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Abstract
Background—Malignant melanoma has a good prognosis if treated early. Dermoscopy images
of pigmented lesions are most commonly taken at × 10 magnification under lighting at a low angle
of incidence while the skin is immersed in oil under a glass plate. Accurate skin lesion
segmentation from the background skin is important because some of the features anticipated to be
used for diagnosis deal with shape of the lesion and others deal with the color of the lesion
compared with the color of the surrounding skin.

Methods—In this research, gradient vector flow (GVF) snakes are investigated to find the border
of skin lesions in dermoscopy images. An automatic initialization method is introduced to make
the skin lesion border determination process fully automated.

Results—Skin lesion segmentation results are presented for 70 benign and 30 melanoma skin
lesion images for the GVF-based method and a color histogram analysis technique. The average
errors obtained by the GVF-based method are lower for both the benign and melanoma image sets
than for the color histogram analysis technique based on comparison with manually segmented
lesions determined by a dermatologist.

Conclusions—The experimental results for the GVF-based method demonstrate promise as an
automated technique for skin lesion segmentation in dermoscopy images.
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DERMOSCOPY, OTHERWISE known as skin-surface microscopy or dermatoscopy was originally
introduced in 1921 (1) and reintroduced in 1987 (2). One common form of dermoscopy
integrates oil immersion under glass with standard × 10 magnifying optics and incident
surface lighting permit in vivo visualization of certain features of pigmented melanocytic
neoplasms that cannot be observed by visual inspection. Dermoscopy using various rule- or
feature-based schemes improves pigmented lesion diagnostic accuracy over the accuracy
obtained without this aid for those dermatologists trained in the technique (3–8). Accurate
segmentation of the lesion from the background skin is important for computer-assisted
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diagnostic techniques, both for the determination of lesion shape and lesion color, compared
with the color of the surrounding skin (9).

In this paper, a method of automatic lesion boundary detection using gradient vector flow
(GVF) snakes is presented. Snakes can be defined as curves within an image domain that
can move under the influence of internal forces defined within the curve, from features such
as smoothness, and external forces computed from the image data (10). Snake algorithms are
often sensitive to initialization for effective object segmentation. Initial points for a snake
algorithm can be selected by an operator or automatically determined. For this research, an
automatic initialization method is used to select an initial set of skin lesion border points for
the dermoscopy image data set examined.

The remainder of this paper is organized as follows. In the following section, an overview of
traditional snake algorithms is presented, along with limitations of traditional snakes in the
domain of pigmented images. In the third section, GVF snakes are presented. In the fourth
section, the application of GVF snakes for skin lesion border determination in dermoscopy
images is given. The automatic initialization method and the two-step operation of GVF
snakes are described. In the fifth section, experimental results and discussion are presented
comparing the GVF snake algorithm and its comparison with the histogram analysis
technique developed by Pagadala (11). Finally, conclusions from this research are provided.

Overview of snake algorithms
The concept of deformable active contours, or snakes, was introduced by Kass et al. (12).
The behavior of snakes is governed by minimizing their energy function (12)

where s∈[0, 1] and υ(s) = (x(s),y(s)) represents the position of the snake parametrically.
Einternal is the internal energy of the snake, which specifies the tension or smoothness of the
contour. Eimage is the image energy providing the external forces to the snake that cause the
snake to move toward object boundaries as the energy is minimized. υ(s) is a set of
coordinates to form a snake contour. A more complete overview of active contours, or
snakes, can be found in (10, 13).

Weaknesses of conventional snakes
There are several weaknesses with conventional snake algorithms applied to boundary
segmentation. First, the initial contour must be close to the actual object boundary because
of the small capture range of the image gradient and the presence of artifacts in skin.
Conventional snakes lack the larger capture range of several new methods (13, 14). Second,
the weights of energies can affect the snake's behavior and performance of the deformation
process. The weight constants are given by the operator in most of the applications.
However, it is difficult but not impossible to modify conventional snakes with an adaptive
system to change parameters automatically using data from the image during the
deformation process and achieve better results. The third weakness of traditional snakes is
the difficulty with expanding into boundary concavities (15, 16).

