
 

http://wrap.warwick.ac.uk/ 
 

 
 

 
 
 
 
 
 
 
Original citation: 
Rahmanpour, Rahman and Bugg, Tim. (2013) Assembly in vitro of rhodococcus jostii 
RHA1 encapsulin and peroxidase DypB to form a nano-compartment. FEBS Journal, 
Volume 280 . pp. 2097-2104. 
 
Permanent WRAP url: 
http://wrap.warwick.ac.uk/55839  
 
Copyright and reuse: 
The Warwick Research Archive Portal (WRAP) makes this work of researchers of the 
University of Warwick available open access under the following conditions.  Copyright © 
and all moral rights to the version of the paper presented here belong to the individual 
author(s) and/or other copyright owners.  To the extent reasonable and practicable the 
material made available in WRAP has been checked for eligibility before being made 
available. 
 
Copies of full items can be used for personal research or study, educational, or not-for-
profit purposes without prior permission or charge.  Provided that the authors, title and 
full bibliographic details are credited, a hyperlink and/or URL is given for the original 
metadata page and the content is not changed in any way. 
 
 
A note on versions: 
The version presented here is a working paper or pre-print that may be later published 
elsewhere.  If a published version is known of, the above WRAP url will contain details 
on finding it. 
 
For more information, please contact the WRAP Team at: publications@warwick.ac.uk  

http://wrap.warwick.ac.uk/55839
mailto:publications@warwick.ac.uk
http://www2.warwick.ac.uk/


 

 

Assembly in vitro of Rhodococcus jostii RHA1 Encapsulin and Peroxidase 

DypB to form a Nano-Compartment 

 

Rahman Rahmanpour
 
and Timothy D.H. Bugg* 

 

Department of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.  

 

Address for correspondence: Prof. T.D.H. Bugg, Department of Chemistry, University of 

Warwick, Coventry CV4 7AL, U.K. 

Tel 44-2476-573018 Email T.D.Bugg@warwick.ac.uk 

 

Running title: Encapsulin DypB nanocompartment 

 

Keywords: encapsulin; peroxidase DypB, nanocompartment, lignin 

 

mailto:T.D.Bugg@warwick.ac.uk


Abstract: Rhodococcus jostii RHA1 peroxidase DypB has been recently identified as a 

bacterial lignin peroxidase. The dypB gene is co-transcribed with a gene encoding an 

encapsulin protein, shown in Thermotoga maritima to assemble to form a 60-subunit nano-

compartment, and DypB contains a C-terminal sequence motif thought to target the protein to 

the encapsulin nanocompartment. R. jostii RHA1 encapsulin protein has been overexpressed 

in R. jostii RHA1, and purified as a high molecular weight assembly (Mr >10
6
). The purified 

nanocompartment can be denatured to form a low molecular weight species by treatment at 

pH 3.0, and can be re-assembled to form the nanocompartment at pH 7.0. Recombinant DypB 

can be assembled in vitro with monomeric encapsulin to form an assembly of similar size and 

shape to the encapsulin-only nanocompartment, assessed by dynamic light scattering. The 

assembled complex shows enhanced lignin degradation activity per mg DypB present, 

compared with native DypB, using a nitrated lignin UV-vis assay method. The measured 

stoichiometry of 8.6 µmoles encapsulin/µmol DypB in the complex is comparable to the 

value of 10 predicted from the crystal structure. 

 

 

 



Introduction 

Several types of bacterial protein-based organelles, or microcompartments, have been 

characterised in recent years, which consist of polyhedron-shaped arrays of protein subunits, 

containing enzymes in their interior, that typically catalyse a particular biochemical pathway 

[1]. Cyanobacteria and chemoautotrophic bacteria contain the carboxysome, an icosahedral 

complex 80-150 nm in diameter which contains enzymes for CO2 fixation [2]; the polyhedral 

Pdu microcompartment in Salmonella enterica contains enzymes for 1,2-propanediol 

utilisation [3]; and the Eut microcompartment in enteric bacteria Escherichia coli and S. 

enterica contains enzymes for ethanolamine utilisation [4]. A smaller 240Å icosahedral 

nanocompartment has been characterised in Thermotoga maritima, whose shell-forming 

protein is called an encapsulin [5]. Homologues of the encapsulin protein are found in 

Brevibacterium linens, where they show antibacterial activity as an extracellular 29 kDa 

linocin [6], and in Mycobacterium tuberculosis [7]. The crystal structure of the T. maritima 

nanocompartment has been determined, containing 60 subunits of encapsulin, enclosing a 

large central cavity [5]. Sutter et al. have identified a C-terminal peptide extension that 

appears to target two types of protein to the nanocompartment in different bacteria: a DyP 

type peroxidase, and a ferritin-like protein [5]. 

