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According to the associational resistance hypothesis, diverse habitats provide better resistance to biological invasions than 
monocultures. Host-plant abundance has been shown to affect the range expansion of invasive pests, but the effect of 
landscape diversity (i.e. density of host/non-host patches and diversity of forest habitat patches) on invasions remains 
largely untested. We used boundary displacement models and boosted regression tree analyses to investigate the effects of 
landscape diversity on the invasion of Corsica by the maritime pine bast scale Matsucoccus feytaudi over an 18-yr period. 
Taking the passive wind dispersal of the scale into account, we showed that open habitats and connectivity between host 
patches accelerated spread by up to 13%, whereas landscapes with high tree diversity and a high density of non-host trees 
decreased scale spread by up to 14%. We suggest a new mechanism for such associational resistance to pest invasion at the 
landscape level, which we term ‘the pitfall effect’.

Biodiversity provides multiple ecosystem services 
(Millennium Ecosystem Assessment 2005, Balvanera et  al. 
2006, Cardinale et al. 2012). In particular, it contributes to 
the control of emerging infectious diseases (Keesing et  al. 
2010), in some cases limiting the establishment and/or 
impact of invasive pest species (Melbourne et al. 2007, but 
see also Sax 2002 or Gilbert and Lechowicz 2005). Indeed, 
depending on the spatio-temporal scale considered, biodi-
versity and biological invasions may be either positively or 
negatively correlated (Clark et al. 2013).

Although this ‘invasion paradox’ remains a matter of 
debate, a growing body of evidence suggests that forest pest 
damage can be limited by increasing the diversity of tree spe-
cies (Jactel and Brockerhoff 2007, Vehviläinen et al. 2007, 
Castagneyrol et  al. 2013a). Overall, a focal tree species 
grown in a mixed stand with non-host trees is more resistant 
to insect herbivores than the same tree species grown as a 
monoculture, in accordance with the associational resistance 
hypothesis (Barbosa et  al. 2009). Two main mechanisms 
have been proposed to explain associational resistance. First, 
solitary host trees dispersed among non-host neighbours are 
less likely to be detected and colonised by insects (Jactel and 
Brockerhoff 2007), because of visual and semiochemical 
disruption of host finding (Jactel et al. 2011, Castagneyrol 
et al. 2013b). Second, more diverse plant communities can 
provide natural enemies with complementary food resources 
and shelter against adverse conditions, thereby increasing 
their capacity to control insect herbivores (Root 1973).

These two mechanisms have been studied principally at 
the stand scale. However, they may also operate at the land-
scape scale. Invasive species have to move through mosaics 

of different patches of forest, grassland and crops to colonise 
new host trees, and the presence of non-host habitats may act 
as a barrier to spread (Jules et al. 2002, Mundt et al. 2011) 
or host colonization (Zhang and Schlyter 2004). Mosaics of 
diverse habitat patches also benefit natural enemies of pest 
insects (Gardiner et al. 2009, Rand et al. 2012). In particular, 
habitat complementation – i.e. the combined presence of dif-
ferent types of habitat patches providing non-substitutable 
complementary resources to organisms (Dunning et al. 1992, 
Dulaurent et  al. 2011) – is critical for the maintenance of 
stable populations in many species, including predator spe-
cies. For instance, the Eurasian hoopoe Upupa epops, requires 
a combination of three different types of land cover –  
pine forests, oak woodlands and grasslands – to build up  
its populations, thereby improving predation on the pine 
processionary moth (Barbaro et al. 2008).

In this study, we investigated whether landscape diversity 
also provides associational resistance to invasive pests, i.e. 
lower invasibility. In particular, we tested the hypothesis that 
landscape diversity can slow the spread of invasive species 
in forest. We estimated landscape diversity from both the 
number (  cover type richness) and the relative abundance 
(  cover type evenness) of different types of land cover (i.e. 
landscape compositional heterogeneity according to Fahrig 
et al. 2011). We also considered the spatial configuration of 
these land cover types (i.e. landscape configurational hetero-
geneity, Fahrig et al. 2011). Several studies have reported that 
the abundance and rate of spread of different invasive forest 
insects are affected by the relative abundance of host trees at 
the landscape level (Sharov et al. 1997b, 1999, Gilbert et al. 
2005, Morin et  al. 2009, but see Morin et  al. 2007), but 
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none of these studies directly investigated the effect of land-
scape diversity. We are also unaware of any empirical model 
of the spread of an invasive forest insect taking landscape 
diversity into account.

