1 Original Article

2	After continents divide: comparative phylogeography of reef fishes from the Red
3	Sea and Indian Ocean
4	Joseph D. DiBattista ^{1*} , Michael L. Berumen ^{2,3} , Michelle R. Gaither ⁴ , Luiz A.
5	Rocha ⁴ , Jeff A. Eble ⁵ , J. Howard Choat ⁶ , Matthew T. Craig ⁷ , Derek J. Skillings ¹
6	and Brian W. Bowen ¹
7	¹ Hawai'i Institute of Marine Biology, Kāne'ohe, HI 96744, USA, ² Red Sea
8	Research Center, King Abdullah University of Science and Technology, Thuwal,
9	Saudi Arabia, ³ Biology Department, Woods Hole Oceanographic Institution,
10	Woods Hole, MA 02543 USA, ⁴ Section of Ichthyology, California Academy of
11	Sciences, San Francisco, CA 94118, USA, ⁵ Department of Biology, University of
12	West Florida, Pensacola, FL 32514, USA, ⁶ School of Marine and Tropical
13	Biology, James Cook University, Townsville, QLD 4811, Australia, ⁷ Department
14	of Marine Sciences and Environmental Studies, University of San Diego, San
15	Diego, CA 92110, USA
16	

- 17 *Correspondence: Joseph D. DiBattista, Hawai'i Institute of Marine Biology, P.O.
- 18 Box 1346, Kāne'ohe, HI 96744, USA.
- 19 E-mail: joseph99@hawaii.edu

20	Running header: Phylogeography of Red Sea feel fishes
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	ABSTRACT
33	Aim The Red Sea is a biodiversity hotspot characterized by unique marine fauna
34	and high endemism. This sea began forming approximately 24 million years ago
35	with the separation of the African and Arabian plates, and has been characterized

20 Running header: Phylogeography of Red Sea reef fishes

36 by periods of desiccation, hypersalinity and intermittent connection to the Indian

37	Ocean. We aim to evaluate the impact of these events on the genetic architecture
38	of the Red Sea reef fish fauna.
39	
40	Location Red Sea and Western Indian Ocean
41	
42	Methods We surveyed seven reef fish species from the Red Sea and adjacent
43	Indian Ocean using mitochondrial DNA cytochrome-c oxidase subunit I and
44	cytochrome b sequences. To assess genetic variation and evolutionary
45	connectivity within and between these regions, we estimated haplotype diversity
46	and nucleotide diversity, reconstructed phylogenetic relationships among
47	haplotypes and estimated gene flow and time of population separation using
48	Bayesian coalescent-based methodology.
49	
50	Results Our analyses revealed a range of scenarios from shallow population
51	structure to diagnostic differences that indicate evolutionary partitions and
52	possible cryptic species. Conventional molecular clocks and coalescence analyses
53	indicated time frames for divergence between these bodies of water ranging from
54	830,000 years to contemporary exchange or range expansion. Colonization routes
55	were bidirectional, with some species moving from the Indian Ocean to the Red
56	Sea compared with expansion out of the Red Sea for other species.
57	

58	Main conclusions We conclude that: (1) at least some Red Sea reef fauna
59	survived multiple salinity crises; (2) endemism is higher in the Red Sea than
60	previously reported; and (3) the Red Sea is an evolutionary incubator,
61	occasionally contributing species to the adjacent Indian Ocean. The latter two
62	conclusions - elevated endemism and species export - indicate a need for
63	enhanced conservation priorities for the Red Sea.
64	
65	Keywords
66	Coalescent, cryptic speciation, dispersal, genealogical concordance, gene
67	flow, mitochondrial DNA, vicariance.
68	
69	
70	
71	
72	INTRODUCTION
73	The Red Sea is a deep (maximum depth: 2920 m) and narrow (maximum width:
74	350 km) body of water extending 2270 km from 30° N in the Gulf of Suez to 13°
75	N in the Gulf of Aden. Although the sea began forming approximately 24 million
76	years ago (Ma) (i.e. mid-Oligocene period) by the separation of the African and
77	Arabian plates, the ocean environment that supports coral reefs originated in the

78	early Pleistocene (c. 5 Ma; Siddall et al., 2003; Boswell et al., 2005). The Red
79	Sea, which now experiences minimal freshwater inflow and high rates of
80	evaporation, is characterized by pronounced north to south gradients in salinity
81	(42 ppt to 37 ppt), sea surface temperature (winter, 20 °C to 28 °C; summer, 26
82	°C to 32 °C), and nutrient concentration (low to high) (Raitsos et al., 2011; Ngugi
83	et al., 2012). Oceanographic current patterns and climate in the southern Red Sea
84	(and Gulf of Aden) are heavily influenced by the northern Indian Ocean monsoon
85	system (Smeed, 1997, 2004; Biton et al., 2010), which reverses wind circulation
86	patterns in the boreal summer (Southwest Monsoon, April to October) compared
87	to those in the winter (Northeast Monsoon, December to March; see Fig. 1).
88	Despite its peripheral location relative to the Indo-Pacific, the Red Sea is
89	characterized by high biodiversity including approximately 300 reef-building
	enaracterized by high biodiversity, menduing approximatery 500 reef-building
90	corals (mostly species of <i>Acropora</i> and <i>Porites</i> ; Sheppard & Sheppard, 1991;
90 91	corals (mostly species of <i>Acropora</i> and <i>Porites</i> ; Sheppard & Sheppard, 1991; Riegl & Velimirov, 1994) and 1078 fish species (Golani & Bogorodsky, 2010),
90 91 92	corals (mostly species of <i>Acropora</i> and <i>Porites</i> ; Sheppard & Sheppard, 1991; Riegl & Velimirov, 1994) and 1078 fish species (Golani & Bogorodsky, 2010), which represent key resources for coastal communities. Species richness appears
90 91 92 93	corals (mostly species of <i>Acropora</i> and <i>Porites</i> ; Sheppard & Sheppard, 1991; Riegl & Velimirov, 1994) and 1078 fish species (Golani & Bogorodsky, 2010), which represent key resources for coastal communities. Species richness appears to be highest in the central Red Sea, with marked decreases in species abundance
90 91 92 93 94	corals (mostly species of <i>Acropora</i> and <i>Porites</i> ; Sheppard & Sheppard, 1991; Riegl & Velimirov, 1994) and 1078 fish species (Golani & Bogorodsky, 2010), which represent key resources for coastal communities. Species richness appears to be highest in the central Red Sea, with marked decreases in species abundance and changes in species composition away from this area (DeVantier <i>et al.</i> , 2000).
90 91 92 93 94 95	corals (mostly species of <i>Acropora</i> and <i>Porites</i> ; Sheppard & Sheppard, 1991; Riegl & Velimirov, 1994) and 1078 fish species (Golani & Bogorodsky, 2010), which represent key resources for coastal communities. Species richness appears to be highest in the central Red Sea, with marked decreases in species abundance and changes in species composition away from this area (DeVantier <i>et al.</i> , 2000). The Red Sea also harbours one of the highest degrees of endemism for marine
90 91 92 93 94 95 96	corals (mostly species of <i>Acropora</i> and <i>Porites</i> ; Sheppard & Sheppard, 1991; Riegl & Velimirov, 1994) and 1078 fish species (Golani & Bogorodsky, 2010), which represent key resources for coastal communities. Species richness appears to be highest in the central Red Sea, with marked decreases in species abundance and changes in species composition away from this area (DeVantier <i>et al.</i> , 2000). The Red Sea also harbours one of the highest degrees of endemism for marine organisms, making up 14% of fishes (Randall, 1994), 33% of crustaceans, 15% of

even higher for some taxa, reaching 50% in the butterflyfishes (Roberts *et al.*,
1992).

100	Although the evolutionary processes driving high rates of endemism are
101	unclear, the narrow (18 km) and shallow (137 m) Straight of Bab al Mandab, the
102	only connection with the Indian Ocean, is likely to have played a key role
103	(Klausewitz, 1989). The Red Sea was repeatedly isolated during Pleistocene
104	glacial cycles when the sea level lowered as much as 120 m; whether this was
105	achieved through physical isolation or the restriction of oceanic flow associated
106	with elevated salinities and temperatures remains contentious (Siddall et al., 2003;
107	Bailey, 2009). Moreover, cold-water upwelling off Somalia, which precludes reef
108	formation on the northeast African and southern Arabian coasts, is likely to
109	reinforce this isolation (Smeed, 1997; Kemp, 1998, 2000). Some authors believe
110	that Bab al Mandab no longer acts as a physical barrier to dispersal but that an
111	ecological barrier lies within the Red Sea (Ormond & Edwards, 1987). Roberts et
112	al. (1992) suggested that a turbid-water region south of 20° N in the Red Sea may
113	limit larval dispersal, a hypothesis which is supported by the presence of a
114	number of species in the northern/central Red Sea and the Gulf of Aden (just
115	outside the Red Sea) that are absent from the southern Red Sea.
116	Despite being acknowledged as a biodiversity hotspot for coral reef fishes
117	based on research dating back more than 200 years (e.g. Forsskål 1775), little
118	work has been conducted in the Red Sea using modern genetic techniques.

