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Abstract

Outcomes related to disordered metabolism are common in alcohol dependence (AD). To 

investigate alterations in the regulation of body mass that occur in the context of AD, we 

performed a GWAS of BMI in African-Americans (AAs) and European-Americans (EAs) with 

AD. Subjects were recruited for genetic studies of alcohol or drug dependence, and evaluated 

using the Semi-Structured Assessment for Drug Dependence and Alcoholism. We investigated a 

total of 2,587 AAs and 2,959 EAs with DSM-IV AD diagnosis. In the stage-1 sample (N=4,137), 

we observed three genome-wide significant (GWS) SNP associations, rs200889048 

(p=8.98*10−12) and rs12490016 (p=1.44*10−8) in EAs, and rs1630623 (p=5.14*10−9) in AAs and 

EAs meta-analyzed. In the stage-2 sample (N=1,409), we replicated 278, 253, and 168 of the 

stage-1 suggestive loci (p<5*10−4) in AAs, EAs, and AAs and EAs meta-analyzed, respectively. A 

meta-analysis of stage-1 and stage-2 samples (N=5,546) identified two additional GWS signals: 

rs28562191 in EAs (p=4.46*10−8) and rs56950471 in AAs (p=1.57*10−9). Three of the GWS loci 

identified (rs200889048, rs12490016, rs1630623) were not previously reported by GWAS of BMI 
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in the general population and two of them raise interesting hypotheses: rs12490016 – a regulatory 

variant located within LINC00880, where there are other GWAS-identified variants associated 

with birth size, adiposity in newborns, and bulimia symptoms which also interact with social stress 

in relation to birth size; rs1630623 – a regulatory variant related to ALDH1A1, a gene involved in 

alcohol metabolism and adipocyte plasticity. These loci offer molecular insights regarding the 

regulatory mechanisms of body mass in the context of AD.
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Introduction

GWAS of BMI in the general population indicated that this trait was significantly associated 

with genes involved in different substance dependence (SD)-susceptible mechanisms, such 

as neural function and energy balance (Hebebrand et al., 2010; Speliotes et al., 2010). 

Furthermore, dysregulated brain reward pathways may contribute to both SD and “food 

addiction” (Berthoud et al., 2011), suggesting partially shared pathogenic mechanisms of 

these traits.

Alcohol abuse is the third leading cause of preventable death in the United States (Mokdad 

et al., 2004), and alcohol dependence (AD) is experienced by ~14% of alcohol users (Grant 

et al., 2001). Several GWAS of AD have been performed, detecting different risk loci (Bierut 

et al., 2010; Edenberg et al., 2010; Gelernter et al., 2014; Quillen et al., 2014; Zuo et al., 

2012). The most strongly supported risk locus in European- and African-ancestry 

populations is the ADH cluster, but other loci also play important roles in AD risk. No 

previous GWAS of BMI in subjects identified as AD has been performed, but a genome-

wide gene-environment interaction analysis failed to find significant loci that interacted with 

alcohol consumption in relation to BMI (Velez Edwards et al., 2013). A recent study offered 

evidence in support of the hypothesis that there are six types of obesity and one of them is 

related to heavy alcohol drinkers (Green et al., 2015), suggesting that subjects with AD can 

have specific pathogenic mechanisms that affect body mass regulation.

Previous studies have focused on the effects of AD on BMI. AD subjects with a low level of 

alcohol drinking showed normal metabolic control, with alcohol intake being compensated 

by a decrease in non-alcoholic nutrients; conversely, AD subjects with high alcohol intake 

showed a loss of metabolic control, where alcohol accelerated metabolism and decreased fat 

mass and leptin levels (de Timary et al., 2012). Neurobiological investigation of AD subjects 

has indicated that BMI – independent of age, alcohol consumption, and common 

comorbidities – is correlated to regional concentrations of N-acetyl-aspartate (a marker of 

neuronal viability), choline-containing compounds (a marker of membrane turnover), 

creatine and phosphocreatine (markers of high energy metabolism), and myoinositol (a 

putative marker of astrocytes) (Gazdzinski et al., 2010). Genetic studies of BMI in AD 

subjects have all been candidate gene analyses and have yielded limited data. A longitudinal 

study of the effect of AD familial risk on BMI developmental changes observed significant 
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differences between males with high AD risk and those with low AD risk, and interaction of 

