑔 [30]  ∆𝑇𝑐 = 𝑇𝑐 − 𝑇𝑔 [24]*  

𝐾𝑆(𝑇𝑐)

=
(𝑇𝑐 − 𝑇𝑥)(𝑇𝑐 − 𝑇𝑔)

𝑇𝑔
 

[31] 

  

𝐾𝑆(𝑇𝑥)

=
(𝑇𝑐 − 𝑇𝑥)(𝑇𝑥 − 𝑇𝑔)

𝑇𝑔
 

[24]*  𝐻′(𝑇𝑥) =
𝑇𝑥 − 𝑇𝑔

𝑇𝑔
 [31]**  𝐻′(𝑇𝑐) =

𝑇𝑐 − 𝑇𝑔

𝑇𝑔
 * 

  

𝛼(𝑇𝑐) =
𝑇𝑐
𝑇𝑙

 [32]  𝛼(𝑇𝑥) =
𝑇𝑥
𝑇𝑙

 [24]*  𝐾𝑤(𝑇𝑐) =
𝑇𝑐 − 𝑇𝑔

𝑇𝑚
 [33] 

  

𝐾𝑤(𝑇𝑥) =
𝑇𝑥 − 𝑇𝑔

𝑇𝑚
 [24]*  

𝐾𝑤2

=
(𝑇𝑐 − 𝑇𝑥)(𝑇𝑥 − 𝑇𝑔)

𝑇𝑚
 

[33]  ∆𝑇𝑔 = 𝑇𝑙 − 𝑇𝑔 [24] 

  

𝛾(𝑇𝑥) =
𝑇𝑥

𝑇𝑔 + 𝑇𝑙
 [34]  𝛾(𝑇𝑐) =

𝑇𝑐
𝑇𝑔 + 𝑇𝑙

 [34]  ∆𝑇𝑙 = 𝑇𝑙 − 𝑇𝑥 [35] 
  

𝛽 =
𝑇𝑥
𝑇𝑔
+
𝑇𝑔

𝑇𝑙
 [36]  𝛿 =

𝑇𝑥
𝑇𝑙 − 𝑇𝑔

 [14]  𝜙 = 𝑇𝑟𝑔 (
∆𝑇𝑥
𝑇𝑔

)

0.143

 [15] 
  

𝛾𝑚 =
2𝑇𝑥 − 𝑇𝑔

𝑇𝑙
 [16]  𝜉 =

𝑇𝑔

𝑇𝑙
+
𝛥𝑇𝑥
𝑇𝑥

 [17]  ∆𝑇𝑟𝑔 =
𝑇𝑥 − 𝑇𝑔

𝑇𝑙 − 𝑇𝑔
 [17]**  

𝛽1 =
𝑇𝑥𝑇𝑔

(𝑇𝑙 − 𝑇𝑥)2
 [18]  𝜔0 =

𝑇𝑔

𝑇𝑥
−

2𝑇𝑔

𝑇𝑔 + 𝑇𝑙
 [19]  𝜔1 =

𝑇𝑔 (𝑇𝑥 − 2𝑇𝑔)⁄

𝑇𝑔 + 𝑇𝑙
 [20]  

 

𝜔2 =
𝑇𝑔

2𝑇𝑥 − 𝑇𝑔
−
𝑇𝑔

𝑇𝑙
 [21]  𝜔3 =

𝑇𝑙(𝑇𝑙 + 𝑇𝑥)

𝑇𝑥(𝑇𝑙 − 𝑇𝑥)
 [22]  

𝜃 =
𝑇𝑥 + 𝑇𝑔

𝑇𝑙 (
𝑇𝑥 − 𝑇𝑔
𝑇𝑙

)
0,0728 

[23] 

  

𝛾𝑐 =
3𝑇𝑥 − 2𝑇𝑔

𝑇𝑙
 [25]  𝛽2 =

𝑇𝑔

𝑇𝑥
−

𝑇𝑔

1.3𝑇𝑙
 [26]  𝐾𝐶𝑅 =

𝑇𝑙 − 𝑇𝑥
𝑇𝑙 − 𝑇𝑔

 [27] 
  

𝐺𝑝 =
(𝑇𝑥 − 𝑇𝑔)𝑇𝑔
(𝑇𝑙 − 𝑇𝑥)2

 [28]  𝐾𝑚 =
(𝑇𝑥 − 𝑇𝑔)

2

𝑇𝑔
 [29]    

  

*Variation of other original equation, ** Cited in this reference without informing the source.   