119	Studies in this region tend to focus on the biogeography and community structure
120	of the more iconic (and endemic) shore fish fauna (e.g. family Chaetodontidae;
121	Righton et al., 1996). The majority of genetic studies on reef fishes have been
122	restricted to the Gulf of Aqaba and northern Red Sea (Hassan et al., 2003;
123	Kochzius & Blohm, 2005; but see Froukh & Kochzius, 2007), and few of these
124	considered the connections between widespread taxa from other biogeographical
125	provinces, particularly the Indian Ocean (Froukh & Kochzius, 2008).
126	Peripheral reef habitats such as the Red Sea, which forms the north-
127	western most extension of the Indian Ocean, are typically considered to be
128	biodiversity sinks that receive species from elsewhere but rarely export them
129	(Briggs, 1999). The accepted paradigm is therefore that biogeographical sinks are
130	'evolutionary graveyards' that do not contribute to biodiversity at neighbouring
131	sites. Recent research on reef fish and invertebrates, however, demonstrate that
132	peripheral regions, such as the Hawaiian Archipelago and the Marquesas Islands,
133	may act as both a sink and a source, contributing unique genetic lineages to other
134	regions of the Indo-Pacific (Gaither et al., 2010, 2011; DiBattista et al., 2011;
135	Eble et al., 2011; Skillings et al., 2011).
136	Our first aim is to assess connections between fauna in the Red Sea and
137	the adjacent Western Indian Ocean (WIO) using a molecular genetic approach.

- 138 The WIO forms a biogeographical subdivision of the tropical Indo-Pacific
- 139 stretching from East Africa to the Chagos Ridge in the centre of the Indian Ocean

(Sheppard, 2000; Briggs & Bowen, 2012). Phylogeographical inferences are
strengthened by congruence among multiple species and genes, and so our study
considers seven species of reef fish with widespread distributions using two
mitochondrial DNA (mtDNA) markers.

144 Our second aim is to assess whether sea level changes have influenced 145 extant biodiversity by estimating migration rates and divergence times of reef 146 fishes in the Red Sea and WIO. Such analyses will allow us to discriminate between the following scenarios: (1) Red Sea populations represent long isolated 147 148 relicts derived from the WIO, which implies gene flow was absent over the last 149 five million years; (2) Red Sea populations have been isolated from the WIO over 150 evolutionary intervals but with recurrent gene flow; or (3) Red Sea populations are the result of recent colonization from the WIO, since the Last Glacial 151 152 Maximum approximately 20,000 years ago (Siddall et al., 2003; Bailey, 2009). 153 This dataset provides an unprecedented opportunity to assess the relationships 154 between two Indian Ocean biogeographical provinces, and thereby illuminate 155 evolutionary processes that are the wellspring of Red Sea biodiversity. 156

157 MATERIALS AND METHODS

158 Sample collection

159	Reef fish were collected while SCUBA diving or snorkelling at depths of 1–40 m
160	between 2002 and 2011 (Fig. 1, Table 1). Seven reef fish species were targeted:
161	the brown surgeonfish, Acanthurus nigrofuscus (Forsskål, 1775); the peacock
162	hind, Cephalopholis argus (Schneider, 1801); the threadfin butterflyfish,
163	Chaetodon auriga (Forsskål, 1775); the checkerboard wrasse, Halichoeres
164	hortulanus (Lacepède, 1801); the bluestripe snapper, Lutjanus kasmira (Forsskål,
165	1775); the Sammara squirrelfish, Neoniphon sammara (Forsskål, 1775); and the
166	regal angelfish, Pygoplites diacanthus (Boddaert, 1772). These species were
167	chosen because they have wide Indo-Pacific distributions, are abundant, represent
168	a diversity of taxonomic families, and can be unequivocally identified in the field.
169	Each species was sampled at two locations (Thuwal and Al Lith) off the coast of
170	the Kingdom of Saudi Arabia (KSA) in the central Red Sea, and at one to three
171	sites in the WIO (oceanic sites: Diego Garcia in the Chagos Archipelago and the
172	Republic of Seychelles; coastal sites: Sodwana Bay, South Africa and Al
173	Hallaniyat, Sultanate of Oman). Because some of the collections were
174	opportunistic, not every species could be sampled at every location (Fig. 1, Table
175	1).

177

178 Mitochondrial DNA sequencing

179	Tissue samples were preserved in salt-saturated DMSO (Seutin et al., 1991). Total
180	genomic DNA was extracted using the 'HotSHOT' protocol (Meeker et al., 2007)
181	and subsequently stored at -20 °C. Fragments of mtDNA from the cytochrome-c
182	oxidase subunit-I (COI) and cytochrome b (cyt b) genes were amplified using
183	either previously published primers or modified primers designed for individual
184	species (Table 1). These two markers were chosen because they: (1) are easy to
185	amplify in most fish; (2) are generally variable at the population level; (3)
186	facilitate comparisons with published sequences; and (4) have had molecular
187	clock rates estimated based on reef fishes (Bowen et al., 2001; Lessios, 2008;
188	Reece et al., 2010). Polymerase chain reaction (PCR) was carried out for all
189	species as described in DiBattista et al. (2012a), with optimal annealing
190	temperatures listed in Table 1. All samples were sequenced in the forward
191	direction (and reverse direction for unique or questionable haplotypes) with
192	fluorescently labelled dye terminators (BigDye version 3.1, Applied Biosystems,
193	Foster City, CA, USA) and analysed using an ABI 3130xl Genetic Analyzer
194	(Applied Biosystems). The sequences were aligned, edited, and trimmed to a
195	uniform length using GENEIOUS PRO 4.8.4 (Drummond et al., 2009); unique
196	mtDNA haplotypes were deposited in GenBank (accession numbers: KC187734-
197	KC188056.

199 Genetic diversity and population structure

200	ARLEQUIN 3.5 (Excoffier <i>et al.</i> , 2005) was used to calculate haplotype (h) and
201	nucleotide diversity (π), and to test for population structure among sampling sites
202	for each species and molecular marker (i.e. 14 total datasets). These analyses were
203	repeated with all Red Sea or WIO samples pooled into two separate regions.
204	Despite the difference in the geographical scale of sampling (Red Sea sites,
205	c. 300 km; WIO sites, ~ 1000s of km), preliminary work suggests that Red Sea
206	haplotypes at Thuwal and Al Lith are consistent with those sampled up to 1200
207	km north (J.D.D., unpub. data), indicating unbiased estimates of genetic diversity
208	within our study range. Because JMODELTEST 0.1.1 (Posada, 2008) converged on
209	different models of nucleotide sequence evolution among datasets, we calculated
210	global and pairwise Φ_{ST} values based on a HKY model of mutation (Hasegawa <i>et</i>
211	<i>al.</i> , 1985). We also ran conventional frequency based F_{ST} , but the absolute values
212	changed little and relative values did not change at all; we have therefore elected
213	to report pairwise Φ_{ST} . Global Φ_{ST} was estimated using analysis of molecular
214	variance (AMOVA; Excoffier et al., 1992); deviations from null distributions
215	were tested with non-parametric permutation procedures ($n = 99,999$). We
216	controlled for false discovery rate with the method of Narum (2006), and negative
217	pairwise Φ_{ST} values were converted to zeros. To facilitate comparisons among
218	species, an additional diversity measure – Jost's D (Jost, 2008) – was estimated
219	using SPADE 1.0 (Chao et al., 2008).

The evolutionary relationship among COI or cyt *b* haplotypes was
resolved for each species with unrooted networks constructed with the program
NETWORK 4.5.1.0 (www.fluxus-engineering.com/network_terms.htm) using a
median-joining algorithm and default settings (as per Bandelt *et al.*, 1999).

224

225 IMA2 analysis

226 We calculated the effects of time and gene flow on genetic divergence between populations using Bayesian coalescent-based estimation with IMA2 8.26.11 (Hey 227 & Nielsen, 2007; Hey, 2010). Using *F*-statistics we determined that samples 228 within regions were not significantly different for all seven species after 229 correction for multiple comparisons. We therefore pooled the Red Sea sites 230 231 together and the WIO sites together, for comparisons between regions for each 232 species and molecular marker. The isolation-with-migration model implemented in IMA2 assumes that 233

two populations of effective size N_1 and N_2 diverged from an ancestral population (of effective size N_a) at time t, and then exchanged migrants at rates m_1 and m_2 . We therefore estimated the time since initial separation or last major colonization event (t), effective population size (N_e), and the proportion of migrants arriving into a population per generation (m); all demographic parameters were scaled by mutation rate.