DRD2 and FTO gene variation with risk status and sex (Lichenstein et al., 2014). Previous 

candidate gene studies of FTO in relation to AD reported nominally significant associations 

(Sobczyk-Kopciol et al., 2011; Wang et al., 2013), but the results are in some cases not 

concordant and no GWAS has confirmed these findings. Finally, exon sequencing analysis of 

the POMC gene, which encodes melanocortin peptides that are linked to SD and obesity 

risk, indicated that variation at this locus can contribute to risk for both traits (Wang et al., 

2012). However, the effects of AD on BMI are complex and not well understood.

In the present study, we used GWAS to investigate the genetics of BMI in AD subjects, to 

identify AD-specific mechanisms. We analyzed data from a total of 5,546 subjects (stage-1 

N=4,137; stage-2 N=1,409) with DSM-IV diagnosis of lifetime AD (2,587 AAs and 2,959 

EAs), combining our samples with the Study of Addiction: Genetics and Environment 

(SAGE), which is available through dbGaP (accession number phs000092.v1.p) (Bierut et 

al., 2010).

Methods and Materials

Subjects and Diagnostic Procedures

Our stage-1 sample combined two independent populations of subjects with DSM-IV 

diagnosis of lifetime AD that were both genotyped on ~1M-SNP microarrays, our sample 

(Yale-Penn, N = 3,017) (Gelernter et al., 2014) and the SAGE sample (N = 1,120) (Bierut et 

al., 2010). A total of 1,981 AAs and 2,156 EAs were included. For the stage-2 analysis, we 

recruited an additional 606 AAs and 803 EAs with AD using the same criteria as the initial 

Yale-Penn cohort; these samples were genotyped on a sparser array.

The study was approved by the institutional review board at each site and we obtained 

written informed consent from each participant. Yale-Penn subjects were evaluated using the 

Semi-Structured Assessment for Drug Dependence and Alcoholism (SSADDA) to derive 

DSM-IV diagnoses of lifetime AD and other major psychiatric traits (Pierucci-Lagha et al., 

2005), and SAGE subjects were evaluated using the Semi-Structured Assessment for the 

Genetics of Alcoholism (SSAGA) (Bucholz et al., 1994). BMI was calculated on the basis of 

the height and weight that each participant reported during the SSADDA or SSAGA 

interview via the formula for BMI using inches and pounds. As performed also by previous 

GWAS of BMI (Monda et al., 2013; Speliotes et al., 2010), we used BMI values calculated 

on self-reported height and weight since the putative error in these data would likely bias the 

results toward the null outcome. Detailed information about the sample is available in our 

previous GWAS of alcohol dependence in AAs and EAs (Gelernter et al., 2014). Table 1 

reports the characteristics of the analyzed populations.

Genotyping and Imputation

Yale-Penn samples were genotyped on the Illumina HumanOmni1-Quad v1.0 microarray 

containing 988,306 autosomal SNPs, at the Center for Inherited Disease Research (CIDR) or 

the Yale Center for Genome Analysis. Genotypes were called using GenomeStudio software 

V2011.1 and genotyping module V1.8.4 (Illumina, San Diego, CA, USA). The SAGE 
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samples were genotyped on the Illumina Human 1M array containing 1,069,796 total SNPs. 

The stage-2 cohort was genotyped using the Illumina HumanCoreExome array, which 

contains over 550,000 markers spilt between common and low-frequency variants. Principal 

component (PC) analysis was conducted in each sample (i.e., Yale-Penn, SAGE, and stage-2 

cohort) using Eigensoft (Price et al., 2006) and SNPs that were common to the GWAS 

datasets and HapMap panel (after pruning the GWAS SNPs for linkage disequilibrium (LD) 

(r2) > 80%) to characterize the underlying genetic architecture of the samples. Detailed 

information about pre-imputation quality control is available in our published AD GWAS 

(Gelernter et al., 2014). Imputation was performed using Impute2 software and the 1,000 

Genomes reference panel. After imputation, we excluded SNPs with a minor allele 

frequency < 5% and poor imputation quality (Certainty < 0.9, Info < 0.3). Considering the 

SNPs common to GWAS cohorts (i.e., Yale-Penn and SAGE), 8,353,798 variants in AAs 

and 5,990,735 variants in EAs were included in association analyses.