 

Most of the parameters considered in this work were deduced by the original authors as a proxy 

for GFA (except KS, Tx, H’, Tg, Kw, Kw2, and Km), but all of them require information collected by 

carrying out thermal experiments on heating a glass piece or powder. Therefore, a glass must be made 

for their determination. Hence, as we already mentioned, we consider all the equations shown in Table 1 

as glass stability parameters, and not GFA parameters. The only exception is the Jezica, which is a 

phenomenological equation that can predict GFA without assessing any property that would require a 

glass to be made in the first place. In other words, Jezica is a predictor that only requires two properties 
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of the liquid, the viscosity and the liquidus. To compute the Jezica, we used the VFT expression, (Eq. 1) 

[41–43], to fit the collected viscosity data from several authors. 

 

𝑙𝑜𝑔10(𝜂) = 𝐴 +
𝐵

𝑇−𝑇0
, (1) 

 

where A is the pre-exponential factor, B is an effective activation energy and T0 is the temperature of the 

divergence of the model. All three parameters are adjusted to the experimental data.  

Critical cooling rates, Rc, can be computed from the nose shaped TTT curves, which has been 

extensively studied [5,6,44]. For surface (heterogeneous) nucleation, the nose temperature (Tn) is that of 

maximum growth rate, T(Umax). Therefore, the GFA can be computed with Eq. 2. TUmax is the temperature 

of maximum growth rate and tn is the time at the nose. tn can be calculated from Eq. 3, where Xs is the 

maximum allowed crystallized fraction, Ns is the number of sites per unit area inducing surface 

crystallization, and Umax is the maximum growth rate.  

𝐺𝐹𝐴 =
1

𝑙𝑜𝑔(𝑅𝑐)
=

1

𝑙𝑜𝑔 (
𝑇𝑚 − 𝑇𝑈𝑚𝑎𝑥

𝑡𝑛
)

 
(2) 

 

𝑡𝑛 = √
𝑋𝑠

𝜋𝑁𝑠𝑈𝑚𝑎𝑥
2

 (3) 

 

In this study, we use the logarithm scale to cope with the wide variation of Rc among the 12 

substances studied. 

3 Materials and methods 

3.1 Experimental data 

Table 2 shows all the relevant data used in this study. The crystal growth data necessary to compute 

the critical cooling rate, and the viscosity coefficients required to compute the Jezica parameter were 

collected from several references, cited in Table 2. The characteristic temperatures Tg, Tx, and Tc were 

collected from Refs. [24,45,46], and experimentally determined in this paper for BaO·2B2O3 and 

SrO·2B2O3 using a Netzsch DSC 404 cell with a DTA sensor (the data is shown in S1). All data collected 

from the literature and measured in this study were determined in similar conditions for fine powders 

(<60 m diameter), on heating at 10 K/min, and in atmospheric air. The Tl were collected from the 

respective phase equilibrium diagrams. The dataset consisted of six silicate, five borate and germania 

(GeO2) glasses. 
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Table 2 - Characteristic temperatures (Tg, Tx, Tc and Tl), Umax, T(Umax) and parameters of VFT 

viscosity equation log10() = A + B/(T−T0) used in this study. 

Glass 
Tg 

(K) 

Tx 

(K) 

Tc 

(K) 

Tl  

(K) 

Umax 

(m.s−1) 

T(Umax) 

(K) 
A B T0 Ref. 