We have recently reported that DypB from Rhodococcus jostii RHA1 shows activity 

as a lignin peroxidase, oxidising a -aryl ether lignin model compound, or Mn
2+

 ions, or 

polymeric Kraft lignin [8]. Deletion of the dypB gene abolishes the lignin degradation activity 

of R. jostii RHA1 [8], using a colorimetric assay involving nitrated milled wood lignin [9], 

therefore DypB appears to be important for the lignin degradation activity of this microbe. 

The genome sequence of R. jostii RHA1, a powerful PCB-degrading organism, has been 

determined [10]. Immediately downstream of the R. jostii dypB gene (ro2407) is a 807 bp 



encapsulin gene (ro2408), as shown in Figure 1. We therefore wished to investigate whether 

DypB is packaged within the encapsulin nanocompartment, and examine what effect the 

nanocompartment has on lignin degradation activity. Here we report the reconstitution of 

purified recombinant R. jostii encapsulin with R. jostii DypB to form a packaged 

nanocompartment. 

Figure 1 Genomic context of R. jostii dypB gene 

 

Results 

Sequence Analysis 

In their study of the Thermotoga maritima encapsulin, Sutter et al. have identified a 10 

amino acid peptide sequence (GSLxIGSLKG) found at the C-terminus of the associated dyp-

type peroxidase or ferritin protein, that appears to be responsible for targeting of the protein to 

the nanocompartment [5]. As shown in Table 1, this C-terminal peptide sequence is present in 

R. jostii RHA1 DypB. A number of bacterial DypB homologues were examined, and their C-

terminal amino acid sequences are shown in Table 1. DypB sequences from Rhodococcus 

jostii, R. opacus, R. erythropolis, Nocardia cyriacigeorgica, Burkholderia phymatum, B. 

multivorans, Mycobacterium tuberculosis, Acetobacter pasteuranius, Streptomyces 

hygroscopicus and S. griseus each show a 20-30 amino acid extension containing the 10 

amino acid sequence motif, and in each of these organisms, the dypB and encapsulin genes 

are found immediately adjacent in the respective genomes sequences (see Figure 2). However,  

DypB homologues from Pseudomonas fluorescens, Streptomyces coelicolor and S. lividans 

lack the C-terminal peptide sequence, and in these organisms, there is no adjacent encapsulin 

gene. Although the targeting sequence is not always present, there is a clear correlation 



between the presence of the C-terminal amino acid sequence motif and the presence of a 

downstream encapsulin gene. 

Table 1. Alignment of C-terminal sequence of bacterial DypB homologues 

 

Expression and purification of R. jostii RHA1 encapsulin nanocompartment 

 Over-expression of the R. jostii RHA1 encapsulin gene in a pET200 expression vector 

in E. coli was found to give rather weak expression of a 29 kDa protein band (data not 

shown), that upon analytical gel filtration eluted as a low molecular weight protein, 

suggesting that the assembly to form a nanocompartment had not occurred. Over-expression 

of the R. jostii encapsulin gene in the pTipQC2 expression vector in a R. jostii RHA1Δ 

encapsulin strain, however, was found to give high expression of a 29 kDa protein band by 

SDS-PAGE (see Figure 2, lane 2). Purification of cell lysate by Superdex 200 gel filtration 

chromatography gave a major peak at short retention time (see Figure S1, Supporting 

Information), corresponding to a very high molecular weight protein (predicted 1.8 MDa by 

calibration with protein standards), consistent with a high molecular weight 

nanocompartment. Purification to homogeneity was achieved by Mono Q anion exchange, 

followed by Sephadex 75 gel filtration chromatography (see Figure 2). Elution of the protein 

complex from Sephadex 75 gel filtration was found to give three peaks, each of which 

contained the encapsulin monomer by SDS-PAGE, indicating the presence of three different 

multimeric forms in solution (see Figure S2, Supporting Information). 