Here we consider the invasion of Corsican forests by the 
maritime pine bast scale Matsucoccus feytaudi (Hemiptera: 
Matsucoccidae) between 1995 and 2012. We had several  
reasons for choosing this system, the most important of 
which relate to the life history traits of this species. Maritime 
pine bast scale is strictly monophagous on maritime pine 
Pinus pinaster, and the local effect of tree diversity on asso-
ciational resistance is more pronounced for specialist than 
for generalist insect herbivores (Jactel and Brockerhoff 2007, 
Castagneyrol et  al. 2013a). Matsucoccus feytaudi has only 
one generation per year, followed by a single dispersal event. 
Female adults are wingless and the species spreads through 
passive wind dispersal of the first-instar larvae. The invasion 
of Corsica by the bast scale has been monitored since this 
species first became established on the island in 1995, pro-
viding a time series of quantitative data (Jactel et al. 1996). 
Jactel et al. (2006) found that larval density on host trees was 
lower in mixed stands of maritime pine and Corsican pine 
Pinus nigra subsp. laricio var. corsicana than in pure stands of 
maritime pine, and that this lower density was positively cor-
related with the proportion of non-host trees in the mixed 
stands. These findings may reflect top-down control by 
predatory bugs Elatophilus nigricornis naturally preying on 
the native pine scale Matsucoccus pini in P. nigra and spilling 
over onto the introduced M. feytaudi on P. pinaster (Jactel 
et  al. 2006). Alternatively, the presence of Corsican pine  
may simply have reduced the likelihood of M. feytaudi first 
instars landing on maritime pines in mixed stands. Finally, 
M. feytaudi infestations weaken trees, which are ultimately 
killed by bark beetles, leading to a general decline of the  

forest. In addition to the pine plantations, several pine  
forests of high conservation and amenity value are now  
under threat on the island.

The objectives of our study were therefore 1) to estimate 
the effects of landscape diversity on the rate of spread of 
the maritime pine bast scale in Corsica, 2) to decipher the 
ecological mechanisms accounting for the slower spread of 
the invader in more diverse landscapes and 3) to provide a 
generic modelling framework for quantifying the relation-
ship between landscape diversity and invasibility to forest 
pest insects.

Material and methods

Study organism

The maritime pine bast scale Matsucoccus feytaudi is endemic 
to the western part of the Mediterranean Basin and is cur-
rently spreading eastwards in France and Italy, following the 
distribution of its specific host, Pinus pinaster (Burban et al. 
1999). In 1994, Jactel et al. (1996) recorded the first known 
presence of this species in Corsica (9.21489°E, 42.4258°N), 
which is located beyond the south-eastern limit of the  
bast scale’s native distribution range. Matsucoccus feytaudi 
probably arrived on the island through long-distance wind 
dispersal of first-instar larvae. A trapping network in mari-
time pine forests monitors the spread of the bast scale across 
the region. The monitoring process involves sampling adult 
males with pheromone traps, as described by Jactel et  al. 
(1996) or Branco et al. (2004). The pine bast scale was sam-
pled across the island from 1995 to 2006 and at the fringe 
of the newly colonized areas from 1996 to 2012, with the 
exception of 2006 (  384 trapping data) (Fig. 1A).

Figure 1. Maps of Corsica: (A) topography with sampling sites (black dots) and weather stations (open squares); (B) distribution of the 
major forest types found on the island (adapted from the classification provided by the National Forest Inventory).
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Rate of spread

The model developed for inferring the rate of spread of  
M. feytaudi was based on the boundary displacement 
method described by Sharov et al. (1995, 1997a). In brief, 
this method involves calculating the distance between the 
limit of the distribution range of a given invading popula-
tion at a given moment and the distributional limit found 
at the next time step. These limits of the distribution range 
are referred to as boundaries, and are characterized by the 
probable area occupied, a density threshold and a spatial 
scale (Sharov et al. 1995). The mean rate of spread is inferred 
by dividing the mean calculated distances by the time  
separating two steps in the invasion process (here, a year). 
This method has the advantage of estimating the mean rate  
of spread by taking into account the differences in spread 
rates between the occupied area and the newly colonized  
area. It can therefore be used to quantify anisotropic spread, 
in different directions, from the point of origin of the  
invasion. This method also facilitates the evaluation of envi-
ronmental effects, such as those of landscape features, on 
spread rate, which may vary by spatial direction (Sharov 
et al. 1997a).