Li2O·2B2O3 764 821 830 1190  2.9 × 10−3 1114 −3.74 1685 657.3 [24,47–49] 

Na2O·2B2O3 730 813 825 1016  3.34 × 10−5 972 −3.03 1279 677.1 [45,48,50,51] 

SrO·2B2O3 900 1004 1023 1264  1.60 × 10−4 1215 −3.48 1614 817.7 
[this study] 

[48,52] 

BaO·2B2O3 866 972 988 1181  4.31 × 10−5 1083 −5.01 2816 686.0 
[this study], 

[48,53–55] 

PbO·2B2O3 710 826 866 1047  2.10 × 10−6 979 −3.74 1685 657.3 [46,48,56] 

GeO2 819 1090 1174 1388  9.33 × 10−8 1327 −7.21 17516 48.9 [24,57–60] 

PbO·SiO2 677 859 901 1037  5.11 × 10−7 936 −2.69 1899 556.0 [24,61–65] 

Li2O·2SiO2 740 819 886 1303  6.87 × 10−5 1210 −2.40 3082 509.6 [24,66–74] 

Na2O·2SiO2 713 897 918 1148  9.92 × 10−7 1087 −3.00 4254 429.3 [24,63,75,76]  

2MgO·2Al2O3·5SiO2 1072 1203 1238 1740  9.05 × 10−6 1533 −3.97 5316 762.0 [24,77–80] 

CaO·Al2O3·2SiO2 1127 1280 1301 1833  1.48 × 10−4 1664 −3.32 3939 866.9 [24,81–86] 

CaO·MgO·2SiO2 988 1148 1187 1664  2.21 × 10−4 1614 −4.79 4875 689.9 [24,81,83,87–89] 

 

3.2  Statistical methods 

Here we briefly discuss bootstrapping, the widespread statistical method [90–92] that we used to 

answer the main question of this work: “which GS parameters best predict the GFA?”. For those 

unfamiliar with this procedure, a step-by-step description can be found in Section S2 of the 

Supplementary Material. 

First, we generated 10,000 bootstrap samples (or replicates) from the dataset shown in Table 2. Due 

to the random nature of the drawing process with reposition of this step, it is expected that these bootstrap 

samples will not be equal to the original dataset, thus containing more than one instance of certain glasses 

and not containing any instances of other glasses. Here we call “unselected glasses” the set of glasses 

that are not present in a bootstrap sample. 

Random noise was added to the bootstrap samples and to all the sets of “unselected glasses” aiming 

to simulate experimental uncertainty. This process is discussed in detail in the Supplementary Material. 

For each bootstrap sample and each respective set of “unselected glasses”, we computed 

i. Rc using Eq. 2, with Xs = 10-2 and Ns = 103 (we also considered a noise in the value of log10(Ns), 

see the Supplementary Material); 

ii. viscosity using Eq. 1 (only needed for the Jezica parameter); and 

iii. all GS parameters using the equations shown in Table 1.  

For each GS parameter, we performed a linear regression with the independent variable in which the 
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GS parameter and the dependent variable are the base-10 logarithm of Rc. For each bootstrap sample 

generated, we had one linear regression for each GS parameter that was tested. We then used each of 

these linear regressions to predict the log10(Rc) of the glasses that were left out of their respective 

bootstrap sample, the “unselected glasses”. Having the calculated log10(Rc) and the predicted log10(Rc) 

of these unselected samples, we computed the absolute residual of the prediction, which is the absolute 

of the difference between them. All the absolute residuals of prediction were stored in a sequential list, 

one list for each GS parameter. 

To test which GS parameter yields the lowest values of absolute residuals, we used the non-

parametric Wilcoxon test with a statistical confidence of 99%. This test must be done in pairs of GS 

parameters. First, we tested the null hypothesis if the difference between the absolute residuals between 

a pair of GS parameters followed a symmetric distribution around zero. If we cannot reject the null 

hypothesis, then we cannot support that there is a statistical difference in the prediction of log10(Rc) 

between the considered parameters. However, when the null hypothesis was rejected, we ran the 

Wilcoxon test again, this time testing a null hypothesis that the absolute residuals of one of the GS 

parameters is lower than the other. Using the Wilcoxon test with each possible pair of parameters, we 

can check which parameter is best for predicting the log10(Rc), which will have the lowest absolute 

residual values.  