GVF snakes
GVF snakes use a new class of external forces. GVF fields are computed through a diffusion
process (13), similar in spirit to the distance potential forces of Cohen and Cohen (14).
Particular advantages of the GVF snake over a traditional snake are its insensitivity to
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initialization and its ability to move into boundary concavities (13). The initialization of the
snake can be performed inside, outside, or across the object boundary. The GVF snake also
has a larger capture range, due in part to a diffused image gradient (13). The GVF force can
be computed from the Helmholtz theorem (17) as

where υ=υ(x, y) is the GVF field (13).

A parametric curve solving the above dynamic equation is called a GVF snake (13). The
solution to this equation is obtained in the same manner as in a traditional snake algorithm
by discretization and iteration. An edge map f(x, y), derived from an intensity image f(x, y),
is determined. See (13, 18) for a more detailed mathematical description of GVF snakes.

Although GVF snakes may improve initialization, capture range, and progressing into
concavities, images can create different types of problems during implementation. Some
preprocessing techniques can be used to avoid these problems when applying the algorithm
as we did for our dermoscopy image set.

Skin lesion boundary determination algorithm
GVF snakes are applied in this research as part of an automated skin lesion border
determination algorithm for dermoscopy images. A Matlab implementation for the basic
GVF snake algorithm was obtained from (19), modified for this implementation, and
converted to C11. The algorithm consists of preprocessing operations and a two-step GVF-
based approach.

Preprocessing and initialization of snake points
Preprocessing of the dermoscopy images is performed in two steps, including automatic
snake point initialization and skin lesion image preprocessing, to facilitate application of the
GVF snake algorithm. The dermoscopy images can have significant artifacts such as hair,
small air bubbles, and skin texture around the skin lesion. These artifacts may prevent the
snake from converging to the real skin lesion boundary during the deformation process,
resulting in incorrect borders. Because the gradient information of the image is diffused in
the image domain by the GVF method, the capture range of artifacts in the image as well as
the capture range of the skin lesion boundary have been increased. Consequently, there is
the potential problem that the snake may converge and remain on a noise point during the
deformation process, resulting in an incorrect border.

Two steps to overcome this problem are to initialize snake points close to the actual border
and to decrease the noise level in the image. We found that Gaussian filtering decreased the
image noise or artifact level in the image to allow the snake to ignore weak edges on the
lesion border.

The following procedure was used to initialize the snake points relatively close to the actual
lesion border. The luminance image (20) was determined from the dermoscopy RGB color
image and used for preprocessing operations and for applying the GVF snake algorithm. In
order to facilitate snake initialization, blurring of the skin lesion region was performed using
a 15 × 15 Gaussian filter (21) (Gσ with σ=15), which functions as an averaging filter rather
than a Gaussian filter, since the kernel size is relatively small for this value of σ. The blurred
image is inverted and thresholded using the Otsu technique (22), a histogram-based
approach that assumes Gaussian distributions for the background and foreground pixels,
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where a threshold T is the gray level that maximizes between-group variance. The Otsu
threshold T (Fig. 3) is reduced by P gray levels to provide for under-segmentation of the
skin lesion region, where P=10 was empirically determined for our dermoscopy image data
set. Blob labeling (23) of all eight connected objects within the thresholded image was
performed, and the largest blob was retained as the skin lesion region.

Initial snake points were found along the edge of the skin lesion region (largest blob) using
eight lines radiated at equal angles from the centroid of the lesion region. These points were
expanded along the radial lines in approximately the normal direction, from the lesion
region edge toward the image edge by a small constant to guarantee that the initial snake is
formed outside the lesion border. The constant value of five pixels was empirically
optimized for the application. Cubic spline interpolation was applied to the eight initial
points to locate new snake points.

Application of GVF snake algorithm
After preprocessing and initialization of snake points, the gradient of the gray-level image
and the corresponding GVF field of the gradient image were computed using Matlab. A two-
step operation for the snake deformation process was used. The GVF field image was
calculated by applying a high level of blurring to the gray level and gradient images,
decreasing noise and artifacts such as hair and bubbles in the image domain that can prevent
the snake from converging to the skin lesion border. A 6 × 6 Gaussian kernel (Gσ with σ=6)
for the gray-level image and a 5 × 5 Gaussian kernel (Gσ with σ=5) for the gradient image,
empirically determined, functioned as blurring parameters. In order to prevent the initial
snake from deforming towards the image edge, the initial snake points were restricted to the
central 8/9 W× 8/9 H of the W × H image. The Sobel operator (24) was used to generate the
gradient images in this research.