240	Mutation rates calibrated in other reef fish based on the closure of the
241	Is thmus of Panama range from 1% to 2 % per million years for COI and cyt b
242	(Bowen et al., 2001; Lessios, 2008; Reece et al., 2010). We used a conservative
243	estimate of $1.3 \Box \times \Box^{8}$ limitations per site per year for both markers (see
244	Lessios, 2008) under a HKY model and a 0.25 inheritance scalar appropriate for
245	mtDNA. An MCMC chain with a length of 1,000,000 sampled every 100
246	generations with 10% burn-in was used to estimate parameters for each species-
247	gene combination. Five independent runs were computed to ensure convergence.
248	The independent runs were subsampled and combined using the L mode of IMA2,
249	and the median values of the parameter distributions for the combined runs are
250	presented here. For N. sammara (COI) and P. diacanthus (COI and cyt b), which
251	did not share any haplotypes between regions, prior values of m in both directions
252	were set to zero. Although we regard all absolute parameter estimates with
253	caution given that our data consist of two linked loci, and we apply mutation rates
254	calibrated in other reef fishes, relative comparisons among species are likely to be
255	robust to such approximations (Karl et al., 2012).

RESULTS

258 Genetic diversity and population structure

259	COI and cyt b sequence data revealed divergent patterns of genetic diversity and
260	population structure among the seven sampled reef fish species. Haplotype (h)
261	and nucleotide (π) diversity was higher in four out of the seven species in the
262	WIO than in the Red Sea for COI, and five out of the seven species for $cyt b$ when
263	populations within each region were pooled (Fig. 2, and see Appendix S1 in
264	Supporting Information). This trend cannot be explained by a greater sampling
265	effort in the WIO, given that species with comparable sample sizes for each
266	region, such as Cephalopholis argus and P. diacanthus, still had lower genetic
267	diversity in the Red Sea.

AMOVA supported the geographical grouping of sites into Red Sea and WIO regions (Table 2). Although there was some variability in genetic differentiation among sampling sites between regions (Appendix S2), six out of the seven species showed significant genetic structure for at least one of the molecular markers (Table 2).

Population pairwise tests were significantly different in 22 (for COI) or 16 (for cyt *b*) out of 47 comparisons (all $P \le 0.01$); all significant comparisons were between regions rather than between sites within regions, and ranged from 0.07 to 0.67 for Φ_{ST} and 0.05 to 1.00 for Jost's *D* (Fig. 3, Appendix S2). Estimates of genetic differentiation across all species were correlated between molecular markers (non-parametric Spearman's rank correlation: Φ_{ST} , r = 0.77, P < 0.001, *n* 279 = 47; Jost's D, r = 0.57, P < 0.001, n = 47), although the larger spread of Jost's D280 values than Φ_{ST} values is probably related to the former not being constrained by 281 within-site heterozygosity. Pairwise genetic differentiation-based Φ_{ST} and Jost's 282 D were also significantly correlated across all datasets (non-parametric 283 Spearman's rank correlation coefficient: COI, r = 0.67, P < 0.001; cyt b, r = 0.83, 284 P < 0.001).

285 As expected from the Φ_{ST} values, the median-joining networks show more 286 shared COI or cyt b haplotypes between collection sites within the Red Sea and WIO than between these regions (Fig. 4). The only exception to this pattern was 287 288 the high proportion of haplotypes shared between Al Lith or Thuwal (Red Sea) 289 and Oman (WIO) for Cephalopholis argus. Even though our comparisons 290 between Oman and other sites should be viewed with caution, given that these are 291 based on data from only a single species (C. argus) with a low sample size (n = 8)292 or 9), some endemic Red Sea fauna extend to the Omani coast (e.g. Cirrhitus 293 spilotoceps, M.R.G. & J.E. Randall, Bishop Museum, unpub. data).

294

295 IMA2 analysis

- 296 The estimated times since initial separation between the Red Sea and WIO
- 297 populations for the seven reef fish species ranged from approximately 21,000 to

298	830,000 years (Table 3). Recent separations of less than 100,000 years were
299	apparent for Chaetodon auriga and H. hortulanus, older separations of 100,000 to
300	300,000 years were apparent for A. nigrofuscus, Cephalopholis argus, L. kasmira,
301	and N. sammara, and finally P. diacanthus populations have been isolated for
302	660,000 to 830,000 years. Of the older separations, L. kasmira was characterized
303	by high subsequent gene flow, whereas gene flow was restricted for N. sammara
304	(and <i>P. diacanthus</i>); these two species also have the highest level of divergence
305	between the Red Sea and WIO based on Φ_{ST} (Table 2). Differences among
306	species in both the timing of initial divergence and subsequent migration rates
307	reveal considerable variation in the link between Red Sea and WIO populations.
308	The direction of migration varied among species. For example, a higher
309	proportion of migrants moved from the WIO into the Red Sea for H. hortulanus,
310	whereas L. kasmira moved predominantly out of the Red Sea (Table 3). For the
311	remaining species, gene flow was low in both directions, or driven by differences
312	in effective population size, indicating no bias in effective migration between
313	regions.

DISCUSSION

This study demonstrates barriers to gene flow between the Red Sea and WIO for
some reef fish species, but an apparent lack of phylogeographical breaks for
others, which may reflect the volatile geological history of the Red Sea region.

319	The Red Sea is a marginal water mass whose movement in the upper
320	layers is driven by the summer and winter monsoons acting through a restricted
321	connection with the adjacent Gulf of Aden (Siddall et al., 2004; Biton et al.,
322	2008). During each glacial maximum of the Pleistocene, the last characterized by
323	a 120-m drop in sea level only 20,000 years ago, the inflow pattern and exchange
324	of surface water was limited owing to the shallow sill at the Straight of Bab al
325	Mandab, the only natural gateway into the Red Sea (Siddall et al., 2003). As a
326	result, throughout these periods of isolation, increased evaporation may have
327	raised temperature and salinity levels higher than most reef fishes can tolerate
328	(e.g. > 50‰; Biton et al., 2008), resulted in periods of reduced planktonic (i.e.
329	larval) development (Hemleben et al., 1996), and caused mass extirpation within
330	the Red Sea (Sheppard et al., 1992; but see Klausewitz, 1989).
331	In addition to intermittent historical barriers created by Pleistocene
332	glacial cycles, contemporary barriers exist. The lack of coral habitat along the
333	2200 km coastline from Djibouti to southern Somalia may inhibit gene flow
334	between the Red Sea and WIO by limiting opportunities for stepping stone
335	dispersal (Kemp, 1998). Within the Red Sea, the extensive turbid-water region
336	south of 20 °N may also inhibit larval dispersal or settlement (Ormond &
337	Edwards, 1987; Roberts et al., 1992). The long-term persistence and age of these
338	contemporary barriers, however, is uncertain.

339	Most genetic work on reef fishes within the Red Sea has focused on the
340	differentiation of fauna between the Gulf of Aqaba and northern Red Sea, with
341	some notable exceptions. Froukh & Kochzius (2008) identified a damselfish in
342	the Red Sea (Chromis viridis) as being distinct from conspecifics in Indonesia and
343	the Philippines based on mtDNA sequences. Similar research on marine
344	invertebrates (Acanthaster planci: Benzie et al., 1999; Scylla serrata: Fratini &
345	Vannini, 2002) support a genetic distinction of the Red Sea populations. In
346	contrast, Kochzius & Blohm (2005) found no mtDNA differentation between
347	lionfish (Pterois miles) populations in the Red Sea and Indian Ocean.
348	Five of the seven species we examined were genetically differentiated
349	between the Red Sea and WIO based on AMOVA and median-joining networks.
350	Halichoeres hortulanus and L. kasmira had minimal or inconsistent genetic
351	differentiation, as well as extensive mixing of haplotypes within and between
352	regions. Acanthurus nigrofuscus, Cephalopholis argus, and Chaetodon auriga
353	had modest differentiation between regions with pronounced separation of
354	peripheral haplotypes, but shared a common haplotype among all sampling sites.
355	Neoniphon sammara and P. diacanthus had fixed differences between regions.
356	Variability in genetic signatures can occur even among closely related
357	species (Rocha et al., 2002; Gaither et al., 2010; DiBattista et al., 2012b) and may
358	be related to innate differences in life-history or ecological preferences, although
359	these widely distributed species are all presumably capable of long distance