4 Results and discussion 

4.1 Statistical methods 

Table 3 shows the results of the Wilcoxon tests for all possible pairs of GS parameters. Number “−1” 

indicates that the parameter in the column is better than the one in the line.  Number “1” indicates that 

the parameter in the line is better than the one in the column, whereas “0” indicates that the parameters 

do not differ in terms of predicting the log10(Rc). The reader can observe a diagonal of “zeros” 

(highlighted in the table) that refers to the comparison between the parameter with itself. In Table 3, the 

parameters are ranked from the best to the worst (left to right).  

Overall, with the proposed numerical and statistical procedure, the best GS expression was the Kw 

(Tc) = (Tc−Tg)/Tl. The runner up GS parameters were Kw(Tx), (Tc), H’(Tx), KH(Tc), H’(Tc), KH(Tx), 

Trg, and Kcr. Nascimento et al. [24] also concluded that Kw, KH, and  indeed show a good correlation 

with the GFA of oxide glasses. In this paper, even including many other GFA expressions and testing 

them for statistical prediction ability, Kw, KH, and  still made the podium, sharing their top positions 

with H’ (which was not tested in [24]). The KH parameter was revised by Kozmidis-Petrovic and Šestác 

[40] who pointed out that this is indeed one of the best to estimate the glass stability and vitrification 

ability.  

The Jezica parameter, in the eleventh position in the ranking, is the only parameter that can be used 

to phenomenologically (in addition to statistically) predict GFA without obtaining a glass. It only requires 

knowledge of the liquid viscosity at the liquidus and the respective liquidus temperature. This is a 
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relevant result because no direct information on crystallization kinetics is required to use this parameter.  

Apart from the Jezica, the only other parameter that does not consider the crystallization peak or the 

crystallization onset is the Tgr. However, it was the worst performer in our analysis. Tgr was the first glass 

stability parameter proposed, and it was deduced considering only internal homogeneous nucleation. 

However, the GFA computed in this work (see Eq. 2) was obtained with the assumption that surface 

heterogeneous crystal nucleation prevails over homogeneous nucleation. Due to this, it is no surprise that 

Tgr did not perform well in our analysis. For metallic glasses, where copious homogeneous nucleation is 

predominant, this parameter usually shows reasonable results, although it is often not listed among the 

best [18,19,93].  

Due to the random nature of the bootstrap samples, a visualization of the employed statistical method 

is not straightforward. Figure 1a and 1c were plotted aiming to provide a better understanding of this 

procedure. We will call these figures “bootstrap distribution plots”, and they were made for the GS 

parameters that scored the best (Figure 1a) and the worst (Figure 1c) in our analysis, Kw(Tc) and Tgr, 

respectively. 
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Table 3 - Wilcoxon test results. “0” indicates that the parameters are not different, “1” indicates the parameter in the line is preferable and “-1” 

indicates the parameters in the column is preferable. The R² mode (the most frequent R² of linear regression of the bootstrap samples) for each 

parameter is also shown 
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Kw (Tc) 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.79 

Kw (Tx) -1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.77 

 (Tc) -1 -1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.70 

H’(Tx) -1 -1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.78 

KH (Tc) -1 -1 -1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.71 

H'(Tc) -1 -1 -1 -1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.77 

KH (Tx) -1 -1 -1 -1 -1 -1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.72 

Tgr -1 -1 -1 -1 -1 -1 -1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.72 

Kcr -1 -1 -1 -1 -1 -1 -1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.72 

c -1 -1 -1 -1 -1 -1 -1 -1 -1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.65 

JZCA -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.63 

Km -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.64 

2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.62 

m -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.61 

 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.55 

0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.59 

1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.50 

(Tx) -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.53 

2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.59 

Gp -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0.53 

Tc -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0.62 

Tx -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0.61 

Kw2 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 0 -1 1 1 1 1 1 1 1 1 1 1 1 1 0.55 

(Tc) -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0.48 

KS (Tx) -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 1 1 1 1 1 1 1 1 1 1 0.53 