Several methods have been developed for defining the 
probable area occupied (i.e. the endemicity zone) by forest 
insects at each time step. Most of these methods have been 
borrowed from the field of geostatistics (Gribko et al. 1995, 
Sharov et  al. 1995, Gilbert and Grégoire 2003). Here, we 
used point pattern analysis (Rowlingson and Diggle 1993). 
In particular, we computed an isotropic Gaussian kernel 
smoothed intensity function on a 250  250 m resolution 
grid covering Corsica. We included edge correction, accord-
ing to the method described by Diggle (1985). The function 
was parameterized on the basis of pheromone trap records 
(n  289, see below for the 95 trapping data removed). This 

method has the advantages that 1) no assumption about the 
frequency distribution of observations is required, 2) it can 
be fitted to presence-only data, and 3) the evaluation of only 
one parameter (bandwidth) is required to map population 
densities and to delineate the most probable occupied area 
at a given time step.

Many studies have been published on the various  
methods available for bandwidth evaluation (Kelsall and 
Diggle 1998, Baddeley and Turner 2006, Hengl 2009). In 
this study, we approximated the bandwidth parameter by  
the distance (  range) at which the semivariance of the 
empirical semivariogram, constructed from the cumulative 
distribution of records, reached its carrying capacity (  sill). 
A spherical model with an initial partial sill, range and  
nugget fixed to 0.6, 9000 and 0.3, respectively, was fitted 
to the data, and the range parameter was extracted. We  
assume that this estimate of bandwidth minimises  
spatial autocorrelation while capturing major trends in the 
data.

Once the probable area occupied had been defined and 
the relative density distribution maps had been constructed 
(Supplementary material Appendix 1, Fig. A1), we defined a 
threshold probability of presence (  TH), below which the 
likelihood of finding a positive case (the presence of the inva-
sive insect) was minimal (or above which it was maximal). 
TH was also used to characterise the minimum probability 
of presence required to consider a location to be colonised. 
In practice, we selected several TH values, from 0.1 to 0.6 
(in steps of 0.01). For each time step and for a fixed spatial 
scale (here the pixel size, i.e. 250  250 m), we split the area 
into presence/absence pixels, superimposed the presence/
absence records from insect trapping and identified the TH 
minimising the number of grid cells misclassified, i.e. mini-
mising type I (false-positive) and II (false-negative) errors 
(see the best cell classification method described by Sharov 
et al. 1995).

At this point, it should be noted that the distance between 
traps can influence the accuracy of spread rate estimation, 
particularly if traps are not uniformly distributed (Sharov 
et al. 1997a). Traps located too close to each other should, 
therefore, be removed, as recommended by Sharov et  al. 
(1997a). We therefore applied a grid of 2  2 km cells to the 
entire area. If a cell was found to contain more than one trap, 
we randomly selected one trap for the analyses, excluding 
all the others from that cell. Ninety-five traps were thereby 
removed.

For the quantification of boundary displacements, 
we drew n radial axes from the approximate origin of the 
invasion to the boundaries of consecutive occupancy maps 
(Supplementary material Appendix 1, Fig. A2), providing  
n  t segments, where t is the number of time steps. In  
practice, we defined 72 segments (angle of 5°) and 15 
boundaries, corresponding to the 15 yearly time steps avail-
able. This provided a discrete population of 1080 possible 
spread rates (SR), making it possible to assess the effects of 
environmental variables on spatial variation in SR. Finally, 
for comparisons with the distance regression method, an 
overall radial SR was calculated and compared with the slope 
of the regressing distance to the point of origin of the inva-
sion, as a function of time since first detection (Liebhold 
et al. 1992, 1997).