Figure 2. Purification of R. jostii RHA1 encapsulin, monitored by SDS-PAGE. 

 

 



Disassembly and in vitro re-assembly of the nanocompartment 

 Using purified R. jostii RHA1 encapulin nanocompartment, we have investigated 

methods to disassemble the nanocompartment, using native SDS-PAGE to monitor changes 

in native molecular weight. The native nanocompartment appears as a very high molecular 

weight band by native SDS-PAGE, as shown in Figure 3. Treatment with acetate buffer at pH 

3 was found to give a low molecular weight band, eluting at approximately 60 kDa by native 

PAGE (see Figure 3A), consistent with a dimeric species. When the species obtained by 

treatment at pH 3.0 was subsequently incubated in 50 mM phosphate buffer pH 7.0 for 30 

min, analysis by native PAGE revealed once again the high molecular weight band 

corresponding to reassembled nanocompartment.  

 In order to characterise further the dis-assembled and re-assembled protein fractions, 

they were analysed using dynamic light scattering, which has been used to measure the 

dynamic radius of protein aggregates in solution [11]. The native purified nanocompartment 

gave a single peak corresponding to a radius of 22 nm, which matches quite well the 240 Å 

diameter of the T. maritima nanocompartment, determined by X-ray crystallography [5]. A 

sample of protein treated at pH 3.0 gave a major peak at much smaller size, corresponding to 

a radius of 1.69 nm. The thickness of the T. maritima nanocompartment was found to be 20-

25 Å [5], therefore, the observed dynamic radius is consistent with dimeric form of 

encapsulin. Analysis of the reassembled nanocompartment by dynamic light scattering 

showed that the reassembled encapsulin nancompartment gave a similar but slightly larger 

dynamic radius of 31 nm, compared with the native nanocompartment, indicating perhaps a 

slightly expanded structure. 

 

Figure 3. Disassembly and re-assembly of encapsulin nanocompartment 



 

 In order to investigate reassembly with DypB, the “denatured” encapsulin was then 

mixed with purified R. jostii RHA1 DypB [8]. In this experiment, 0.6 mg/ml of encapsulin 

and 0.2 mg/ml of DypB were used, to prevent the possibility of aggregation and unwanted 

interactions between encapsulin monomers and DypB molecules, and also reducing the 

possibility of macromolecular crowding in the denatured state, and a low concentration of 

DypB was considered to increase the efficiency of encapsulin reassembly. The mixture 

incubated at 100 mM phosphate buffer, 100 mM NaCl, pH 7.4 for 30 minutes and then was 

then passed through a Superdex™ 200 gel filtration column, and two major peaks were 

observed (see Figure S3, Supporting Information). Analysis of the first, high molecular 

weight peak by denaturing SDS-PAGE revealed two protein bands, corresponding to 

encapsulin and DypB, whereas the second, lower molecular weight peak revealed that it 

consisted only of DypB, as shown in Figure 4. These data show that reassembly of DypB into 

the encapsulin nanocompartment has been achieved.  

 

Figure 4. SDS-PAGE of re-assembled encapsulin/DypB complex 

 

 The ratio of encapsulin to DypB proteins in the reassembled complex was 

investigated. Reassembled encapsulin/DypB complex was heated to 50 
o
C for 5 min and 

consequently sonicated for 3 minute, and then total protein determined by Bradford assay in 

triplicate. DypB content was assessed by measurement of heme content at 404 nm, and 

comparison with a DypB standard curve. The molar ratio of encapsulin to DypB was found to 

be 8.6 µmoles encapsulin/µmole DypB. 