 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 1 1 1 1 1 1 1 1 1 1 0.44 

KS (Tc) -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 1 1 1 1 1 1 1 1 1 0.00 

(Tx) -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 1 1 1 1 1 1 1 0.33 

Tl -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 1 1 1 1 1 1 1 0.20 

3 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 1 1 1 1 1 0.31 

 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0 1 1 1 1 1 0.23 

 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 1 1 1 1 0.29 

1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 1 1 1 0.00 

Tg -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 1 1 0.00 

 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 1 0.00 

Tgr -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 0 0.00 
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(a) (b) 

  

(c) (d) 

Figure 1 - Bootstrap distribution plot (see text for definition) and respective distribution of R2 for the 

parameters (a) Kw(Tc) and (c) Tgr, and the R2 distribution for the parameters (b) Kw(Tc)  and (d) Tgr. 

The vertical gray lines in the R² plots indicate the modes of the distributions.  

The bootstrap distribution plot was constructed by plotting the bootstrap samples (GS as the 

independent variable and GFA as the dependent variable) as black circles, which are almost transparent. 

The position of these circles can be revealed only if there is a reasonable overlap. The more circles 

overlap, the darker and more frequent that particular combination of GS and GFA is. This is a way to 

obtain visual information on the distribution of the bootstrap samples that were drawn.  

In a similar fashion, the linear regression for each bootstrap sample is plotted as an almost 

transparent red line. The same reasoning used for the circles also applies for these red lines. Thus, the 

more saturated colors represent the places with more overlapping red lines. Observe that the red color in 
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Figure 1a is much more saturated and contained in a much smaller area of the plot compared with Figure 

1c. This is because the parameter Kw(Tc) is much more robust at predicting GFA than Tgr. As 

complementary information, the distribution of the R2 values are shown in Figure 1b and d for Kw(Tc) 

and Tgr, respectively.  

Finally, in Section S3 of the supplementary material we compare the ranking by the Wilcoxon test 

and the ranking by a simple correlation analysis (R2) without using bootstrap sampling. Table S2 shows 

the R² from a simple correlation analysis, hence the reader can compare it with the more robust analysis 

made in this work. As a general rule, the higher the Wilcoxon rank, the higher the correlation rank is. 

However, these ranks are not exactly the same, which shows that good correlation does not necessarily 

imply equally good (statistical) power of prediction. The R² distribution plots for the other parameters, 

similarly to the plots shown in Figure 1b and Figure 1d, are shown in Section S5 of the supplementary 

material. 

4.1 The best GS parameters to predict Rc 

Table 4 shows that only parameters Kw, KH,  H’, ΔTrg, and Kcr have the mode of R2 greater than or 

equal to 0.70. The next on the list has a mode less than 0.65. The simple linear correlation coefficients 

for these parameters span from 0.75 to 0.86. While this is in an arbitrary threshold, here we deemed these 

parameters as being the best statistical predictors of Rc. In the following paragraphs, we will discuss the 

main features of these 6 parameters. 

The Kw = (Tc−Tg)/Tl parameter, proposed by Weinberg, includes a normalization by Tl [23] of the 

Tg (Tc) = Tc−Tg parameter, which is taken by several authors as a measure of glass stability, e.g. [17,31]. 

In Weinberg´s work, however, Tc was calculated using crystallization models, instead of being a datum 

from a DTA or DSC experiment. 

The KH = (Tx−Tg)/(Tm−Tx) parameter proposed by Hrübý [13] was deduced based on the 

consideration that the GFA is directly proportional to the glass stability. He considered a DTA analysis 

as a reproduction, in a slower rate, of the quenching step in the glass making process. He observed that 

Tx is located at higher temperatures for glasses that are more easily obtained, eventually as high as the 

melting temperature. In this case, crystallization would be difficult and a glass would be very easy to 

make. The Tx−Tg term was thus related to these considerations. Hrübý also affirmed that a short Tm−Tx 

interval indicates that the crystalline phase formed at Tx has a relatively low melting point, which is 

considered a positive feature for easy vitrification. Therefore, Tm−Tx was considered to be inversely 

proportional to the GFA.  