360	dispersal (e.g. Eble et al., 2009, 2011; Gaither et al., 2010, 2011) based on
361	available estimates of pelagic larval duration (range: 24.5-48 days; Thresher &
362	Brothers, 1985; Victor, 1986; Wilson & McCormick, 1999) and longitudinal
363	range size (range: 20,063–21,689 km; Randall, 1999, 2005). Indeed, our study
364	species cover a wide spectrum of dietary modes ranging from herbivory (A.
365	nigrofuscus) to specialist feeding on sessile or mobile invertebrates (Chaetodon
366	auriga, H. hortulanus, and P. diacanthus) to piscivory (Cephalopholis argus, L.
367	kasmira, and N. sammara). These species also display a variety of reproductive
368	behaviour ranging from dioecism (L. kasmira, N. sammara) with mate-pairing
369	(Chaetodon auriga) or spawning aggregations (A. nigrofuscus) to protogyny
370	(Cephalopholis argus and H. hortulanus). Given that there are no real unifying
371	life-history features for this diverse group, we suspect that differences in
372	ecological resilience to geological disturbance may have contributed to the range
373	of colonization histories, although this will require further testing.
374	Considering the prevailing currents in the Indian Ocean, it is not surprising
375	that sampling sites in the WIO were genetically similar to each other. The Chagos
376	and Seychelles archipelagos are located in the South Equatorial Current, which
377	flows from east to west. Both archipelagos are also heavily influenced by seasonal
378	or permanent countercurrents (South Equatorial Countercurrent and East African
379	Countercurrent, respectively; Fig. 1). The strong and variable water movement of
380	the region has resulted in Diego Garcia, which is located at the southern end of

Vicariance events and colonization history

Our mtDNA data provide evidence for three separate periods of colonization or
export of propagules between the Red Sea and WIO (Table 3). First, Red Sea
populations of *Chaetodon auriga*, and *H. hortulanus* appear to derive from the
WIO during or soon after the most recent glacial maximum (c.21,000 to 31,000

402 years ago; but see Karl *et al.*, 2012). Second, population separations in *A*.

403	nigrofuscus, Cephalopholis argus, and L. kasmira pre-date the Last Glacial
404	Maximum but include recurrent gene flow in most cases. Third, N. sammara and
405	P. diacanthus represent long-isolated evolutionary lineages in the Red Sea. These
406	final cases in particular indicate that some Red Sea residents survived the major
407	temperature and salinity crises recorded 19,000, 30,000 and 450,000 years ago
408	(Siddall <i>et al.</i> , 2003).
409	IMA2 analyses indicate bidirectional gene flow between the Red Sea and
410	WIO, which is also apparent in the older history inscribed in haplotype networks
411	(Fig. 4). Three cases provide especially strong inference: (1) in the COI and cyt b
412	network for A. nigrofuscus, the central (ancestral) haplotype is observed primarily
413	in the Indian Ocean, whereas the Red Sea haplotypes are peripheral; (2) in the
414	COI network for <i>N. sammara</i> , the central haplotype is detected only in the Red
415	Sea, with the Indian Ocean haplotypes peripheral; and (3) in the cyt <i>b</i> network for
416	<i>P. diacanthus</i> , the central haplotype is detected only in the Red Sea. Hence the
417	networks for these three species indicate colonization into and out of the Red Sea,
418	which supports the hypothesis that peripheral habitats can export biodiversity to
419	the central Indo-Pacific.

Taxonomic considerations

422	Our genetic study highlights three interesting cases where the current
423	classification of existing species may not reflect their evolutionary history.
424	Chaetodon auriga is one of the most widespread butterflyfishes on the planet,
425	with a distribution of approximately 82.2 million km ² across the tropical Indo-
426	Pacific (Allen et al., 1998). The original species description is from Red Sea
427	specimens, which lack a dark spot on the margin of the soft dorsal fin, such that
428	conspecifics outside the Red Sea were regarded as the subspecies Chaetodon
429	auriga setifer (Bloch, 1795).
430	Although we did detect differences in mtDNA sequences between the Red
431	Sea and WIO, these were only marginally significant. In addition, the most
432	common haplotype was shared between the Red Sea and WIO at both COI and
433	cyt b . Even though colour morphs do correspond to genetic partitions in some
434	species (e.g. Craig & Randall, 2008; Drew et al., 2008; Randall & Rocha, 2009),
435	discordance between genetic divergence and coloration is well documented in reef
436	fishes (Ramon et al., 2003; Rocha, 2004; Messmer et al., 2005), including
437	butterflyfishes (family Chaetodontidae: McMillan & Palumbi, 1995) and their
438	sister group angelfishes (family Pomacanthidae: Bowen et al., 2006; DiBattista et
439	al., 2012a). For these reasons, we regard the Red Sea population as conspecific
440	with all other populations of Chaetodon auriga, although the shallow but
441	significant population genetic differentiation supports the sub-specific status.

442	Two species in our study reveal a strikingly different pattern: N.
443	sammara and P. diacanthus were characterized by high Φ_{ST} (or Jost's D) values
444	relative to all other species and strong mtDNA differences between regions. For
445	P. diacanthus in particular, Red Sea and WIO haplotypes are separated by at least
446	three mutations at cyt b and one fixed mutation at COI, indicating isolation for
447	several hundred thousand years. This genetic separation is matched by coloration
448	differences between Red Sea and WIO populations (Allen et al., 1998), indicating
449	long-isolated populations that, unlike other species examined, have failed to
450	reconnect during interglacial periods. Notably the species is absent from sites in
451	the Arabian Sea, indicating geographic isolation (Kemp, 1998). While we know
452	of no coloration or morphological differences in N. sammara that may indicate
453	cryptic lineages, this possibility merits further investigation.

455 **CONCLUSIONS**

456 Comparative phylogeographical studies have done much to illuminate the

457 evolutionary history of regional marine faunas (Avise, 1992; Lessios &

458 Robertson, 2006; Kelly & Palumbi, 2010; Carpenter et al., 2011; Toonen et al.,

459 2011; Ludt *et al.*, 2012). Here we provide the first multispecies comparison

between Red Sea and Indian Ocean reef fishes, and find a spectrum of outcomes

- 461 from recent gene flow to ancient evolutionary separations. Three broad
- 462 conclusions are apparent. First, endemism and biodiversity are higher among Red

463	Sea reef fishes than previously suspected (i.e. N. sammara and P. diacanthus),
464	and ongoing studies will be likely to elevate these estimates. Second, some
465	elements of the Red Sea fauna survived the salinity crises caused by late
466	Pleistocene glaciations. This does not require continuous residence in the Red
467	Sea, as persistence in the Gulf of Aden just outside the Red Sea remains a
468	possibility. It seems unlikely, however, that a genetically distinct and cohesive
469	fauna could survive in the Gulf without extensive admixture with other Indian
470	Ocean populations. We therefore favour the explanation that Red Sea refugia
471	existed during low sea level stands associated with glaciations. Third, peripheral
472	habitats such as marginal seas and isolated archipelagos are not necessarily
473	'evolutionary graveyards'. Rather, our data indicate that the Red Sea is capable of
474	exporting biodiversity to the broader Indo-Pacific, thus operating as a potential
475	engine of evolutionary diversity in our oceans.
476	
477	
478	
479	
775	
480	

481 ACKNOWLEDGEMENTS

482	This research	was supported	by	National	Science	Foundation	grants OC
			~ ,		~ • • • • • • •		

483 0453167 and OCE-0929031 to B.W.B., National Geographic Society Grant 9024-

484 11 to J.D.D., KAUST Red Sea Research Center funding to M.L.B., California

485 Academy of Sciences funding to L.A.R., and by a Natural Sciences and

486 Engineering Research Council of Canada (NSERC) postgraduate fellowship to

487 J.D.D. For specimen collections, we thank Gavin Gouws (South Africa Institute

488 for Aquatic Biodiversity), Matthew Iacchei, Kelton W. McMahon, Gerrit

489 Nanninga, Jonathan Puritz, and Charles R.C. Sheppard. We also thank Robert J.

490 Toonen, Serge Planes, John E. Randall, Claudia Rocha, Jo-Ann C. Leong, Eric

491 Mason at Dream Divers, David Pence, the KAUST Coastal and Marine Resources

492 Core Lab, the Administration of the British Indian Ocean Territory, and members

493 of the ToBo lab for logistic support; we thank Stephan Moldzio for photos of

494 Neoniphon sammara; we thank the Center for Genomics, Proteomics, and

Bioinformatics at the University of Hawai'i at Mānoa, in addition to the KAUST

- 496 Bioscience Core Facility for their assistance with DNA sequencing. This is
- 497 contribution no. 1530 from the Hawai'i Institute of Marine Biology and no. 8790
- 498 from the School of Ocean and Earth Science and Technology.