 

Peroxidase Activity of encapsulin/DypB complex   

 The peroxidase activity of the re-assembled DypB/encapsulin complex was assessed 

by kinetic assays. R. jostii RHA1 DypB has been shown to be active with dye ABTS, which 

can be assayed colorimetrically at 420 nm, and with nitrated milled wood lignin, which can be 

assayed colorimetrically at 430 nm [8]. As shown in Table 2, the activity per mg protein of 

the re-assembled DypB/encapsulin complex is approximately 10-fold lower activity using 

ABTS than pure DypB, but when corrected for the proportion of the complex present as 

DypB (8.6 mol encapsulin complex/mol DypB), the peroxidase activity of the DypB enzyme 

in the complex with ABTS is 70-75% of that of native DypB. Using the nitrated lignin assay 

[9], the activity of the re-assembled DypB/encapsulin assembly was similar to that of DypB 

alone, but when corrected for the proportion of the complex present as DypB, the activity per 

mg DypB is 8-fold higher than DypB alone, indicating that assembly in the encapsulin 

somehow enhances the lignin degradation activity of DypB. 

Table 2. Peroxidase activity of reassembled DypB/encapsulin complex 

 

Discussion 

 This work has demonstrated that R. jostii DypB can be assembled in vitro with R. 

jostii encapsulin, consistent with the co-expression of the two genes, and the presence of the 

C-terminal targeting sequence in DypB. The work also provides procedures for in vitro 

disassembly of the nanocompartment and re-assembly with “cargo” proteins. The 

nanocompartment might prove to have useful applications for biotechnology, therefore, these 

procedures could be used to load proteins into the nano-compartment in vitro. The data 



obtained by dynamic light scattering (see Figure 3B) shows that reassembled 

nanocompartment is comparable (though not identical) with original nanocompartment, and 

the diameter of 22 nm agrees well with the diameter of 240 Å determined from the crystal 

structure of the T. maritima nanocompartment [5]. The stoichiometry of 8.6 mol 

encapsulin/mol DypB also agrees quite well with the stoichiometry of 10 mol encapsulin/mol 

DypB predicted from the crystal structure, where one nanocompartment containing 60 

subunits of encapsulin was predicted to contain 6 subunits of DypB. 

 The peroxidase activity of reassembled encapsulin/DypB complex provides some 

interesting clues to the possible functional role of the encapsulin/DypB complex. Using 

ABTS as substrate, the peroxidase activity of the complex is similar to that of DypB alone, 

which is surprising, since the pores in the encapsulin nancompartment structure are <5 Å 

wide, large enough to allow hydrogen peroxide to enter, but not a large dye molecule such as 

ABTS. It is conceivable that some subunits of DypB might be attached to the exterior of the 

nanocompartment, but all the binding sites for the C-terminal targeting peptide are located on 

the inside of the nano-compartment [5]. The other possibility is that the nano-compartment is 

a flexible, dynamic structure that is able to open and shut to take up substrate molecules. This 

explanation seems consistent with the observation of other assemblies by gel filtration 

chromatography (Figure S2, Supporting Information).  

 The observation that the reassembled encapsulin/DypB complex shows 8-fold higher 

activity in the nitrated lignin assay (per mg DypB) than DypB alone implies that the 

encapsulin nano-compartment somehow increases the activity with polymeric lignin. One 

possible explanation is that it may assist in localising DypB onto the hydrophobic surface of 

lignin. The non-specific binding of cellulase enzymes to the hydrophobic surface of lignin is 

thought to slow down the rate of lignocellulose breakdown by cellulases [12], which can be 

alleviated by addition of non-ionic detergents that preferentially bind to lignin [13]. 



Furthermore, lignin peroxidase from Phanerochaete chrysosporium has been shown to 

directly adsorb to the surface of synthetic lignin [14], thereby assisting in lignin breakdown. If 

the encapsulin nano-compartment is a dynamic structure, then it seems possible that it could 

disassemble on the surface of lignin or lignocellulose, and therefore localise DypB onto the 

surface of lignin or lignocellulose, as illustrated in Figure 5. 

Figure 5. Assembly of nanocompartment and hypothesis for delivery to lignocellulose 

 

 One issue that is unresolved is the cellular location of the DypB/encapsulin complex. 