The H’ = (Tx−Tg)/Tg parameter is just another normalized form of the Tg = (Tx−Tg). It is not clear 

who the authors were of these two parameters, but they were used by Saad and Poulan in 1987 [31]. Saad 

and Poulain suggested that the difference between Tx (or Tc) and Tg is related to the GFA, because they 

observed a maximum value for the best glass forming composition in their study. Normalization by Tg 

would enable the comparison between glasses of different systems. This parameter only depends on two 

characteristic temperatures. 
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The  = Tx/(Tg+Tl) parameter, proposed by Lu and Liu [34], has two different derivations. The most 

simple of them, was published in [94], and considers the TTT curve for homogeneous nucleation. 

Interestingly, the basis of the current work is heterogeneous nucleation, which is quite different from the 

considerations of Lu and Liu. The authors suggested that two aspects of the liquid stability should be 

considered: the liquid stability at equilibrium state and the liquid stability at the (metastable) supercooled 

state. When two glasses have the same Tg, the one with the lowest Tl, has the highest liquid phase stability. 

For glasses having the same Tl but different Tg, the one with the lowest Tg has the highest liquid stability 

at the metastable state. To compare glass-forming liquids with distinct Tl and Tg, one can use ½ (Tg+Tl). 

The smaller (Tg+Tl), the higher the stability of the supercooled liquid. Now, considering that the TTT 

curves for all glasses have the same shape, Tx would be the temperature where a heating thermal 

experiment crosses the lower part of the TTT nose. Considering the same shape of the TTT curve for all 

glasses, Tx is proportional to the time in the nose of the TTT curve. For glasses with the same (Tg+Tl), a 

higher Tx means a lower Rc and, therefore, the higher the  parameter, the higher the GFA.  

The ΔTrg = [(Tx−Tg)/(Tl−Tg)] and Kcr = [(Tl−Tx)/(Tl−Tg)] parameters are equivalent (Kcr = 1 − ΔTrg). 

The origin of this parameter is not clear, but it appears in the work of Du and Huang (2008) [17], listed 

as one of the parameters that has already been used in previous GFA studies. The Kcr was proposed by 

Polyakova (2015) [55] who deduced it by starting with the Hrübý parameter. Polyakova observed that 

the KH is a non-linear function of Tx, which is responsible for its low sensitivity when Tx is near Tg, and 

highly sensitive when Tx is near Tl. By substituting the Tl−Tx by Tl−Tg in the denominator, the Kcr 

becomes a linear function of Tx and can assume values between 0 - for glasses with outstanding GFA - 

to 1 - for glasses with really poor GFA. 

All the best GS parameters require 3 characteristic temperatures of the material, H’ being a notable 

exception. Interestingly, when not tied, the parameters Kw, KH, and  performed better with Tc than their 

counterparts with Tx. This result makes sense given that the position of the crystallization peak is where 

the rate of crystallization is maximum, a key temperature to be avoided to vitrify any substance. Tc is 

also better defined in DTA/DSC traces than Tx. It is important to note that to determine the characteristic 

temperatures; we analyzed samples having similar particle size distributions and the same heating rate. 

This is relevant for comparison studies because these two process variables significantly affect Tx and 

Tc, as observed by Nascimento et al. [24], who observed the influence of such parameters considering 

fine and coarse grains. 

5 Summary and Conclusions 

We used bootstrap sampling and the Wilcoxon test to find out which glass stability parameter can 

statistically predict the glass forming ability. To use this methodology, we collected or measured the 

necessary data for twelve stoichiometric oxide glasses that underwent predominant heterogeneous 

nucleation. To the best of our knowledge, such an extensive statistical test was used for the first time to 

check the capacity of 35 GS parameters to access the GFA.  
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We found that some GS parameters predict the GFA of oxide glasses quite well whereas most 

perform poorly. Parameter Kw was the best, closely followed by the KH,  H’, ΔTrg, and Kcr. Our results 

corroborate previous reports carried out using a smaller number of glasses, much less GS parameters, 

and less rigorous statistics. We also found that using Tc instead of Tx improved the predictive power of 

these parameters. Finally, the only parameter considered here that predicts the GFA without requiring the 

production of a glass piece to be used, Jezica, ranked reasonably well in our analysis, even though it does 

not rely on any crystallization information to predict GFA.  
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Supplementary material 

S1. DTA analysis 
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Figure S 1 - Thermal analysis of the borate glasses produced in this work. 