During the deformation process in the first operation, a reduced number of iterations, 20,
were used to get closer to the border without converging on the noise or artifacts around the
skin lesion region. Linear interpolation (25) was used to add snake points during
deformation if the Euclidean distance between two neighboring snake points became greater
than one pixel.

After the first operation, the snake moves closer to the actual skin lesion border, with less
likelihood that the snake will converge to noise points in the surrounding skin region.
Therefore, the second operation used a small kernel on the gray level and the gradient
images, a 2 × 2 Gaussian kernel (Gσ with σ=2) and a 4 × 4 Gaussian kernel (Gσ with σ = 3.5,
respectively. The Gaussian kernels functioned as blurring filters for the luminance and
gradient of luminance images. Filter parameters and the number of iterations used, 60, in the
deformation process of the second iteration were empirically determined.

The final step of the border determination algorithm was to expand the border uniformly in
all directions by N pixels. A line was constructed perpendicular to the line connecting two
neighboring points. The snake point was expanded N pixels in an outward direction along
this line. Based on experimentation with our dermoscopy image data set, N=9 was selected.
This procedure was performed because the snakes tend to find the border at the maximum
gradient, which lies somewhat inside the actual border location. A simple but effective
solution for this problem is to expand the resultant border by some number of pixels in the
normal direction.
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Experiments performed
The GVF-based border determination algorithm was applied to a dermoscopy RGB image
data set of 30 invasive malignant melanomas and 70 benign skin lesions. Images were full
color 24 bit with typical resolutions of 1024 × 768 in jpeg format, obtained from the EDRA
interactive Atlas of Dermoscopy (26). The benign skin lesions included dysplastic nevi,
lentigines, and melanocytic nevi. None of the skin lesions included in the data set about the
image boundaries. The resulting closed skin lesion borders are filled to obtain segmented
skin lesions.

Baseline manually determined borders
For manual segmentation, points were selected along the skin lesion border. A cubic B-
spline algorithm was used to connect the manually selected points to generate a closed curve
lesion border. A dermatologist (Dr Stoecker) supervised all boundary determinations,
providing the baseline for evaluation of the automated techniques. A second dermatologist
(Dr Malters) found borders manually for comparison with the automated techniques.

Pagadala's automated technique
A fully automated histogram-based thresholding technique developed by Pagadala (11) was
used for comparison with the GVF-based approach. For this approach, a histogram was
made for each of the three color planes for each lesion. For each histogram, the local
maxima (peaks) are determined initially with 10 bins. If only one local maximum can be
obtained, the number of bins in the histogram was increased and the local maxima were
again determined. Once the local maxima were found, the minimum between the two largest
local maxima is found.

A brightness value equal to one-third the distance between the histogram peaks when added
to the minimum brightness value gave a more useful threshold than the minimum brightness
value for separating the skin lesion from the surrounding skin. After the threshold was
obtained for each color plane, the color value for each pixel in the image was replaced with
the minimum color value of the pixels in its 5 × 5 neighborhood. Then, thresholding was
performed in each of the color planes. An OR function was applied to the individual
thresholded color planes to generate a preliminary segmented lesion. The final segmented
skin lesion was obtained based on smoothing the binary ORed image by an iterative median
filter procedure that used decreasing filter sizes of 9 × 9, 7 × 7, 5 × 5, and 3 × 3.

Approach for evaluating automatically segmented skin lesions
Using baseline manually segmented skin lesions from a dermatologist (Dr Stoecker), the
segmented lesions obtained from the GVF-based algorithm, Pagadala's color histogram
threshold technique, and manually segmented lesions from a second dermatologist (Dr
Malters) were compared based on the grading system developed by Umbaugh et al. (27). Let
M represent the area of the manually segmented skin lesion for the same image. Let A
denote the automatically segmented lesion and XOR the exclusive-OR operation. Then, the

percentage border error (B) is given by .