500 **REFERENCES**

- Allen, G.R., Steene, R. & Allen, M. (1998) A guide to angelfishes and
- 502 *butterflyfishes*. Odyssey Publishing, Perth.
- 503 Avise, J.C. (1992) Molecular population structure and the biogeographic history
- 504 of a regional fauna: a case history with lessons for conservation biology.
- 505 *Oikos*, **3**, 62–76.
- 506 Bailey, G. (2009) The Red Sea, coastal landscapes, and hominin dispersals. *The*
- 507 *evolution of human populations in Arabia* (ed. by M. Petraglia and J.
- 508 Rose), pp. 15–37. Springer, Dordrecht.
- 509 Bandelt, H.J., Forster, P. & Röhl, A. (1999) Median-joining networks for
- 510 inferring intraspecific phylogenies. *Molecular Biology and Evolution*, 16,
 511 37–48.
- 512 Benzie, J.A.H. (1999) Major genetic differences between crown-of-thorns starfish
- 513 (*Acanthaster planci*) populations in the Indian and Pacific Oceans.
- 514 *Evolution*, **53**, 1782–1795.
- 515 Biton, E., Gildor, H. & Peltier, W.R. (2008) Red Sea during the Last Glacial
- 516 Maximum: implications for sea level reconstruction. *Paleoceanography*,
- 517 **23**, PA1214.
- 518 Biton, E., Gildor, H., Trommer, G., Siccha, M., Kucera, M., van der Meer, M.T.J.
- 519 & Schouten, S. (2010) Sensitivity of Red Sea circulation to monsoonal

- 521 *Paleoceanography*, **25**, PA4209.
- Bosworth, W., Huchon, P. & McClay, K. (2005) The Red Sea and Gulf of Aden
 Basins. *Journal of African Earth Sciences*, 43, 334–378.
- 524 Bowen, B.W., Bass, A.L., Rocha, L.A., Grant, W.S. & Robertson, D.R. (2001)
- 525 Phylogeography of the trumpetfishes (*Aulostomus*): ring species complex
 526 on a global scale. *Evolution*, 55, 1029–1039.
- 527 Bowen, B.W., Muss, A., Rocha, L.A. & Grant W.S. (2006) Shallow mtDNA
- 528 coalescence in Atlantic pygmy angelfishes (genus *Centropyge*) indicates a
- recent invasion from the Indian Ocean. *Journal of Heredity*, **97**, 1–12.
- 530Briggs, J.C. (1999) Coincident biogeographic patterns: Indo-West Pacific Ocean.
- 531 *Evolution*, **53**, 326–335.
- 532 Briggs, J.C. & Bowen, B.W. (2012) A realignment of marine biogeographic
- provinces with particular reference to fish distributions. *Journal of*
- 534 *Biogeography*, **39**, 12–30.
- 535 Carpenter, K.E., Barber, P.H., Crandall, E.D., Ablan-Lagman, M.C.A.,
- 536 Ambariyanto, Mahardika, G.N., Manjaji-Matsumoto, B.M., Juinio-Meñez,
- 537 M.A., Santos, M.D., Starger, C.J. & Toha, A.H.A. (2011) Comparative
- 538 phylogeography of the Coral Triangle and implications for marine
- 539 management. *Journal of Marine Biology*, **2011**, 396982.

540	Chao, A., Jost, L., Chiang, S.C., Jiang, Y-H. & Chazdon, R.L. (2008) A two stage
541	probabilistic approach to multiple-community similarity indices.
542	<i>Biometrics</i> , 64 , 1178–1186.
543	Cox, C.B. & Moore, P.D. (2000) Biogeography: an ecological and evolutionary
544	approach, 6th edn. Blackwell, Oxford.
545	Craig, M.T. (2008) The goldrim surgeonfish (Acanthurus nigricans;
546	Acanthuridae) from Diego Garcia, Chagos Archipelago: first record for the
547	central Indian Ocean. Zootaxa, 1850, 65–68.
548	Craig, M.T. & Randall, J.E. (2008) Two new species of the Indo-Pacific clingfish
549	genus Discotrema (Gobiesocidae). Copeia, 2008, 68-74.
550	DeVantier, L.M., Turak, E., Al-Shaikh, K.A. & De'ath, G. (2000) Coral
551	communities of the central-northern Saudi Arabian Red Sea. Fauna of
552	<i>Arabia</i> , 18 , 23–66.
553	DiBattista, J.D., Wilcox, C., Craig, M.T., Rocha, L.A. & Bowen, B.W. (2011)
554	Phylogeography of the Pacific Blueline Surgeonfish, Acanthurus nigrori, s,
555	reveals a cryptic species in the Hawaiian archipelago. Journal of Marine
556	Biology Article ID 839134.
557	DiBattista, J.D., Waldrop, E., Bowen, B.W., Schultz, J.K., Gaither, M.R., Pyle,
558	R.L. & Rocha, L.A. (2012a) Twisted sister species of pygmy angelfishes:
559	discordance between taxonomy, coloration, and phylogenetics. Coral
560	<i>Reefs</i> , 31 , 839–851.

561	DiBattista, J.D., Rocha, L.A., Craig, M.T., Feldheim, K.A. & Bowen, B.W.
562	(2012b) Phylogeography of two closely related Indo-Pacific
563	butterflyfishes reveals divergent evolutionary histories and discordant
564	results from mtDNA and microsatellites. Journal of Heredity, 103, 617–
565	629.
566	Drew, J., Allen, G.R., Kaufman, L. & Barber, P.H. (2008) Endemism and regional
567	color and genetic differences in five putatively cosmopolitan reef fishes.
568	Conservation Biology, 22, 965–975.
560	Drummond A. I. Ashton P. Chaung M. Halad I. Kaarsa M. Moir P.
509	Drummond, A.J., Asitton, B., Cheung, M., Heled, J., Kearse, M., Mon, K.,
570	Stones-Havas, S., Thierer, T. & Wilson, A. (2009) Geneious v4.8.
571	Available at: http://www.geneious.com/.
572	Eble, J.A., Toonen, R.J. & Bowen, B.W. (2009) Endemism and dispersal:
573	comparative phylogeography of three surgeonfishes across the Hawaiian
574	Archipelago. Marine Biology, 156, 689-698.
575	Eble, J.A., Toonen, R.J., Sorenson, L., Basch, L.V., Papastamatiou, Y.P. &
576	Bowen, B.W. (2011) Escaping paradise: larval export from Hawaii in an
577	Indo-Pacific reef fish, the yellow tang (Zebrasoma flavescens). Marine
578	Ecology Progress Series, 428 , 245–258.
579	Excoffier, L., Smouse, P.E. & Quattro, J.M. (1992) Analysis of molecular
580	variance inferred from metric distances among DNA haplotypes:

581	application to human mitochondrial DNA restriction data. Genetics, 131,
582	479–491.
583	Excoffier, L., Laval, G. & Schneider, S. (2005) Arlequin version 3.0: an
584	integrated software package for population genetics data analysis.
585	Evolutionary Bioinformatics Online, 1, 47–50.
586	Forsskål, P. (1775) Descriptiones animalium avium, amphibiorum, piscium,
587	insectorum, vermium; quae in itinere orientali observavit. Möller,
588	Copenhagen, Denmark.
589	Fratini, S. & Vannini, M. (2002) Genetic differentiation in the mud crab Scylla
590	serrata (Decapoda: Portunidae) within the Indian Ocean. Journal of
591	Experimental Marine Biology and Ecology, 272, 103–116.
592	Froukh, T. & Kochzius, M. (2007) Genetic population structure of the endemic
593	fourline wrasse (Larabicus quadrilineatus) suggests limited larval
594	dispersal distances in the Red Sea. Molecular Ecology, 16, 1359–1367.
595	Froukh, T. & Kochzius, M. (2008) Species boundaries and evolutionary lineages
596	in the blue green damselfishes Chromis viridis and Chromis atripectoralis
597	(Pomacentridae). Journal of Fish Biology, 72, 451-457.
598	Gaither, M.R., Toonen, R.J., Robertson, D.R., Planes, S. & Bowen, B.W. (2010)
599	Genetic evaluation of marine biogeographical barriers: perspectives from
600	two widespread Indo-Pacific snappers (Lutjanus kasmira and Lutjanus
601	fulvus). Journal of Biogeography, 37 , 133–147.