S2. Statistical method explained in detail 

Here we discuss bootstrapping, the widespread statistical method [90–92] used to answer the main 

question of this work: “which GS parameters best predict the GFA?” We divided this method into five 

steps: resampling, adding noise, calculation, correlation, and prediction. 

Resampling is the process of creating a “bootstrap sample” by randomly sampling the original 

dataset with reposition. One constraint is that the bootstrap sample must have the same size of the original 

dataset. In our case, the original dataset contains twelve glasses, as shown in Table 2. Thus, any bootstrap 

sample that is generated must also contain twelve glasses. Due to the random nature of the sampling 

process with reposition, the bootstrap sample will most probably be a different set of glasses than the 

original dataset, with some glasses occurring more than once and some glasses not appearing at all. We 

will call “unselected glasses” the glasses that were not selected during sampling.  

Adding noise is the process of simulating the uncertainty of experimental measurements. Each entry in 

a bootstrap sample and the “unselected glasses” will incorporate some random amount of noise after 
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the resampling step. The noise may be absolute, for which a value drawn from a normal distribution 

with zero mean and standard deviation specified in  

Table Table S1 was added to the parameter; or relative, for which a value drawn from a normal 

distribution with a mean of 1 and specified standard deviation is 

Table  multiplied by the parameter. We only interfered in this random process for the cases where, 

by chance, the temperature of maximum crystal growth (TUmax) was greater than or equal to the melting 

temperature, which is physically absurd. In these cases, we recomputed all the noises within the bootstrap 

sample until no such forbidden situation occurred. 

 

Table S1 - Type, mean, and standard deviation of the noise that was added to the parameters drawn 

during the bootstrap sampling. Absolute noises were added to the parameter and relative noises 

multiplied by it (see text). 

Parameter Type of noise Mean Standard deviation 

Tg Absolute 0 5 

Tl Absolute 0 5 

Tc Absolute 0 8 

Tx Absolute 0 8 

TUmax Absolute 0 8 

Umax Relative 1 0.02 

log10(Ns) Absolute 0 1 

log10(η) Absolute 0 0.2 

 

Calculation is the process of computing Rc and the value of all the GS parameters for the glasses in a 

bootstrap sample and the respective “unselected glasses.” Computation of Rc was done using Eq. 2, 

with Xs = 10-2 and Ns = 103 (we also considered a noise in the value of log10(Ns), as shown in  

Table ). Viscosity at the liquidus temperature was only needed for the Jezica parameter, and it was 

computed using Eq. 1. The equations for all the GS parameters are shown in Table 1.  

Correlation is the process of performing linear regressions using the bootstrap sample data. One 

linear regression for each GS parameter was obtained considering the GS parameter as the independent 

variable and log10(Rc) as the dependent variable. In our case, because we are analyzing 35 GS equations, 

we obtained 35 linear equations for each bootstrap sample, each one of these regressions using a different 

GS parameter as the independent variable. We also computed the coefficient of determination for each 

linear regression that was performed. 

Prediction is the process of predicting the value of log10(Rc) of the “unselected glasses” by using the 

GS parameters of the “unselected glasses” and the linear equations obtained in the previous step. Having 

the predicted log10(Rc) for each GS parameter and the calculated log10(Rc) of these “unselected glasses”, 

we computed the absolute residual of the prediction for each GS parameter, which is the absolute 

difference between the predicted and calculated log10(Rc).  
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The five steps of the method, discussed in the previous paragraphs, were done 10,000 times, each 

time storing in individual lists the values of the coefficient of determination obtained in the Correlation 

step and storing the absolute residual of prediction obtained in the Prediction step. Each GS parameter 

had its own list of coefficient of determination and residuals. 