Data analysis methods

Association tests were performed using the R package GWAF to fit a generalized estimating 

equations (GEE) model to correct for correlations among related individuals (Chen and 

Yang, 2010). GEE model analysis was performed considering pedigree information after 

checking genetic relatedness (i.e., confirming the relatedness of samples and excluding 

cryptic relatedness). We tested the association of the imputed minor allele dosage with BMI 

considered as the phenotype, and using DSM-IV cocaine dependence (CD) diagnosis, DSM-

IV opioid dependence (OD) diagnosis, DSM-IV nicotine dependence (ND) diagnosis, sex, 

age, and the first three ancestry PCs, as covariates. Analyses were performed separately 

within each dataset and ancestry group, and the results were combined by meta-analysis 

using the program METAL (Willer et al., 2010). To prevent bias due to population 

stratification, we analyzed the AA and EA samples separately, and within each ancestry 

group we considered the first three principal components to adjust the genetic analysis. A P-

value of 5*10−8 was the threshold for genome-wide significance (GWS) in the GWAS. 

Negligible inflation of P values was observed in both AAs and EAs (Supplemental Figures 

S1 and S2). To annotate the functional effects of the identified variants, we used information 

available in the UCSC genome browser (Kent et al., 2002), HaploReg (Ward and Kellis, 

2012), Variant Effect Predictor (VEP) (McLaren et al., 2010), GTEx project (GTEx 

Consortium, 2013), and rSNPbase (Guo et al., 2014). Considering the results of GWAS in 

AAs and EAs, we performed a gene-based association analysis in each ancestry group using 

VEGAS software (Liu et al., 2010). Reference panels to correct for LD patterns in EAs and 

AAs were HapMap CEU and HapMap YRI, respectively. In gene-based association analysis, 

we estimated false discovery rate using the R package qvalue (Dabney and Storey, 2010), 

and considered q values < 0.05 as significant. Considering the gene-based association 

analysis data, we performed a protein-protein interaction (PPI)-based association analysis 

using the R package dmGWAS (Jia et al., 2011). Specifically, we defined PPIs of all genes 

with gene-based association using the Protein Interaction Network Analysis platform 

(PINA) v2.0 (Cowley et al., 2012), and subsequently we used R package dmGWAS to 

identify PPI modules enriched with small p values. We used both available independent 

population samples (AAs and EAs) to search for PPI modules enriched for BMI-associated 

genes (the “dual-evaluation” strategy). We applied a dense module search in the EAs and 
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follow-up analysis in AAs. The modules that remained significant after Bonferroni 

correction in AAs were considered to be relevant. Finally, we used DAVID 6.7 (Huang da et 

al., 2009) to perform functional annotation clustering, and generate a functional annotation 

chart using the results of the gene-based and PPI-based association analysis, respectively. 

High classification stringency and Bonferroni correction for multiple comparisons were 

considered in the DAVID analyses.

Results

Replication of loci previously associated with BMI in AAs and EAs

We evaluated whether previously identified BMI-associated loci could be replicated in our 

AA and EA GWAS cohorts (Supplemental Table 1 and Supplemental Table 2, respectively), 

considering the data provided by recent large GWAS of BMI in AAs and EAs (Monda et al., 

2013; Speliotes et al., 2010). In AAs, the top reported BMI-associated variant, SEC16B 
rs543874, was replicated in our GWAS cohort (p = 0.027), as was another BMI-associated 

locus, ADCY3 rs7586879 (p =0.021). We replicated FTO rs17817964 (p = 0.034) in our AA 

replication cohort. In EAs, the top-two BMI associated loci (FTO rs1558902 and TMEM18 
rs2867125) were both replicated in our GWAS cohort (p = 7.0 * 10−6 and p = 1.12*10−4, 

respectively), together with other BMI-associated loci (i.e., ETV5 rs9816226, p = 

4.72*10−3; NRXN3 rs10150332, p = 0.031; and CADM2 rs13078807, p = 7.48*10−3). FTO 
rs1558902 was also replicated (p = 0.018), and RBJ rs713586 (p = 0.039), ETV5 rs9816226 

(p = 0.021), NRXN3 rs10150332 (p = 4.04*10−3), and NUDT3 rs206936 (p = 0.028) in our 

EA replication cohort.