002 Outlife, M.N., DOWOII, D.W., DOUGOIAVC, 1IX., ROCHA, L.A., NOWIHAII, L	602	Gaither, M.R.,	Bowen, B.W	., Bordenave	, ТК.,	, Rocha.	L.A.	, Newman.	S.J	••
--	-----	----------------	------------	--------------	--------	----------	------	-----------	-----	----

- Gomez, J.A., van Herwerden, L. & Craig, M.T. (2011) Phylogeography of
 the reef fish *Cephalopholis argus* (Epinephelidae) indicates Pleistocene
- isolation across the Indo-Pacific barrier with contemporary overlap in the
 Coral Triangle. *BMC Evolutionary Biology*, **11**, 189.
- Golani, D. & Bogorodsky, S.V. (2010) The fishes of the Red Sea—reappraisal
 and updated checklist. *Zootaxa*, 2463, 1–135.
- Hasegawa, M., Kishino, H. & Yano, T-A. (1985) Dating of the human-ape
- 610 splitting by a molecular clock of mitochondrial DNA. *Journal of*
- 611 *Molecular Evolution*, **22**, 160–174.
- Hassan, M., Harmelin-Vivien, M. & Bonhomme, F. (2003) Lessepsian invasion
- 613 without bottleneck: example of two rabbitfish species (*Siganus rivulatus*
- and Siganus luridus). Journal of Experimental Marine Biology and
- 615 *Ecology*, **291**, 219–232.
- 616 Hemleben, C., Meishchner, D., Zahn, R., Almogi-Labin, A., Erlenkeuser, H. &
- 617 Hiller, B. (1996) Three hundred eighty thousand year long stable isotope
- and faunal records from the Red Sea: influence of global sea level change
- 619 on hydrography. *Paleoceanography*, **11**, 147–156.
- Hey, J. (2010) Isolation with migration models for more than two populations.
- 621 *Molecular Biology and Evolution*, **27**, 905–920.

622	Hey, J. &	z Nielsen, R.	(2007)	Integration	within th	ne Felser	ıstein e	quation	for
-----	-----------	---------------	--------	-------------	-----------	-----------	----------	---------	-----

- 623 improved Markov chain Monte Carlo methods in population genetics.
- 624 *Proceedings of the National Academy of Sciences USA*, **104**, 2785–2790.
- Jost, L. (2008) G_{ST} and its relatives do not measure differentiation. *Molecular Ecology*, **17**, 4015–4026.
- 627 Karl, S.A., Toonen, R.J., Grant, W.S. & Bowen, B.W. (2012) Common
- 628 misconceptions in molecular ecology: echoes of the modern synthesis.
- 629 *Molecular Ecology*, **21**, 4171–4189.
- 630 Kelly, R.P. & Palumbi, S.R. (2010) Genetic structure among 50 species of the
- 631 northeastern Pacific rocky intertidal community. *PLoS ONE*, **5**, e8594.
- 632 Kemp, J. (1998) Zoogeography of the coral reef fishes of the Socotra

Archipelago. *Journal of Biogeography*, **25**, 919–933.

- Kemp, J. (2000) Zoogeography of the coral reef fishes of the northeastern Gulf of
- Aden, with eight new records of coral reef fishes from Arabia. *Fauna of Arabia*, 18, 293–321.
- Klausewitz, W. (1989) Evolutionary history and zoogeography of the Red Sea
 ichthyofauna. *Fauna of Saudi Arabia*, **10**, 310–337.
- 639 Kochzius, M. & Blohm, D. (2005) Genetic population structure of the lionfish
- 640 *Pterois miles* (Scorpaenidae, Pteroinae) in the Gulf of Aqaba and northern
- 641 Red Sea. *Gene*, **347**, 295–301.

642	Lessios.	H.A. ((2008)) The	Great A	American	Schism:	divergence	of	marine
012	LCDDIOD ,	I I I I I I I I I I I I I I I I I I I	2000,	, 1110	Of Cut 1	monoun	Semon.	arvergenee	01	maine

643	organisms after the rise of the Central American isthmus. Annual Review
644	of Ecology, Evolution, and Systematics, 39 , 63–91.

Lessios, H.A. & Robertson, D.R. (2006) Crossing the impassible: genetic

connections in 20 reef fishes across the eastern Pacific barrier.

- 647 *Proceedings of the Royal Society B: Biological Sciences*, **273**, 2201–2208.
- Ludt, W.B., Bernal, M., Bowen, B.W. & Rocha L.A. (2012) Living in the past:
- phylogeography and population histories of Indo-Pacific wrasses (genus *Halichoeres*) in shallow lagoons versus outer reef slopes. *PLoS ONE*, 7,
- e38042.
- Lutjeharms, J.R.E. (2006) *The Agulhas Current*. Springer, New York, NY.
- 653 McMillan, W.O. & Palumbi, S.R. (1995) Concordant evolutionary patterns
- among Indo-West Pacific butterflyfishes. *Proceedings of the Royal Society B: Biological Sciences*, 260, 229–236.
- 656 Meeker, N.D., Hutchinson, S.A., Ho, L. & Trede, N.S. (2007) Method for

657 isolation of PCR-ready genomic DNA from zebrafish tissues.

- 658 *Biotechniques*, **43**, 610–614.
- Messmer, V., van Herwerden, L., Munday, P.L. & Jones, G.P. (2005)
- 660 Phylogeography of colour polymorphism in the coral reef fish
- 661 *Pseudochromis fuscus*, from Papua New Guinea and the Great Barrier
- 662 Reef. Coral Reefs, **24**, 392–402.

- 664 *Trends in Ecology and Evolution*, **9**, 278–280.
- 665 Narum, S.R. (2006) Beyond Bonferroni: less conservative analyses for
- 666 conservation genetics. *Conservation Genetics*, **7**, 783–787.
- Ngugi, D.K., Antunes, A., Brune, A. & Stingl, U. (2012) Biogeography of pelagic
 bacterioplankton across an antagonistic temperature–salinity gradient in
- 670 Ormond, R. & Edwards, A. (1987) Red Sea fishes. Key environments Red Sea
- 671 (ed. by A.J. Edwards and S.M. Head), pp. 251–287. Pergamon Press,
- 672 Oxford.
- Posada, D. (2008) jModelTest: phylogenetic model averaging. *Molecular Biology and Evolution*, 25, 1253–1256.
- 675 Raitsos, D.E., Hoteit, I., Prihartato, P.K., Chronis, T., Triantafyllou G. &
- Abualnaja, Y. (2011) Abrupt warming of the Red Sea. *Geophysical*
- 677 *Research Letters*, **38**, L14601.
- 678 Ramon, M.L., Lobel, P.S. & Sorenson, M.D. (2003) Lack of mitochondrial
- 679 genetic structure in hamlets (*Hypoplectrus* spp.): recent speciation or
- 680 ongoing hybridization? *Molecular Ecology*, **12**, 2975–2980.
- Randall, J.E. (1994) Twenty-two new records of fishes from the Red Sea. *Fauna of Saudi Arabia*, 14, 259–275.

683	Randall, J.E. (1999) Report on fish collections from the Pitcairn Islands. Atoll
684	Research Bulletin, 461 , 1–53.
685	Randall, J.E. (2005) Reef and shore fishes of the South Pacific: New Caledonia to
686	Tahiti and the Pitcairn Islands. University of Hawai'i Press, Honolulu, HI

- 687 Randall, J.E. & Rocha, L.A. (2009) Chaetodontoplus poliourus, a new angelfish
- (Perciformes: Pomacanthidae) from the tropical western Pacific. The 688 Raffles Bulletin of Zoology, 57, 511–520. 689
- Reece, J.S., Bowen, B.W., Smith, D.G. & Larson A. (2010) Molecular 690
- 691 phylogenetics of moray eels (Muraenidae) demonstrates multiple origins
- of a shell-crushing jaw (Gymnomuraena, Echidna) and multiple 692

colonizations of the Atlantic Ocean. Molecular Phylogenetics and 693

- 694 Evolution, 57, 829–835.
- Riegl, B. & Velimirov, B. (1994) The structure of coral communities at Hurghada 695 in the Northern Red Sea. *Marine Ecology*, **15**, 213–231. 696
- 697 Righton, D., Kemp, J. & Ormond, R. (1996) Biogeography, community structure and diversity of Red Sea and western Indian Ocean butterflyfishes. 698
- Journal of the Marine Biological Association of the UK, 76, 223–228. 699
- Roberts, C.M., Shepherd, A.R.D. & Ormond, R.F.G. (1992) Large-scale variation 700
- 701 in assemblage structure of Red Sea butterflyfishes and angelfishes.
- Journal of Biogeography, 19, 239–250. 702

HI.