With the list of the coefficient of determination, we computed the mode of this coefficient for each 

GS parameter. The mode of R2 is reported in Table 4. 

With the list of residuals, we can test which GS parameter yields the lowest residuals, thus having 

the best prediction power. To do this we used the non-parametric Wilcoxon test with a statistical 

confidence of 99%. This test is done in pairs of GS parameters. First, we tested the null hypothesis if the 

difference between the absolute residuals of a pair of GS parameters followed a symmetric distribution 

around zero. If we cannot reject the null hypothesis, then we cannot claim that there is a statistical 

difference in the prediction of log10(Rc) for the considered pair of parameters. However, when the null 

hypothesis was rejected, we ran the Wilcoxon test again having as a null hypothesis the absolute residuals 

of one of the GS parameters are lower than the other. By performing the Wilcoxon test with each possible 

pair of GS parameters, we were able to check which (if any) GS parameters are best to predict the log10(Rc) 

as the parameters that yield the lowest absolute residuals. 

S3. Simple correlation analysis versus Wilcoxon test  

 

Table S2 – Correlation coefficients, R2 , from a linear correlation analysis between the GS 

parameters and Rc. 

Parameter Kw(Tc) Kw(Tx) (Tc) H'(Tx) H'(Tc) KH(Tc) Trg Kcr KH(Tx) c KM 2 

R2 0.86 0.83 0.80 0.80 0.80 0.79 0.77 0.77 0.77 0.75 0.69 0.66 

             

Parameter  m 0 (Tx) Jezica Kw2(Tx) 2 Tc Gp Tx KS(Tx) 1 

R2 0.64 0.64 0.62 0.61 0.60 0.60 0.60 0.60 0.58 0.58 0.57 0.54 

             

Parameter (Tc) KS(Tc)  (Tx) 3  Tl Tg  Trg  1 

R2 0.52 0.51 0.46 0.32 0.30 0.28 0.25 0.03 0.01 0.01 0.00 0.00 
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Figure S 2 - Position in the simple correlation (R²) rank vs. position in the Wilcoxon test rank. 

The data points for which the diagonal line passes through have the same position in both ranks. In 

general, they are well correlated; the Jezica, 1, and Kw2 show the greatest difference between the two 

types of tests. 

 

S4. Python code 

The supplementary Python code used in this work is licensed under GPL-3.0 and is freely available 

in the GitHub repository https://github.com/drcassar/supp_code_glass_stability. 

  

https://github.com/drcassar/supp_code_glass_stability
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S5. R² plots 

 

(a) (b) 

 

(c) (d) 

 

(e) (f) 

 

Figure S3 - Distribution of R2 for the parameters (a) (Tc), (b) (Tx), (c) , (d) 1, (e) 2 and (f) . 
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(a) (b) 

 

(c) (d) 

 

(e) (f) 

Figure S4 - Distribution of R2 for the parameters (a) Tc, (b) Tg, (c) Tgr, (d) Tl, (e) Tx and (f) c. 
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(a) (b) 

 

(c) (d) 

 

(e) (f) 

Figure S5 - Distribution of R2 for the parameters (a) m, (b) Gp, (c) Jezica, (d) Kcr, (e) Tc) and (f) 

Tx). 
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(a) (b) 

 

(c) (d) 

 

(e) (f) 

Figure S6 - Distribution of R2 for the parameters (a)  (Tc), (b)  (Tx), (c) Km, (d) KS(Tc), (e) KS(Tc) and 

(f) wTx). 
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(a) (b) 

 

(c) (d) 

 

(e) (f) 

 

Figure S7 - Distribution of R2 for the parameters (a) Kw2, (b) H'(Tc), (c) H'(Tx), (d) 0 (e) 1 and (f) 2 
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(a) (b) 

 

(c) (d) 

Figure S8 - Distribution of R2 for the parameters (a) 3, (b) , (c)  and (d) . 
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