Novel findings from SNP-based association analysis

Table 2a reports the top 20 variants in the SNP-based association analysis of BMI in EAs 

with AD. Among them, rs200889048 and rs12490016 were GWS in meta-analysis of EAs 

(rs200889048: EA meta-analysis p = 8.98*10−12, Yale-Penn p = 2.14*10−4, and SAGE p = 

2.52*10−10; rs12490016: EA meta-analysis p = 1.44*10−8, Yale-Penn p = 1.09*10−4, and 

SAGE p = 2.16*10−5). Specifically, the minor alleles of rs200889048 and rs12490016 are 

both associated with increased BMI in AD subjects. Fourteen of the top 20 variants in EAs 

with AD are located in the FTO gene, the top BMI-associated locus for European ancestry 

reported in the largest previous meta-analysis (Speliotes et al., 2010). Table 2b reports the 

top 20 variants observed in the SNP-based association analysis of AAs with AD, none of 

which reached GWS in the Yale-Penn sample, SAGE sample, or meta-analysis of these two 

samples. Finally, to identify loci in which there was evidence for association in both 

populations, we performed a meta-analysis of AA and EA GWAS samples (Table 2c). One 

variant, rs1630623, was GWS in trans-population GWAS: the minor allele is associated with 

increased BMI in both AAs and EAs (trans-population p = 5.14*10−9, EA p = 1.85*10−7, 

and AA p = 2.6610−3). We report regional Manhattan plots of the three GWS hits in 

supplemental Figure 3.

Functional annotation of GWS variants

Our GWAS of BMI in AD subjects identified three GWS variants: two in EAs (rs200889048 

and rs12490016), and one in the combined-population analysis (irs1630623). The top variant 
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in EAs, rs200889048, is a 1-bp deletion located in an intergenic region. Considering the 

UCSF Brain DNA Methylation data (Maunakea et al., 2010) and information from 

HaploReg, we found that this variant is located in a methylated region, where different CpG 

sites are present, and affects 10 different regulatory motifs. The second GWS variant in EAs, 

rs12490016, is located in long noncoding RNA 880 (LINC00880). According to functional 

annotation by VEP and the information available from the UCSC Genome Browser, 

rs12490016 is located within a promoter flanking region (ENSR00001485403) near a CpG 

island (580 bp) and a K562 FAIRE peak (1,329 bp). rSNPbase classified rs12490016 as a 

regulatory SNP involved in distal regulation of several genes (TIPARP, TIPARP-AS1, 
CCNL1, SSR3, and LINC881). Additionally, recent GWAS identified the variants 

rs17451107, rs1482853, rs900400, and rs7624327 in the region of LINC00880 as associated 

with birth weight, adiposity in newborns, and bulimia (Boraska et al., 2012; Horikoshi et al., 

2013; Urbanek et al., 2013). The trans-population GWS variant, rs1630623, is located in 

TMC1, a gene associated with deafness and hearing loss (Kurima et al., 2002). It is 61 bp 

from an H3K27me3 region, and was classified by rSNPbase as a regulatory SNP involved in 

RNA binding protein mediated regulation. It is 175 kb downstream of ALDH1A1, a gene 

involved in alcohol metabolism, and in the regulation of the metabolic responses to a high-

fat diet (Kiefer et al., 2012; Lind et al., 2012). Considering GTEx project data, we find that 

rs1630623 genotypes affect ALDH1A1 gene expression significantly in whole blood (p = 

0.04, N = 168)

Gene-based association analysis

In EAs, six genes (i.e., KRTAP4-1, KRTAP4-3, KRTAP4-4, KRTAP4-5, KRTAP4-2, and 
KRTAP9-2) showed significant associations with BMI in AD subjects (q < 0.05; 

Supplemental Table 3). However, these genes are clustered within 70 kb. Because the 

VEGAS software defines genes boundaries as ± 50 kb of the 5′ and 3′ UTRs, these 

observations are not independent. In AAs, gene-based association analysis did not reveal 

significant associations (Supplemental Table 4). To cluster genes on the basis of functional 

information, we used DAVID 6.7, considering nominally significant genes in AAs and EAs. 