Figure 2. Regression distance plot, obtained by regressing the dis-
tance to the point of origin of the invasion, as a function of time of 
detection. The slope of the regression line provides an estimate of 
the mean rate of spread, 1.79 km yr21 in this case. The data retained 
were filtered on a 2  2 km grid. Grey points indicate the sampling 
sites at which M. feytaudi was not detected.
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raster (Supplementary material Appendix 2). These vectors 
of wind events were then averaged or summed by year, over 
the dispersal period of M. feytaudi larvae, from February to 
May (Riom 1994). Yearly means and sums of vectors were 
then interpolated across the study area, by ordinary kriging 
(Pebesma 2004). We modelled the empirical semivariogram, 
using a circular model with an initial partial sill, range and 
nugget fixed at 0.45, 65 000 and 0.1, respectively. The good-
ness-of-fit of the semivariogram model was evaluated by 
leave-one-out cross-validation (Pebesma 2004). Output res-
olution was set at 250  250 m, according to the resolution 
selected for landscape analyses. This procedure was applied 
to both the mean and the sum of vector values within each 
segment (  umean, vmean and usum, vsum, respectively).

Topography
Digital elevation data from the Shuttle Radar Topography  
Mission (SRTM) (Supplementary material Appendix 1,  
Table A1) were resampled to obtain a raster file of  
250  250  m resolution, restricted to Corsica (Fig. 1A).  
We assumed that mountainous relief and high altitude  
might slow the spread of M. feytaudi. We therefore calcu-
lated the mean and maximum altitudes encountered within 
each segment.

Statistical analysis

The statistical relationships between calculated spread rates 
and environmental variables were modelled with a genera-
lised boosted regression tree (BRT) (Ridgeway 1999). This 
algorithm was initially developed in the field of machine 
learning (Olden et al. 2008), but is increasingly being used 
in ecology (Elith et al. 2006, Roura-Pascual et al. 2009, Sinka 
et al. 2010). BRT has several strengths, namely it: 1) relaxes 
the assumption of a linear relationship between dependent 
and explanatory variables, 2) takes into account interactions 
between explanatory variables, 3) provides improved evalu-
ation tools, such as internal cross-validation with a select-
able bag fraction (Elith et al. 2008), 4) outperforms classical 
models in terms of explanatory power, ability to limit the 
effects of overfitting (Elith et al. 2006) and ability to account 
for spatial autocorrelation (Crase et al. 2012).

We reduced the bias linked to the collinearity of explana-
tory variables (Dormann et  al. 2013), by constructing a 
matrix of Pearson coefficients for the selection of a subset 
of covariates. Our selection approach involved 1) grouping 
topoclimatic, forest composition and physical connectedness 
variables, 2) constructing Pearson’s matrices for each group 
of variables, 3) identifying pairs with coefficients higher than 
|0.7| (Dormann et  al. 2013) and 4) selecting the variable 
within the pair that maximised the likelihood of the linear 
correlation between the explanatory variable and spread rate.

At last, we added an autoregressive cofactor (lag SR) to 
the model to control for the possibility of movements being 
correlated between time steps.

Bootstrap and model evaluation

Thirty BRT models were independently computed  
from a random sample of half the dataset. This bootstrap 

Ecological variables

Landscape diversity and configuration.
First, we characterise landscape diversity on the basis of the 
composition of habitat patches, estimating the density of 
patches of host and non-host tree species and the diversity 
of forest habitat patches (i.e. landscape compositional het-
erogeneity according to Fahrig et al. 2011). Second, we cal-
culated the mean patch sizes and the connectivity between 
patches as a measure of functional landscape configuration 
(i.e. landscape configurational heterogeneity, Fahrig et  al. 
2011). A patch was defined as the sum of connected pixels 
found in the landscape matrix belonging to a given cover 
class. Patches were constructed on a raster matrix with a reso-
lution of 250  250 m, on the basis of the land cover classi-
fication provided by the French National Forestry Inventory 
(IFN). Two different land cover typologies were built. The 
first (no. 1) consisted of five land cover types: one type with 
the host tree: 1) maritime pine forests (pure stands or mixed 
with undifferentiated Pinus spp.), three types with non-host 
trees: 2) black pine Pinus laricio forests, 3) deciduous forests, 
4) mixed stands of coniferous and broadleaved trees and one 
type with 5) open habitats (Fig. 1B). The second typology 
(no. 2) included 11 types of forest habitat, corresponding to 
the main tree species or assemblages of tree species found in 
Corsica. A map and the description of these 11 classes are 
provided in Supplementary material Appendix 1, Fig. A3.