Experimental results and discussion
Image example

An image example is presented for the GVF-based algorithm for skin lesion segmentation
for a dysplastic compound nevus, a benign lesion, shown in Fig. 1. Figure 2 shows the
negative of the blurred gray-level image obtained from the 15 × 15 Gaussian kernel (Gσ with
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σ=15). This image is used for the snake point initialization process. Figure 3 shows the
histogram of the blurred image used for threshold determination to obtain the skin lesion
region, showing the Otsu threshold T and the relaxed threshold T–P. Figure 4 presents the
segmented skin lesion region, where the largest blob has been retained as the skin lesion
region. Figure 5 shows the initial snake after applying the automated snake initialization
algorithm with interpolation. Figure 6 provides the resulting deformed snake after the first
operation of the GVF snake algorithm for 20 iterations. Figure 7 presents the resulting
deformed snake after the second operation of the GVF snake algorithm for 60 iterations.
Figure 8 shows the final skin lesion border after expanding the deformed snake by nine
pixels in the normal direction from the second operation of the GVF snake algorithm.

Border error results
The GVF-based algorithm, the color histogram thresholding approach (Pagadala's method),
and the manual method were applied to the entire data set. Using manually determined
borders from a dermatologist as a baseline, the border error/difference (B) was computed for
each skin lesion for the automated methods and the comparison borders found by a second
dermatologist. Tables 1 and 2 contain the mean, standard deviation, and median border
errors/differences for the three approaches for the benign and melanoma images,
respectively, in the data set. Figure 9 presents a benign lesion example of the borders
generated using the manual and automated techniques, with the borders superimposed on the
lesion. The white border was the baseline border manually determined by a dermatologist.
Note that the lesion shown in Fig. 9 corresponds to image number 48 in Table 1.

From Tables 1 and 2, it can be observed that the average errors obtained by GVF-based
algorithm (13.77% for benign and 19.76% for melanoma) are lower for both the benign and
melanoma image sets than for Pagadala's method. The average and median differences for
the benign and melanoma image sets are lower for the manual borders from the second
dermatologist than the automated methods. For the benign image set, the median difference
for the second set of manual borders (7.80%) is similar to the error rates for the GVF-based
algorithm (12.32%) and Pagadala's method (10.40%). For the melanoma image set, there is a
greater disparity in the median differences for the second set of manually determined
borders (6.77%) and the automated techniques (18.37% for the GVF-based algorithm and
21.99% for Pagadala's method). Greater border irregularity in melanoma lesions may have
contributed to the greater disparity in lesion segmentation between the dermatologist-
segmented lesions and the automated segmentation techniques. The median differences for
the manually determined borders from the second dermatologist are similar for the
melanoma (6.77%) and benign (7.80%) image sets with low standard deviations (3.99 for
the melanoma image set and 3.78 for the benign image set), indicating consistency of the
lesion segmentation results.

The higher standard deviation for Pagadala's method reflects the inconsistency of color
segmentation. When images that gave an error of greater than 100% for Pagadala's method
were not used in the image set, it was observed that the error levels of the two methods were
similar. From Table 2, the mean and median percentage border errors are lower for the
GVF-based method, 19.76% and 18.37%, respectively, than for Pagadala's technique,
91.96% and 21.99%, respectively. The color content difference between the benign and
melanoma lesions may contribute to the disparity between the GVF-based method and
Pagadala's technique. Table 3 shows the number of images with percentage border errors
less than 10%, 20%, 30%, 40%, and 50% for the GVF-based method. From Table 3, 76 of
the 100 images examined have percentage border errors of less than 20%, and 96 images
have percentage border errors of less than 30%. The average (and median) variation for the
GVF-based and Pagadala's methods is higher than the intraobserver variation observed by
Guillod et al. (28) but is sufficiently small to allow accurate detection of lesion features.
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Discussion
One of the main problems of GVF snakes applied to dermoscopy images is weak edges in
some images. Because we have to perform some blurring to make the snake deform
correctly, the weak edges become even weaker. Unfortunately, the noise or artifacts in the
image can be stronger than these weak edges. Decreasing blurring results in the snake
sticking onto noise or artifacts and produces the wrong border. Accordingly, we used several
smoothing operators to provide a blurring effect to compensate for high-contrast noise or
artifacts in our image data set. Note that Fig. 9 shows that borders diverge most, for both
human and automatic methods, where edges are weakest.

The problem of automatic initialization has been addressed using the luminance image
blurring and relaxed thresholding technique presented. Initialization and subsequent
deformation can fail for lesions that extend to the edge of the image frame. In practice, some
large lesions will extend to the image border.