703	Rocha, L.A. (2004) Mitochondrial DNA and color pattern variation in three
704	western Atlantic Halichoeres (Labridae), with the revalidation of two
705	species. Copeia, 2004, 770–782.
706	Rocha, L.A., Bass, A.L., Robertson, D.R. & Bowen, B.W. (2002) Adult habitat
707	preferences, larval dispersal, and the comparative phylogeography of three
708	Atlantic surgeonfishes (Teleostei: Acanthuridae). Molecular Ecology, 11,
709	243–251.
710	Seutin, G., White, B.N. & Boag, P.T. (1991) Preservation of avian blood and
711	tissue samples for DNA analyses. Canadian Journal of Zoology, 69, 82–
712	90.
713	Sheppard, C.R.C. (2000) Coral reefs of the western Indian Ocean: an overview.
714	Coral reefs of the Indian Ocean: their ecology and conservation (ed. by
715	T.R. McClanahan, C.R.C. Sheppard and D.O. Obura), pp. 3–38. Oxford
716	University Press, Oxford.
717	Sheppard, C.R.C. & Sheppard, A.L.S. (1991) Corals and coral communities of
718	Arabia. Fauna of Saudi Arabia, 12, 3–170.
719	Sheppard, C.R.C., Price, A.R.G. & Roberts, C.M. (1992) Marine ecology of the
720	Arabian region: patterns and processes in extreme tropical environments.
721	Academic Press, London.

722	Siddall, M.	, Rohling, E.	J., Almogi-Labin	, A., Hemleben,	C., Meischner, D).,
		, , , , , , , , , , , , , , , , , , , ,		, , ,		

- Schmelzer, I. & Smeed, D.A. (2003) Sea-level fluctuations during the last
 glacial cycle. *Nature*, 423, 853–858.
- 725 Siddall, M., Smeed, D.A., Hemleben, C., Rohling, E.J., Schmelzer, I. & Peltier,
- W.R. (2004) Understanding the Red Sea response to sea level. *Earth and Planetary Science Letters*, 225, 421–434.
- 728 Skillings, D.J., Bird, C.E., & Toonen, R.J. (2011) Gateways to Hawai'i: genetic
- population structure of the tropical sea cucumber *Holothuria atra*. *Journal of Marine Biology*, **2011**, 783030.
- Smeed, D. (2004) Exchange through the Bab el Mandab. *Deep-Sea Research Part II: Tropical Studies in Oceanography*, **51**, 455–474.
- Smeed, D.A. (1997) Seasonal variation of the flow in the strait of Bab al Mandab.
- 734 *Oceanologica Acta*, **20**, 773–781.
- Song, C.B., Near, T.J. & Page, L.M. (1998) Phylogenetic relations among percid
- fishes as inferred from mitochondrial cytochrome *b* DNA sequence data.
- 737 *Molecular Phylogenetics and Evolution*, **10**, 343–353.
- Taberlet, P., Meyer, A. & Bouvet, J. (1992) Unusual mitochondrial variation in
- two local populations of blue tit *Parus caeruleus*. *Molecular Ecology*, **1**,
- 740 27–36.

741	Thresher, R.E. & Brothers, E.B. (1985) Reproductive ecology and biogeography
742	of Indo-West Pacific angelfish (Pisces: Pomacanthidae). Evolution, 39,
743	878–887.
744	Toonen, R.J., Andrews, K.R., Baums, I.B., Bird, C.E., Concepcion, G.T., Daly-
745	Engel, T.S., Eble, J.A., Faucci, A., Gaither, M.R., Iacchei, M., Puritz, J.B.,
746	Schultz, J.K., Skillings, D.J., Timmers, M.A. & Bowen, B.W. (2011)
747	Defining boundaries for ecosystem-based management: a multispecies
748	case study of marine connectivity across the Hawaiian archipelago.
749	Journal of Marine Biology, 2011, 460173.
750	Victor, B.C. (1986) Duration of the planktonic larval stage of one hundred species
751	of Pacific and Atlantic wrasses (family Labridae). Marine Biology, 90,
752	317–326.
753	Ward, R.D., Zemlak, T.S., Innes, B.H., Last, P.R. & Hebert, P.D.N. (2005) DNA
754	barcoding Australia's fish species. Philosophical Transactions of the
755	Royal Society B: Biological Sciences, 360, 1847–1857.
756	Wilson, D.T. & McCormick, M.I. (1999) Microstructure of settlement-marks in
757	the otoliths of tropical reef fish. Marine Biology, 134, 29-41.
758	Winterbottom R & Anderson R C (1997) A revised checklist of the enipelagic
759	and shore fishes of the Chagos Archinelago Central Indian Ocean Ichthyological
760	Rulletin 66 1–28
, 00	Dimenti, 00, 1 20.

761 SUPPORTING INFORMATION

- Additional Supporting Information may be found in the online version of thisarticle:
- 764 **Appendix S1** Mitochondrial DNA haplotype (*h*) and nucleotide diversity (π) for 765 each species from each collection location.
- **Appendix S2** Population pairwise Φ_{ST} and Jost's *D* values for each species based
- 767 on mitochondrial DNA sequences.
- As a service to our authors and readers, this journal provides supporting
- information supplied by the authors. Such materials are peer-reviewed and may be
- reorganized for online delivery, but are not copy-edited or typeset. Technical
- support issues arising from supporting information (other than missing files)
- should be addressed to the authors.

773

774

775

777 Biosketch

778	The authors' interests are focused on illuminating the evolutionary processes that
779	generate marine biodiversity. They have carried out phylogeographical surveys of
780	over 20 reef fish species in the greater Indo-Pacific to test existing evolutionary
781	models, resolve the life history traits that influence dispersal and population
782	separations in reef organisms, and inform marine conservation (e.g. defining the
783	boundaries of marine protected areas).
784	Author contributions: J.D.D. conceived the ideas for this study, collected tissue
785	samples and produced DNA sequences, analysed the data, and led the writing. In
786	addition to contributing to writing, M.L.B., B.W.B., J.H.C. and M.T.C. collected
787	tissue samples, M.R.G. and L.A.R. collected tissue samples and produced DNA
788	sequences, J.A.E. produced DNA sequences, and D.J.S. implemented and
789	interpreted coalescent analyses.
790	Editor: Craig McClain
750	
791	
792	
793	
794	
795	

Table 1 Study species, number of specimens, fragment length, primers used, and annealing temperatures for mitochondrial DNA cytochrome-c oxidase subunit-I (COI) and cytochrome *b* (cyt *b*) genes. DNA sequences from each primary collection location (Al Lith, Thuwal, Diego Garcia, and the Republic of Seychelles; see text) are described, along with collections made opportunistically at additional locations in the Western Indian Ocean (WIO). All haplotypes are available online in GenBank (accession numbers: KC187734-KC188056).

Species			ence data						
		Red Sea WIO							
	DNA fragment	Fragment length (bp)	Al Lith	Thuwal	Diego Garcia	Seychelles	Other sites (n)	Primer set	Annealing temp. (°C)
Acanthurus nigrofuscus	COI	634	22	27	31	31	_	Fish F2–Fish R2 (1)	50
(brown surgeonfish)	cyt b	683	22	28	31	30	-	Cyb9Cyb7 (2,3)	58
Cephalopholis argus	COI	537	26	19	24	10	Oman (8)	Fish F2–Fish R2 (1)	56
(peacock hind)	cyt b	618	27	22	32	13	Oman (9)	CB6F–CB6R (4)	54
Chaetodon auriga	COI	625	27	20	33	30	_	Fish F2–Fish R2 (1)	52
(threadfin butterflyfish)	cyt b	670	27	20	33	30	_	Cyb9–Cyb7 (2,3)	56
Halichoeres hortulanus	COI	589	25	27	20	28	-	Fish F2–Fish R2 (1)	50
(checkerboard wrasse)	cyt b	692	25	27	27	22	_	Cyb9–Cyb7 (2,3)	50
Lutjanus kasmira	COI	606	21	22	33	20	Sodwana Bay (34)	Fish F2–Fish R2 (1)	56
(bluestripe snapper)	cyt b	475	23	23	34	19	Sodwana Bay (34)	H15020–Cyb5 (5,3)	48
Neoniphon sammara	ĊOI	611	20	31	30	28	-	Fish F2–Fish R2 (1)	50
(Sammara squirrelfish)	cyt b	508	20	31	29	38	_	$NSAFOR4-NSAREV4^*$	60
Pygoplites diacanthus	COI	634	24	23	33	_	_	Fish F2–Fish R2 (1)	50
(regal angelfish)	cyt b	640	24	23	32	_	_	PydCytbF3–PydCytbR4*	50

*We designed two novel primer sets to amplify and sequence cyt *b* for *Neoniphon sammara* and *Pygoplites diacanthus*. Their sequences were as follows: NSAFOR4: 5'-TGC CGT GAC GTA AAC TAT GG-3'; NSAREV4: 5'-TGA AGT TGT CGG GAT CTC CT-3'; PydCytbF3: 5'-ATG GCA AAC TTA CGC AAA ACC-3'; PydCytbR4: 5'-GGC TGG TGT GAA GTT GTC-3'.