Then, landscape metrics were calculated within each 
delineating segment computed before (see the section enti-
tled ‘Rate of spread’). In particular, the first typology (no. 
1) was used to quantify the mean patch size (area), relative 
density of host and non-host patches and their connectivity 
(i.e. minimum and mean distances separating two patches of 
the same type, aggregation, cohesion and adjacency metrics, 
as defined in McGarigal et al. (2002), Supplementary mate-
rial Appendix 1, Table A1). The second typology (no. 2) was 
used to quantify the number of forest patches with different 
tree species (S) and the number of forest pixels (N). S and N 
were then combined into Margalef ’s index (DA), a density-
independent diversity index (after Whittaker 1972, DA   
(S – 1)/logN).

For an accurate evaluation of the extent to which land-
scape diversity influenced the rate of spread of the bast scale, 
it was important to control for covarying features that could 
reduce, accelerate or orientate insect spread. As M. feytaudi 
is dispersed by a passive mechanism, we assumed that these 
features were mostly linked to the interplay between wind 
and topography. Other climatic conditions, such as tempera-
ture and rainfall, were considered less likely to influence the 
invasion process and were therefore not taken into account 
in this study.

Wind data
Meteorological data were obtained from the CLIMATIK 
web portal (INRA) and from the French Meteorological 
Service (Météo France). We retrieved data collected between 
1994 and 2012 at nine weather stations distributed across 
Corsica (Fig. 1A) for two variables: daily wind speed at an 
altitude of 10 m and wind direction at maximum wind 
speed. We transformed the wind data into two vectors, u and 
v, parallel to the x and y axes, respectively, of the landscape 
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the point of introduction by the invading M. feytaudi popu-
lation was accompanied by an exponential increase in the 
area of the maritime pine forests invaded (Supplementary 
material Appendix 1, Fig. A4). According to the distribution 
envelope for 2012 and a threshold probability of presence 
of 0.1, approximately 15 000 ha of maritime pine stands 
have been invaded by M. feytaudi since 1995, corresponding 
to about 29% of the total area under maritime pine forests 
on the island. The boundary displacement method provided 
a range of spread rates of 0.01 to 15.06 km yr–1. On aver-
age, the spread rate was 1.89  0.10 km yr–1 (mean  SE), 
very close to the value obtained with the distance regression 
method.

Overall, the BRT models yielded satisfactory agreement 
between observed and predicted spread rates for the period 
1995–2011 (rCV 0.84, Table 1). Nevertheless, model accu-
racy was low at spread rates below 250 m yr–1. BRT model 
deviance did not decrease significantly following the removal 
of the least informative cofactors (up to five at a time).

Wind components made the largest contribution to the 
explanatory power of the model (63.0%) (Table 2).

The density of open habitat contributed to 8.1% of 
model deviance. On average, spread rates were greater for 
open landscapes, by up to 0.13 km yr–1, corresponding to 
6.6% of the mean spread rate (rPearson  0.92) (Fig. 3).

A total of 7.7% of the explanatory power of the model 
was attributed to densities of non-host forest patches (decid-
uous trees 4.2%; mixed forests 2.9%; Laricio black pines 
0.6%). The presence of these non-host trees was associated 
with reduced spread rates (rPearson  –0.86, –0.66, for decidu-
ous density and mixed tree density, respectively) except for 
forests with a high density of Laricio pines (rPearson  0.7) but 
this variable had a very small relative contribution to the 
model (0.6%).