Another weakness of the snake technique presented is that there are numerous parameters
that we determined from our data set. The user can adjust parameters to conform to a user's
visual standard of an acceptable skin lesion segmentation on an image-by-image basis. More
testing should be carried out with different sets to determine whether our parameters are
broadly applicable. For example, initial points could be expanded or contracted to obtain a
more suitable set of initial snake points.

A two-step operation is used for the GVF snake application. This is done to prevent the
snake from sticking on the noise or artifacts around the lesion during deformation. In the
first operation, higher blurred grayscale and gradient images are used to calculate the GVF
field. The snake points obtained from the first operation are used as input for the second
operation. Less blurring is used during the second operation so that the snake can catch
weaker edges. Figure 10 gives an image example where the initial snake border is located
too far from the actual skin lesion border. The result is convergence to noise points and an
incorrectly segmented skin lesion.

The results are obtained using a `reasonable' parameter set for 70 non-melanoma and 30
melanoma images. The results obtained were satisfactory for most of the images, but it was
also observed that non-melanoma images gave better results. It was noted that the
differences between dermatologists were similar for both benign and malignant lesions, and
smaller than that between manual dermatologist borders and GVF borders. The reason for
this result can be attributed to non-melanoma images having more regular boundaries than
melanoma images. The eight initial snake points are determined in equal angular distances
with respect to the centroid of the lesion, so the deformation process works better for images
that do not have irregularities. The other reason is that melanoma images can have edges too
weak to allow the snake to converge to them. We have found in other research that
melanomas have widely varying gradients compared with benign lesions. Melanoma borders
vary from very sharp to very fuzzy.

Finally, the snake algorithm presented in this research using the luminance image is
representative of monochrome image segmentation techniques. Extending the snake
algorithm to incorporate the RGB color planes is a future scope for this research.

Conclusion
In this research, a luminance image blurring approach was presented for automatic snake
initialization, and the GVF snake algorithm was investigated to find the skin lesion borders
of dermoscopy images automatically. The percentage border error obtained for the GVF-
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based method is more consistent for the benign and melanoma lesions examined than
Pagadala's color thresholding-based approach. The experimental results show that 76 of 100
images have percentage border errors less than 20% and that 96 of 100 images have errors
less than 30%. Overall, the experimental results for the GVF-based method demonstrate
promise as an automated technique for skin lesion segmentation in dermoscopy images.
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Fig. 1.
Dermoscopy image of a dysplastic compound nevus, a benign pigmented skin lesion.
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Fig. 2.
Negative of blurred gray-level image used for snake initialization.

Erkol et al. Page 11

Skin Res Technol. Author manuscript; available in PMC 2011 October 3.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3.
Histogram of negative of blurred image used for thresholding. The Otsu and relaxed
thresholds obtained for this image are labeled.

Erkol et al. Page 12

Skin Res Technol. Author manuscript; available in PMC 2011 October 3.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.
Skin lesion region obtained after thresholding, blob labeling, and retaining the largest blob.
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Fig. 5.
Initial gradient vector flow snake boundary after initialization algorithm and cubic spline
interpolation.
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Fig. 6.
Output of gradient vector flow snake deformation process during the first operation after 20
iterations. Snake boundaries are shown for every fifth iteration.
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Fig. 7.
Output of gradient vector flow snake deformation process during the second operation after
60 iterations. Snake boundaries are shown for every fifth iteration.
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Fig. 8.
Final skin lesion border after expanding gradient vector flow snake boundary from Figure 7
based on the normal direction along the snake boundary.
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Fig. 9.
Benign lesion image example showing borders determined manually and automatically
superimposed onto the lesion. Key for the borders shown: baseline dermatologist manual
border (white), gradient vector flow-based algorithm (red), Pagadala's method (green),
manual border by second dermatologist (blue). Note that both human-and computer-based
methods have problems with the same areas where the border is hazy.
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Fig. 10.
Example of the gradient vector flow snake algorithm converging to noise points around the
skin lesion.