The lignin degradation activity of R. jostii RHA1 was measured using extracellular extract 

[8,9], implying that DypB is exported from the cell. The encapsulin-related linocins from B. 

linens and M. tuberculosis have also been detected extracellularly [6,7], and we have also 

observed a protein band corresponding to encapsulin in extracellular fractions of R. jostii 

RHA1 (data not shown), and yet the encapsulin nanocompartment has only been observed 

intracellularly [5]. The mechanism for cell export of encapsulin and DypB is unknown, and 

would seem not to follow known protein export mechanisms. In summary, the ability to 

package proteins into the cavity of such a nanocompartment, using a specific targeting 

sequence, offers interesting possible applications for biotechnology, and may have specific 

application for biomass deconstruction. 

 

Materials and Methods 

Strains. Gene deletion strain Rhodococcus jostii RHA1 Δencapsulin, in which encapsulin gene 

ro2408 is deleted, was constructed by Dr. R Singh and Prof. L. Eltis (Dept. Microbiology and 

Immunology, University of British Columbia), using the method of van der Geize et al [15], 



as described previously for construction of a dypB strain [8]. The R. jostii RHA1 encapsulin 

gene was expressed on an inducible expression vector pTipQC2 [16] by Dr. Singh, allowing 

inducible expression of encapsulin in R. jostii RHA1. 

 

Expression and purification of R. jostii encapsulin. A 1 litre culture of R. jostii RHA1 

Δencapsulin/pTipQC2 (knockout for genomic encapsulin gene but complemented for 

encapsulin gene with pTipQC2 plasmid) was grown in the presence of 35 μg/ml 

chloramphenicol for 36 hours at 30°C, with shaking at 180 rpm. At OD600 0.6, the culture was 

induced by addition of thiostrepton (final concentration 1 μg/ml), and the culture was grown 

for a further 16 hr at 30
o
C overnight, and then cells were harvested by centrifugation at 

13,000 g (10 min).  The cell pellets were resuspended in 10 ml lysis buffer (50 mM NaH2PO4, 

10 mM imidazole, pH 8.0) in the presence of 1mM PMSF (phenylmethanesulfonyl fluoride), 

then lysozyme (1 mg/ml) and DNase (2 U per g cell) were added and left at room temperature 

for 30 minutes. Cell lysis was carried out by sonication (3 x 1 min, 0 
o
C).  After centrifugation 

at 13000 g (30 min), the clear supernatant was filtered (20 µm) and concentrated to 1 ml using 

a 50 kDa Amicon centricon device.  

 The concentrated cell lysate was applied to a Superdex™ 200 gel filtration column, 

and eluted with 50 mM phosphate buffer 100 mM NaCl pH 7.4 at a flow rate of 0.5 ml/min. 

Fractions (0.5 ml) showing a 29 kDa band for encapsulin by SDS PAGE were pooled, and 

exchanged for 20 mM Tris-HCl pH 8.0 buffer using a PD-10 column. The resultant solution 

was applied to a Mono Q HR 5/5 anion exchange FPLC column, and protein was eluted with 

a gradient of 0 to 1M NaCl in 20 mM Tris-HCl pH 8.0 buffer. Fractions containing the 29 

kDa encapsulin band, which eluted at approximately 700 mM NaCl, were pooled. Further 

purification was achieved by elution from a Sephadex® G-75 column, equilibrated with 50 



mM phosphate buffer, 100 mM NaCl pH 7.4 and a flow rate of 0.75 ml/min. Collected 

fractions containing pure encapsulin (yield 2.5 mg protein) were pooled for further analysis. 

 

Disassembly and reassembly of encapsulin. Purified encapsulin (0.6 mg) was treated in 100 

mM acetate buffer pH 3.0 (1 ml) on ice for 15 minutes, and a sample (100 μl) was taken for 

native PAGE and dynamic light scattering. Then 100 mM phosphate buffer, 100 mM NaCl, 

pH 7.4 (2 ml) was added to the solution, incubated for 30 minutes on ice. Buffer was 

exchanged to 50 mM phosphate buffer, 100 mM NaCl, pH 7.4 by two passages through a 10 

kDa Centricon device. A sample (100 μl) was taken for native PAGE and dynamic light 

scattering. 

 

Disassembly/reassembly in presence of DypB. Purified encapsulin (0.6 mg) was treated with 

100 mM acetate buffer pH 3.0 (1 ml) on ice for 15 minutes in the presence of DypB (0.2 mg). 