After Bonferroni correction, there were three significant clusters observed in EAs, 

(Supplemental Table 5). However, two clusters are related to keratin and keratin-associated 

genes, located in a tight gene cluster on chromosome 17. Conversely, the top cluster is 

related to 36 Kruppel-associated (KRAB) proteins. Although some of these KRAB genes 

overlapped in the VEGAS analysis, 20 of them are completely independent. In contrast, no 

significant clusters were observed in AAs.

PPI-based association analysis

We used the results of GWAS in AAs and EAs to find PPI modules enriched for BMI-

associated genes in AD. We used the dual evaluation approach of the R package dmGWAS, 

considering EAs as the discovery dataset and AAs as the evaluation dataset. In EAs, 12,125 

PPI modules were identified. Considering the identified PPI modules in EAs, we then 

verified the enrichment of BMI-associated genes in AAs. One PPI module was significant 

after dual evaluation analysis (Figure 1). Eleven genes were included in this PPI network 

that was associated with BMI in AD. Performing a term enrichment analysis, we observed 
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several terms that remained significant after Bonferroni correction (Table 3). The top 

enriched terms are related to BMI-associated loci and cellular metabolism regulations.

Analysis of stage-1 findings in the stage-2 cohorts

We evaluated the stage-1 findings (with p<5*10−4) in our independent stage-2 cohorts. Of 

these suggestive loci, 278, 253, and 168 of stage-1 suggestive loci replicated at nominal 

significance (P<0.05) and had effects that were directionally consistent with those in stage 1 

(Supplemental Table 6, 7 and 8). A meta-analysis of stage-1 and stage-2 samples confirmed 

the GWS signal of rs200889048 in EAs (p=9.44*10−10) and a suggestive GWS association 

of rs1630623 (p = 9.73*10−8) in the AA-EA meta-analysis. Furthermore, this meta-analysis 

also identified two additional GWS variants: rs28562191 in EAs (p=4.46*10−8) and 

rs56950471 in AAs (p=1.57*10−9). Table 4 reports the relevant findings of the meta-analysis 

of stage-1 and stage-2 samples.

Discussion

Our GWAS of BMI in subjects with DSM-IV diagnosis of lifetime AD identified novel 

significant risk variants, genes, PPI networks, and pathways. Most of these significant 

findings appear to be specifically related to AD, since they were not reported in previous 

GWAS of BMI in the general population in considerably larger samples. Therefore, the 

predisposition to body mass changes in AD subjects could be partially related to AD-

associated genetic mechanisms, providing specific evidence that alcohol intake can modify 

biological mechanisms and affect the genetic predisposition to this phenotypic trait. We 

analyzed EA and AA subjects and performed a trans-population investigation in a multiple-

stage analysis to detect ancestry-specific and trans-population risk alleles (Polimanti et al., 

2015). The stage-1 analysis (N=4,137) identified three GWS variants. In the stage-2 

(N=1,409), we replicated numerous suggestive findings of stage-1 and observed concordant 

direction for two of the stage-1 GWS findings (rs200889048 and rs1630623), and a meta-

analysis of stage-1 and stage-2 samples (N=5,546) identified two additional GWS loci. The 

loci highlighted by the meta-analysis of stage-1 and stage-2 samples were previously 

indicated by GWAS of BMI in general population: rs28562191 is located in the FTO gene, 

which is the top locus associated with BMI in populations with European ancestry (Speliotes 

et al., 2010), and rs56950471 is located in chromosome 11q23.3 where multiple GWAS 

identified variants associated with lipid traits and BMI in different population groups (Kiel 

et al., 2007; Ko et al., 2014; Shin et al., 2014). Conversely, the stage-1 GWS findings were 

not previously identified by GWAS of BMI in general population, indicating potential AD-

specific loci associated with BMI.