Erkol et al. Page 19

Skin Res Technol. Author manuscript; available in PMC 2011 October 3.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Erkol et al. Page 20

TABLE 1

Percentage border error/difference results for benign lesions for the gradient vector flow (GVF)-based method,
Pagadala's technique, and manual borders from the second dermatologist

Image no GVF method Pagadala's technique Borders from second dermatologist

1 27.25 15.89 6.78

2 14.66 27.67 5.48

3 17.64 13.19 4.92

4 8.57 18.01 4.52

5 15.52 6.69 8.69

6 7.13 5.89 7.22

7 19.29 6.86 6.78

8 6.63 5.17 5.48

9 5.74 11.25 4.92

10 17.46 9.76 4.52

11 11.28 21.23 8.69

12 16.88 9.52 7.22

13 10.09 9.57 14.14

14 15.71 24.51 10.59

15 22.40 31.69 7.37

16 11.34 15.63 10.75

17 13.30 28.54 7.71

18 11.20 25.69 15.62

19 9.08 14.78 4.86

20 20.45 10.09 6.88

21 8.29 14.58 8.83

22 17.03 13.48 10.85

23 14.17 16.68 19.44

24 13.08 507.10 11.83

25 16.89 8.03 5.42

26 23.01 32.24 8.69

27 13.07 16.58 9.30

28 13.81 11.50 12.66

29 12.87 10.46 7.84

30 22.25 6.23 18.11

31 12.36 2.19 6.93

32 18.19 4.93 6.38

33 23.17 27.10 10.20

34 17.78 16.83 4.14

35 20.60 6.91 5.37

36 11.56 16.11 5.33

37 15.86 6.78 4.66

38 9.68 9.78 10.82
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Image no GVF method Pagadala's technique Borders from second dermatologist

39 9.41 16.82 10.94

40 8.13 7.38 6.98

41 7.42 9.56 4.77

42 8.81 17.79 6.07

43 24.33 7.12 10.23

44 8.58 12.65 7.49

45 11.73 6.35 4.06

46 20.94 11.89 10.42

47 14.55 5.31 11.63

48 14.27 12.85 23.92

49 9.02 10.33 11.48

50 12.13 11.65 7.53

51 8.45 5.57 6.49

52 8.97 6.47 6.64

53 9.31 9.53 4.67

54 11.55 7.74 3.28

55 9.23 4.45 7.58

56 11.52 17.23 5.76

57 11.22 7.89 7.32

58 31.70 5.73 5.13

59 6.99 9.37 9.31

60 10.41 8.43 9.17

61 12.31 26.61 11.13

62 10.33 8.42 8.18

63 7.99 31.49 12.12

64 9.26 12.41 11.27

65 16.62 12.77 9.17

66 13.66 6.10 6.36

67 7.91 5.33 8.30

68 11.37 10.07 7.77

69 12.32 7.57 8.82

70 27.97 18.68 10.90

Mean 13.77 19.87 8.71

SD 5.61 59.53 3.78

Median 12.32 10.40 7.80

Average, SD, and median border errors/differences are provided for each approach. `Errors' are arbitrarily computed with respect to borders
determined by the first dermatologist. GVF, gradient vector flow.
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TABLE 2

Percentage border error/difference for melanoma images for the gradient vector flow (GVF)-based method,
Pagadala's technique, and manual borders from the second dermatologist

Image no GVF-based method Pagadala's technique Borders from second dermatologist

1 13.90 6.22 17.36

2 12.10 13.20 6.15

3 16.69 7.85 5.89

4 22.32 73.65 6.04

5 15.03 22.55 4.85

6 21.37 7.35 6.14

7 27.09 804.48 18.37

8 18.41 32.16 10.56

9 14.17 21.66 11.33

10 15.23 21.26 9.93

11 14.99 10.96 7.35

12 27.33 11.32 16.29

13 21.38 8.99 4.80

14 16.17 23.80 6.99

15 19.61 20.93 13.38

16 18.32 14.30 10.08

17 21.08 29.48 8.21

18 36.03 23.50 7.39

19 22.82 16.37 3.33

20 11.69 23.25 7.87

21 31.12 251.36 5.48

22 28.41 31.26 4.23

23 20.34 35.38 6.54

24 14.74 17.87 10.75

25 20.95 1053.72 4.87

26 11.08 22.32 5.55

27 15.84 101.94 2.35

28 5.04 4.69 6.57

29 10.84 5.95 6.33

30 48.84 40.87 9.00

Mean 19.76 91.96 8.13

SD 8.60 234.46 3.99

Median 18.37 21.99 6.77

Mean, SD, and median results are provided for each approach. `Errors' are arbitrarily computed with respect to borders determined by the first
dermatologist. GVF, gradient vector flow.
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