DypB was shown to be highly active at pH 3, and does not lose activity for this period of time 

at this pH. Reassembly was carried out as described above, then the solution was injected 

onto a Superdex™ 200 column equilibrated with 50 mM phosphate buffer, 100 mM NaCl, pH 

7.4, and eluted with this buffer with a flow rate of 0.5 ml/min. Samples from each fraction 

were analysed by SDS PAGE. 

 

Analysis by dynamic light scattering. Analysis of dynamic radius was carried out by dynamic 

light scattering using a Malvern Zetasizer instrument with laser wavelength of 633 nm, using 

a 0.1 mg/ml concentration solution (45 μl) in 50 mM phosphate buffer, 100 mM NaCl, pH 

7.4 buffer except for disassembled protein which was in 100 mM acetate buffer pH 3.0. Three 



measurements were performed at 20°C, each cycle lasting 60 seconds. Data was analysed and 

presented by Zetasizer Nanoseries software, and the average size for each measurement 

calculated and recorded.  

 

Assays for peroxidase activity. The re-assembled encapsulin/DypB complex, purified by gel 

filtration as described above, was assayed using ABTS (2,2’-azino-bis(3-

ethylbenzothiazoline-6-sulphonic acid) [8] and nitrated lignin assay [9] procedures. Assays 

were carried out at 0.2 mg/ml total protein concentration, and compared with pure R. jostii 

RHA1 DyPB, and a buffer-only control. ABTS assay: to enzyme (0.2 mg) in 100 mM acetate 

buffer pH 5 was added ABTS (10 mM final concentration), 1 mM H2O2, in a final volume of 

1 ml. Reactions were initiated with the addition of H2O2, and initial rates were monitored at 

420 nm. Nitrated lignin assay: assays were carried out using a stock solution of nitrated 

milled wood lignin (0.015 mM, 800 µl), prepared as previously described [9] in 750 mM Tris 

buffer pH 7.4 containing 50 mM NaCl, to which was added 0.2 mg enzyme and 40 mM H2O2 

(50 µl), total volume 1.0 ml. Reactions were initiated with the addition of H2O2, and initial 

rates were monitored at 430 nm over 20 min. Control assays were carried out in which protein 

solution was replaced with 750 mM Tris pH 7.4, 50 mM NaCl.  

 

Acknowledgements 

We thank Dr. Rahul Singh and Prof. Lindsay Eltis (Dept. Microbiology and Immunology, 

University of British Columbia) for providing us with gene deletion strain R. jostii RHA1 

encapsulin and plasmid pTipQC2 containing the recombinant encapsulin gene. We thank the 

University of Warwick for provision of a Studentship (R.R.), Prof. Alison Rodger (Univ. 



Warwick) for advice on dynamic light scattering, and Darren Braddick for practical 

assistance. 

 

References 

1. Yeates TO, Crowley CS & Tanaka S (2010) Bacterial microcompartment organelles: 

protein shell structure and evolution. Annu. Rev. Biophysics 39, 185-205. 

2. Tanaka S, Kerfeld CA, Sawaya MR, Cai F, Heinhorst S, Cannon GC & Yeates TO (2008) 

Atomic-level models of the bacterial carboxysome shell. Science 319, 1083-1086. 

3. Havemann GD, Sampson EM & Bobik TA (2002) PduA is a shell protein of polyhedral 

organelles involved in coenzyme B12-dependent degradation of 1,2-propanediol in 

Salmonella enterica serovar Typhimurium LT2. J. Bacteriol. 184, 1253-1261. 

4. Tanaka S, Sawaya MR & Yeates TO (2010) Structure and mechanisms of a protein-based 

organelle in Escherichia coli. Science 327, 81-84. 

5. Sutter M, Boehringer D, Gutmann S, Günther S, Prangishvili D, Loessner MJ, Stetter KO, 

Weber-Ban E & Ban N (2008) Structural basis of enzyme encapsulation into a bacterial 

nanocompartment. Nat. Struct. Mol. Biol. 15, 939-947. 

6. Valdes-Stauber N & Scherer S (1994) Isolation and characterization of linocin M18, a 

bacteriocin produced by Brevibacterium linens. Appl. Environ. Microbiol. 60, 3809-3814. 