In stage-1 EAs, we found two GWS associations. The top variant, rs200889048, was GWS 

in the SAGE cohort (p = 2.53*10−10), a significant effect was observed in the Yale-Penn 

cohort (p = 2.14*10−4), and the variant was highly significant in the meta-analysis of stage-1 

cohorts (p = 8.98*10−12). The meta-analysis of stage-1 and stage-2 cohorts also confirmed 

the GWS significant association of rs200889048 SNP with BMI in AD subjects 

(p=9.44*10−10). This variant is located in a nongenic region, flanked by CNTN3 (407 kb 

upstream) and MIR444-1 (286 kb upstream) loci. Although the UCSF Brain DNA 
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Methylation data and HaploReg indicated that this variant is located in a highly methylated 

region and affects regulatory motifs, no further data seem to explain this genetic association. 

A number of databases are available for annotating gene function and regulation, but 

understanding the functional mechanism of GWAS-identified variants remains a key 

challenge.

The second GWS variant identified in stage-1 EAs, rs12490016, is located in LINC00880, 

flanked by the LEKR and CCNL1 genes (EA meta-analysis p = 1.44*10−8; SAGE p = 

2.16*10−5; Yale-Penn p = 1.09*10−4). Previous GWAS have shown that other variants in 

LINC00800 region were significantly associated with birth weight and adiposity in 

newborns and bulimia symptoms (Boraska et al., 2012; Horikoshi et al., 2013; Urbanek et 

al., 2013). Furthermore, a post-GWAS analysis indicated significant interplay between 

variants located in this region and social stress in relation to birth size (Ali Khan et al., 

2012). Previous studies hypothesized that weight and weight gain during pre-natal life and 

infancy play a role in determining adulthood obesity (Bjerregaard et al., 2014). To address 

this issue, recent investigations analyzed the relationship between birth size, childhood and 

adulthood obesity, and behavioral factors. Genetic risk scores based on obesity studies in 

adults were significantly associated with postnatal growth, newborn adiposity, and “large for 

gestational age birth” phenotype (Chawla et al., 2014; Elks et al., 2014). Also highly 

relevant is a prospective analysis of the Helsinki Birth Cohort Study (N = 12,594) that 

showed pre- and post-natal growth to be associated with the risk for alcohol use disorders 

(AUD) later in life (Lahti et al., 2014). Finally, bulimia and AUD frequently co-occur, and 

some studies indicated that bulimia may share genetic factors with obesity and AD 

(Gamero-Villarroel et al., 2014; Muller et al., 2012; Trace et al., 2013). On the basis of these 

reported findings, the association of rs12490016 with BMI in AD provide further insight 

into the complex interplays between pre-natal, childhood and adulthood events in 

determining body mass changes.

The trans-population stage-1 analysis identified another GWS variant, rs1630623 (trans-

population p = 5.14*10−9; EA p = 1.8510−7; AA p = 2.6610−3). Although this variant is 

located in TMC1, a gene associated with deafness and hearing loss (Kurima et al., 2002), it 

is 175 kb downstream from ALDH1A1 and its genotype is significantly associated with 

ALDH1A1 gene expression. Beyond the association evidence and support for a functional 

effect of the associated SNP, ALDH1A1 is an intriguing functional candidate as a BMI-

associated gene in AD. It encodes aldehyde dehydrogenase family 1 member A1, an 

alcohol-metabolism enzyme, and it is expressed predominately in white adipose tissue 

(Kiefer et al., 2012). Although candidate gene studies have supported the association 

between ALDH1A1 variants and alcohol use disorders (AUD) in different ancestry groups 