References: (1) Ward et al., 2005; (2) Song et al., 1998; (3) Taberlet et al., 1992; (4) Gaither et al., 2010; (5) Meyer, 1994.

Table 2 Analysis of molecular variance (AMOVA; Excoffier *et al.*, 1992) comparing variation between the Red Sea and Western Indian Ocean populations of reef fish based on mitochondrial DNA cytochrome-c oxidase subunit-I (COI) and cytochrome b (cyt b) genes. Site-specific samples sizes are shown in Table 1.

		Perce	entage variati	on			
Species	DNA fragment	within populations	between populations	between regions	Overall Φ_{ST}	Р	Jost's D (SE)
Acanthurus nigrofuscus (brown surgeonfish)	COI	76.58	0.25	23.18	0.23	< 0.001	0.59 (0.051)
	cvt b	87.96	-0.64	12.68	0.12	< 0.001	0.21 (0.087)
Cephalopholis argus (peacock hind)	COI cyt b	72.45 77.59	-0.31 1.02	27.86 21.39	0.28 0.22	< 0.001 < 0.001	0.13 (0.088) 0.13 (0.060)
Chaetodon auriga (threadfin butterflyfish)	COI	80.35	-1.80	21.45	0.20	< 0.001	0.087 (0.041)
	cyt b	98.48	-0.44	1.96	0.015	0.12	0.021 (0.022)
Halichoeres hortulanus (checkerboard wrasse)	COI cyt b	97.30 95.44	2.60 1.08	0.10 3.48	0.027 0.046	$0.071 \\ 0.045$	0.041 (0.019) 0.078 (0.088)
Lutjanus kasmira (bluestripe snapper)	COI	100.11	-1.30	1.20	0	0.83	0.006 (0.023)
	cyt b	98.88	-0.46	1.58	0.011	0.23	0.090 (0.059)
Neoniphon sammara (Sammara squirrelfish)	COI	66.03	-0.33	34.30	0.34	< 0.001	0.68 (0.038)
	cyt b	70.28	-0.69	30.41	0.30	< 0.001	0.59 (0.060)
Pygoplites diacanthus (regal angelfish)	COI	30.61	-1.17	70.57	0.69	< 0.001	0.61 (0.015)
	cyt b	65.00	-2.30	37.30	0.35	< 0.001	0.60 (0.027)

Table 3 Estimates of time in years (*t*) since initial separation, effective migration rate $(2N_em)$, effective population sizes (N_e), and mutation-scaled migrations rates (*m*) between Red Sea (RS) and Western Indian Ocean (WIO) populations of seven reef fish species based on mitochondrial DNA cytochrome-c oxidase subunit-I (COI) and cytochrome *b* (cyt *b*) runs in IMA2 (Hey & Nielsen, 2007). Abbreviations: *NC*, no convergence. Inequalities: posterior probability densities rise to a plateau, so that all estimates larger than the shown value have the same approximate posterior probability.

			Effective migration		Effective population		Migration (<i>m</i>)	
			rate $(2N_em)$		size (N_e)			
C	DNA	Initial separation	WIO	RS to		RS	WIO	RS to
Species	fragment	in years (t)	to RS	WIO	WIO		to RS	WIO
Acanthurus nigrofuscus	COI	105,000	1.21	0.09	25.10	50.70	0.03	0.01
(brown surgeonfish)	cyt b	79,000	3.92	0.11	52.75	85.25	0.02	0.001
Cephalopholis argus	COI	>121,000	NC	0.73	0.25	NC	21.05	1.45
(peacock bind)	cyt b	>212,000	0.01	NC	NC	0.60	0.01	6.27
Chaetodon auriga	COI	26,800	0.08	0.13	6.60	3.80	0.01	0.01
(threadfin butterflyfish)	cyt b	30,700	0.03	4.85	34.65	1.65	0.01	0.07
Halichoeres hortulanus	COI	26,500	1491.11	0.08	7.50	115.50	6.46	0.01
(checkerboard wrasse)	cyt b	21,600	> 199.50	>163.50	> 272.50	>262.50	1.22	0.02
Lutjanus kasmira	COI	41,000	0.23	1282.22	104.50	7.50	0.02	6.14
(bluestripe snapper)	cyt b	155,000	15.01	104.61	88.10	3.10	2.82	0.50
Neoniphon sammara	COI	169,000	0.79	0.03	14.85	20.75	0.02	0.001
(Sammara squirrelfish)	cyt b	190,000	0.09	0.24	47.48	17.77	0.0025	0.0025
Pygoplites diacanthus	COI	831,000	0.01	0.04	4.20	1.40	0.01	0.01
(regal angelfish)	cyt b	>662,000	0.06	0.04	8.88	11.63	0.0025	0.0025

1 TITLES AND LEGENDS TO FIGURES

2	Figure 1 Scaled maps indicating collection sites for all seven reef fish species (a,
3	Acanthurus nigrofuscus; b, Cephalopholis argus; c, Chaetodon auriga; d,
4	Halichoeres hortulanus; e, Lutjanus kasmira; f, Neoniphon sammara; g,
5	Pygoplites diacanthus) sampled in the Red Sea and the Western Indian Ocean.
6	Light orange lines show the major current systems flowing through each body of
7	water (abbreviations: EACC, East African Countercurrent; NEC, Northwest
8	Monsoon Current; SC, Somali Current; SEC, South Equatorial Current; SECC,
9	South Equatorial Countercurrent; SMC, Southwest Monsoon Current; WICC,
10	Western Indian Coastal Current). Note the reversing circulation of the SC (from
11	northward to southward), the SMC (from westward to the eastward NEC), the
12	WICC (from eastward to westward), and the current flowing into the Red Sea
13	from the Gulf of Aden (compared with out of the Red Sea and into the Gulf of
14	Aden) during the Northeast Monsoon season (December to March). Site-specific
15	samples sizes are provided in Table 1. (Photo credits: M.L. Berumen, S. Moldzio
16	and L.A. Rocha)

17

Figure 2 The relationship between (a) haplotype diversity (*h*) or (b) nucleotide
diversity (π) estimated for mitochondrial DNA cytochrome-c oxidase subunit-I
(COI; black filled circles) and cytochrome *b* (cyt *b*; open circles) genes in the Red

21	Sea versus the Western Indian Ocean (WIO) populations of species considered in
22	this study. The black dashed line represents a line of unity, which is the point at
23	which genetic diversity estimates in the Red Sea and WIO are equal within a
24	species. Data points above the line of unity indicate greater genetic diversity in
25	the Red Sea, whereas points falling below the line indicate greater genetic
26	diversity in the WIO.

28	Figure 3 The relationship between mitochondrial DNA cytochrome c oxidase
29	subunit I (COI) and cytochrome b (cyt b) estimates of pairwise genetic
30	differentiation for the seven species of reef fish, based on comparisons among
31	Red Sea (RS, represented by circles), Western Indian Ocean (WIO; represented
32	by triangles), and Red Sea versus WIO sites (represented by squares). Estimates
33	of both Φ_{ST} (black symbols) and Jost's <i>D</i> (grey symbols) are presented here. The
34	black dashed line represents a line of unity, which is the point at which pairwise
35	genetic differentiation estimates between two study sites are equal for each
36	molecular marker. Data points below the line of unity indicate greater genetic
37	differentiation based on COI, whereas points falling above the line indicate
38	greater genetic differentiation based on cyt b.

40	Figure 4	Median-joining r	networks showing	relationships	among mitocho	ndrial
	0			1	0	

- 41 DNA (a–g) cytochrome-c oxidase subunit-I (COI) and (h–n) cytochrome b (cyt b)
- 42 haplotypes for each study species (a/h, *Acanthurus nigrofuscus*; b/i,
- 43 *Cephalopholis argus*; c/j, *Chaetodon auriga*; d/k, *Halichoeres hortulanus*; e/l,
- 44 *Lutjanus kasmira*; f/m, *Neoniphon sammara*; g/n, *Pygoplites diacanthus*)
- 45 collected in the Red Sea (Al Lith and Thuwal) and the Western Indian Ocean
- 46 (Diego Garcia, Oman, Seychelles, and Sodwana Bay). Each circle represents a
- 47 unique haplotype and its size is proportional to its total frequency. Branches or
- 48 black cross-bars represent a single nucleotide change, small black circles
- 49 represent missing haplotypes, and colours denote collection location as indicated
- 50 by the embedded key.