7. Rosenkrands L, Rasmussen PB, Carnio M, Jacobsen S, Theisen M & Andersen P (1998) 

Identification and characterization of a 29-kDa protein from Mycobacterium tuberculosis 

culture filtrate recognized by mouse memory effector cells. Infect. Immun. 66, 2728-2735 



8. Ahmad M, Roberts JN, Hardiman EM, Singh R, Eltis LD & Bugg TDH (2011) 

Identification of DypB from Rhodococcus jostii RHA1 as a lignin peroxidase. 

Biochemistry 50, 5096-5107. 

9. Ahmad M, Taylor CR, Pink D, Burton K, Eastwood D, Bending GD & Bugg TDH (2010) 

Development of novel assays for lignin degradation: comparative analysis of bacterial and 

fungal lignin degraders. Molecular Biosystems 6, 815-821. 

10. McLeod MP, Warren RL, Hsiao WWL, Araki N, Myhre M, Femandes C, Miyazawa D, 

Wong W, Lillquist AL, Wang D, Dosanjh M, Hara H, Petrescu A. Morin RD, Yang G, 

Stott JM, Schein JE, Shin H, Smailus D, Siddiqui AS, Marra MA, Jones SJM, Holt R, 

Brinkman FSL, Miyauchi K, Fukuda M, Davies JE, Mohn WW & Eltis LD (2006) The 

complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic 

powerhouse. Proc. Natl. Acad. Sci. USA 103, 15582-15587. 

11. Moradian-Oldak J, Paine ML, Lei YP, Fincham AG & Snead ML (2000) Self-assembly 

properties of recombinant engineered amelogenin proteins analysed by dynamic light 

scattering and atomic force microscopy. J. Struct. Biol. 131, 27-37. 

12. Palonen H, Tjerneld F, Zacchi G & Tenkanen M (2004) Adsorption of Trichoderma 

reesei CBH1 and EGII and their catalytic domains on steam-pretreated softwood and 

isolated lignin. J. Biotechnol. 107, 65-72. 

13. Eriksson T, Börjesson J & Tjerneld F (2002) Mechanism of surfactant effect in enzymatic 

hydrolysis of lignocellulose.  Enz. Microb. Technol. 31, 353-364. 

14. Johjima T, Itoh N, Kabuto M, Tokimura F, Nakagawa T, Wariishi H & Tanaka H (1999) 

Direct interaction of lignin and lignin peroxidase from Phanerochaete chrysosporium. 

Proc. Natl. Acad. Sci. USA 96, 1989-1994. 



15. van der Geize R, Hessels GI, van Gerwen R, van der Meijden P & Dijkhuizen L (2001) 

Unmarked gene deletion mutagenesis of kstD, encoding 3-ketosteroid 
1
-dehydrogenase, 

in Rhodococcus erythropolis SQ1 using sacB as counter-selectable marker. FEMS 

Microbiol. Lett. 205. 197-202. 

16. Nakashima N & Tamura T (2004) Isolation and characterization of a rolling-circle-type 

plasmid from Rhodococcus erythropolis and application of the plasmid to multiple-

recombinant-protein expression. Appl. Environ. Microbiol. 70, 5557-5568. 

 

 



Table 1. Alignment of C-terminal amino acid sequence of bacterial DypB homologues. Sequences listed in order of sequence similarity to R. 

jostii RHA1 DypB sequence. 
a
Gene annotated as bacteriocin or linocin. 

 

Bacterial strain Accession 

number of 

DypB 

homologue 

C-terminal protein sequence 

(encapsulin targeting sequence underlined) 

Size  

(aa) 

Downstream 

encapsulin 

family
a
 gene? 