(Crawford et al., 2014; Lind et al., 2008; Liu et al., 2011), no GWAS of AUD showed this 

gene to be relevant; indeed our previous AD GWAS supported association in several alcohol 

dehydrogenase genes in both AAs and EAs, but not this particular locus. However, 

ALDH1A1 variants were associated with blood alcohol concentration (Lind et al., 2012), 

confirming the role of this gene in alcohol metabolism. ALDH1A1, the protein product of 

which also catalyzes conversion of retinaldehyde to retinoic acid, is involved in different 

molecular processes, such as regulation of marrow adiposity, antioxidant defense, 

carcinogenesis, and neurodegeneration (Grunblatt and Riederer, 2014; Li et al., 2014; 
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Nallamshetty et al., 2014). Furthermore, recent animal experiments on Aldh1a1−/− mice 

demonstrated that the enzyme and its substrate retinaldehyde were involved in adipocyte 

plasticity and adaptive thermogenesis (Kiefer et al., 2012). These data are all consistent with 

the association of rs1630623 with BMI in AD, suggesting that ALDH1A1 can play a 

relevant role in determining BMI in subjects with AD.

Our gene-based analysis in stage-1 EAs with AD identified six significant genes (q < 0.05). 

All these genes – KRTAP4-1, KRTAP4-3, KRTAP4-4, KRTAP4-5, KRTAP4-2, and 
KRTAP9-2 - encode keratin-associated proteins, but because they are located in a tight gene 

cluster, the significant signals are not independent. However, although we cannot identify a 

specific source of the signal, the significant signal in the keratin-associated gene cluster 

appears to be reliable. Keratin and keratin-associated genes encode intermediate filament 

proteins, are expressed specifically in epithelial cells and their appendages, and are currently 

used as markers for various malignancies and other diseases (Upasani et al., 2004). One 

study highlighted a synergistic effect of alcohol consumption and BMI on serum 

concentrations of keratin-18 (Gonzalez-Quintela et al., 2011), a keratin marker of epithelial 

neoplasms. The authors suggested that this result probably reflects liver disease in obese 

subjects with risky alcohol drinking. The results of our gene-based analysis raise the 

possibility of a new scenario, in which keratin-related functions interact with alcohol 

drinking to influence BMI. However, further investigations are needed to elucidate the 

biological meaning of the association.

Functional annotation clustering analysis based on gene-based association identified three 

significant clusters. Two of these clusters are related to keratin and keratin-associated genes, 

and, for the reason discussed above, are due to non-independent results. In contrast, the top 

cluster is related to 36 KRAB genes, many of which are located on different chromosomes. 

The KRAB protein family includes 400 human zinc finger protein-based transcription 

factors (Margolin et al., 1994). Although KRAB proteins operate a well-defined 

transcriptional repression mechanism, there are few known biological roles or target genes 

of these proteins (Lupo et al., 2013). However, in vivo studies indicated that KRAB genes 

may be involved in obesity-related traits and metabolic homeostasis (Krebs et al., 2014; 

Scherneck et al., 2009). Furthermore, animal models indicated that alcohol consumption 

affected the gene expression regulation of zinc finger proteins (Curry-McCoy et al., 2013; 

Sun et al., 2014). On the basis of these findings, the significant functional annotation cluster 

related to KRAB genes may reflect underlying biology in which KRAB gene expression 

deregulation due to alcohol consumption in AD subjects is associated with metabolic 

changes that affect body mass.

Our PPI-based association analysis identified one significant module via the dual evaluation 

of stage-1 AA and EA samples. This module included 11 genes, eight of which were loci 

associated with BMI in AD (p < 10−4). Enrichment analysis identified several significant 

terms related to genes involved in the PPI module significantly associated with BMI in AD 

subjects. The two most highly significant enriched terms were related to BMI-associated loci 

(i.e., FTO and TMEM18). The subsequent two significant terms were related to negative 

regulation in molecular processes, involving the genes GPS1, UBC, and CDC20. However, 

GPS1 is the only gene associated with BMI in AD (p = 3.14*10−4), whereas no significant 
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associations were present for UBC and CDC20. Two other significant terms are linked to 

keratin-related genes, which were non-independent in the gene-based analysis. The 

remaining significant terms were related to UBC and CDC20, which are linked to different 

ubiquitin-dependent processes. A consistent literature describes ubiquitin-dependent 

processes, and some evidence is also available about the role of these processes in 

adipocyte-related mechanisms (Dai et al., 2013; Kim et al., 2014; Nian et al., 2010). 