(accession 

number) 
Rhodococcus  j os t i i  RHA1 

Rhodococcus  opacus  B4 

Rhodococcus  er y t hr opol i s  

Bur khol der i a phymat um 

Bur khol der i a mul t i vor ans  

Mycobac t er i um t uber cul os i s  

Nocar di a cy r i ac i geor gi ca  

St r ept omyces  coel i col or  

St r ept omyces  l i v i dans  

St r ept omyces  hygr oscopi cus  

St r ept omyces  gr i seus   

Acet obac t er  pas t eur i anus  

Pseudomonas  f l uor escens  

Pseudomonas  f l uor escens  

Q0SE24 

C1B1V7 

C0ZVK5 

B2JNZ7 

A9ATN5 

O07180 

H6R1G4 

Q9FBY9 

D6EC39 

H2JMY8 

B1VSP6 

C7JE82 

Q4KA97 

I 2BZP5 

ESLGDEPAGAES- - - - - - - APEDPVEPAAAGPYDLSLKI GGLKGVSQ 

ESLGDAPAAAEP- - - - - - - APEDP- APAGASPYELSLKI GGLKGVSQ 

DDPPDAPTR- - - - - - - - - LVPEATFTAPI S- - - DGSLGI GSLKRSAQQ 

EALADREPQPASAS- - - - AAASADTFACAEPGHDGSLNI GSLKGTAQYE 

DALPDRAAPAEAAA- - - - PAPSSN- - - - - EPHRDGSLKI GSLKGVKSV 

DHPP- - - - - - - - - - - - - - PLPQAATPTLAA- - - - GSLSI GSLKGSPR   

DDLPDPPG- - - - - - - - - - - ASPADDATPAAPAADGSLGI GTLKRSS 

EDLPARP 

EDLSARP 

EDLPEPPAAG- - - - - - - - AVAAVTPTDSQVRSSGSSLGI GSMKRSMSR 

DAPPPPPAPARTGNLPEPVPAPVRQEPPAAGADHGSLRI GSLQESAQ 

DDAPNMSTENTQ- - - - - - ASPEPVTAPPLPKALHGSLGI GSLNNKDA 

EDLAERAPTGL   

EALPDREPVA 

 

Sequence mot i f                     GSLx I GSLKG 

350 

349 

341 

352 

353 

335 

341 

316 

329 

349 

357 

379 

328 

320 

 

Yes  ( Q0SE23)  

Yes  ( C1B1V8)  

Yes  ( C0ZVK4)  

Yes  ( B2JNZ6)  

Yes  ( A9ATN4)  

Yes  ( O07181)  

Yes  ( H6R1G5)  

No 

No 

Yes  ( H2JMY9)  

Yes  ( B1VSP6)  

Yes  ( C7JE83)  

No 

No 

 

 



Table 2. Peroxidase activity of reassembled DypB/encapsulin complex. Assays were carried 

out using 0.2 mg protein (either purified DypB or reassembled encapsulin/DypB complex) as 

described in Materials and Methods. 

 

  DypB only DypB/encapsulin assembly 

Substrate Control 

(A/min) 

Rate 

(A/min) 

Activity per 

mg protein 

Rate 

(A/min) 

Activity per 

mg DypB 

 

ABTS  

 

 

0.00023 ± 

0.0001 

 

0.81 ± 0.01 

 

 

4.05 ± 0.05 

 

 

0.055 ± 0.01 

 

 

2.75 ± 0.5 

 

Nitrated lignin  

 

 

0.0025 ± 

0.0004 

 

 

0.0074 ± 

0.001 

 

0.025 ± 

0.005 

 

 

0.0071 ± 

0.0016 

 

 

0.20 ± 0.08 

 

 

 



Figure Legends 

Figure 1. Genomic context of Rhodococcus jostii RHA1 dypB and encapsulin genes. 

Figure 2. Purification of R. jostii RHA1 encapsulin. Figure shows SDS-PAGE analysis of 

pooled fractions from cell extract, Superdex 200 gel filtration chromatography, MonoQ anion 

exchange, and Sephadex 75 gel filtration. 

Figure 3. Disassembly and reassembly of encapsulin nanocompartment. A. Native SDS-

PAGE analysis of: native encapsulin nanocompartment; treatment at pH 3.0 leading to 

disassembly; reassembly at pH 7.0. B. Analysis of the same samples by dynamic light 

scattering, showing the predicted particle diameter. 

Figure 4. Purification of reassembled encapsulin/DypB complex by Superdex 200 gel 

filtration. Analysis by SDS-PAGE shows the presence of encapsulin and DypB in the high 

molecular weight complex (1
st
 peak), and only DypB in the 2

nd
 lower molecular weight 

fraction. 

Figure 5. Assembly of nanocompartment and hypothesis for delivery to surface of 

lignocellulose.
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