However, most of BMI-associated genes in the significant PPI module are not involved in 

the significant enriched terms, indicating no known pathways or mechanisms in this PPI 

module.

In conclusion, our GWAS of BMI in subjects with DSM-IV diagnosis of lifetime AD 

identified novel pathogenic mechanisms, indicating AD-specific genetic components of 

BMI. We believe that these help to elucidate a specific relationship between AD and BMI. 

The most intriguing findings suggested that i) AD could affect the genetic architecture of 

BMI via links between AD and intra-uterine growth and social stress during pregnancy; ii) 

there are interactions between alcohol metabolism and adipocyte plasticity in AD subjects; 

and iii) there is the potential involvement of keratin-associated and KRAB genes in the 

genetics of BMI in AD subjects. Although we obtained some provocative insights about 

genetic predisposition to BMI in AD subjects, larger study populations are needed to 

investigate this topic further. Taking all of the association evidence together, the present 

study demonstrates that GWAS can be useful in investigating the biological mechanisms 

related to the effects of AD on molecular processes. Because morbidity and mortality 

consequent to AD are also related to the adverse effects of alcohol use on a range of 

metabolic processes (including those that affect weight regulation), our results provide 

insights that may be useful in developing novel preventive and therapeutic interventions.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
PPI modules constructed with dual evaluation of stage-1 EAs and AAs. The grey color 

gradient of a node is proportional to its p values.
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Table 3

Term enrichment Analysis of PPI network associated with BMI in AD. Fisher exact test p values adjusted for 

Bonferroni correction are reported.

Term Genes Adjusted P value

OMIN:Six new loci associated with body mass index highlight a neuronal influence 
on body weight regulation TMEM18, FTO 4.43E-04

OMIN:Genome-wide association yields new sequence variants at seven loci that 
associate with measures of obesity TMEM18, FTO 1.24E-03

GO:0043086~negative regulation of catalytic activity GPS1, UBC, CDC20 4.43E-03

GO:0044092~negative regulation of molecular function GPS1, UBC, CDC20 7.56E-03

GO:0005882~intermediate filament KRTAP9-2, KRTAP9-3, KRT33B 8.10E-03

GO:0045111~intermediate filament cytoskeleton KRTAP9-2, KRTAP9-3, KRT33B 8.64E-03

GO:0031145~anaphase-promoting complex-dependent proteasomal ubiquitin-
dependent protein catabolic process UBC, CDC20 1.24E-02

GO:0051436~negative regulation of ubiquitin-protein ligase activity during mitotic 
cell cycle UBC, CDC20 1.24E-02

GO:0051352~negative regulation of ligase activity UBC, CDC20 1.30E-02

GO:0051444~negative regulation of ubiquitin-protein ligase activity UBC, CDC20 1.30E-02

GO:0051437~positive regulation of ubiquitin-protein ligase activity during mitotic 
cell cycle UBC, CDC20 1.35E-02

GO:0051443~positive regulation of ubiquitin-protein ligase activity UBC, CDC20 1.40E-02

GO:0051439~regulation of ubiquitin-protein ligase activity during mitotic cell cycle UBC, CDC20 1.46E-02

GO:0051351~positive regulation of ligase activity UBC, CDC20 1.51E-02

GO:0031397~negative regulation of protein ubiquitination UBC, CDC20 1.51E-02

GO:0051438~regulation of ubiquitin-protein ligase activity UBC, CDC20 1.73E-02

GO:0051340~regulation of ligase activity UBC, CDC20 1.89E-02

GO:0031398~positive regulation of protein ubiquitination UBC, CDC20 2.05E-02

GO:0031396~regulation of protein ubiquitination UBC, CDC20 2.86E-02

GO:0043161~proteasomal ubiquitin-dependent protein catabolic process UBC, CDC20 2.97E-02

GO:0010498~proteasomal protein catabolic process UBC, CDC20 2.97E-02

GO:0031400~negative regulation of protein modification process UBC, CDC20 4.05E-02
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