It is worth noticing that the density of host patches was 
not retained by the model. However, the physical connectiv-
ity between maritime pine patches accounted for 2.8% of 
explanatory power. This connectivity between host patches 
was associated with accelerated spread, by up to 6.0%. An 
increase in the distance between maritime pine patches (i.e. 
reduced connectivity) from 0 to 1 km was associated with a 
decrease in spread rate, whereas no further influence of this 
factor was observed beyond this range. Interestingly forest 
diversity on its own accounted for 7.6% of explanatory power 
and spread rates decreased significantly with increasing land-
scape diversity. Spread rates were up to 13.6% lower in land-
scapes with relatively high tree diversity (rPearson  –0.56) and 
high density of non-host trees (rPearson  –0.86, for deciduous 
trees, and –0.66, for mixed trees).

Topography accounted for 5.8% of explanatory power 
but had no clear effect on spread rate (rPearson  0.53).

The autoregressive cofactor contributed to 3.7% of model 
deviance. It appeared to be inversely related to the fitted 
spread rate of the next time step, indicating that spread gen-
erally slowed after a period during which it was relatively 
high, and increased after a period in which it was relatively 
low (Fig. 3).

We evaluated extrapolation potential of the model, based 
on the range expansion for 2012, and found that the correla-
tion between the observed spread rates and model prediction 
was moderately accurate (Spearman’s r  0.51). However, 

sampling complemented the internal cross-validation car-
ried out within the BRT algorithm and provided estimated 
confidence intervals for the relative contribution of each 
explanatory variable. The external evaluation of the model 
was carried out on the half dataset not used for BRT model 
training. In addition, 1995–2011 data were used to predict 
spread in 2012. Partial dependence plots linking the fitted 
spread rate values and explanatory variables were also gener-
ated and averaged over the 30 runs, within a 95% confidence 
interval (CI). Finally, three measurements of goodness-of-fit 
were calculated for each run and averaged over the runs: 1) 
the deviance (dev), a criterion minimised during the model 
boosting process (Elith et al. 2008); 2) the root mean squared 
error (RMSE), which evaluates the accuracy with which the 
model fits the response variable; 3) the square root of the 
coefficient of determination (r), which can be used for com-
parisons with other regression methods.

All data processing and analyses were carried out with 
R software (ver. 2.14.2) (R Development Core Team). In 
particular, point pattern analyses and kernel functions were 
computed with the Spatstat package (Baddeley 2008), geo-
statistics and spatial data manipulations were carried out 
with the Gstat (Pebesma 2004), Raster (Hijmans and Van 
Etten 2011), Maptools (Lewin-Koh et al. 2011) and Rgdal 
packages (Keitt et al. 2011). Landscape metrics were com-
puted with the SDMTools package (VanDerWal et al. 2012), 
and BRT models were constructed with the gbm package 
(Ridgeway 2012), with custom code lines adapted from 
those of Elith et al. (2008).

Results

From 1995 to 2012, 384 pheromone traps were set up in 
Corsica (Fig. 1A). These traps caught 21 546 male maritime 
pine bast scales. The mean rate of spread of M. feytaudi, cal-
culated by regressing the distances to the point of origin of 
the invasion in the Ponte Leccia area (Jactel et al. 1996), as a 
function of first detection time, was estimated at 1.79  0.22 
km yr–1 (mean  SE) (r2    0.47; F  67.23, DF  76, 
p  0.001) (Fig. 2). The increasing distance travelled from 

Table 1. Model characteristics and predictive performances, as  
evaluated on training data gathered between 1995 and 2011, or 
after removing 50% of the full dataset (external evaluation, 
nboots    30) (learning rate  0.005, tree complexity  5). Additional 
information about these indicators is provided in the ‘Bootstrap and 
model evaluation’ section of the methods.

Full dataset 50% dataset/50%

N (positive spread rates) 294 147/147
Mean no. regression trees 6433 4733
% deviance ( SE)

training 0.535 ( 0.014) 0.538 ( 0.158)
CV* 0.156 ( 0.020) 0.3583 ( 0.058)

r correlation
training 0.988 0.854
CV* 0.841 0.612
independent – 0.620 (p  0.001)

RMSE
training 0.117 0.391
independent – 0.582

*cross-validation with a bag fraction of 0.5.
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true rate of spread, whereas methods that do not require 
interpolation (e.g. regression distance methods) under-
estimate the rate of spread (Gilbert and Liebhold 2010). 
If these assumptions hold for our study, then the rate of 
spread of M. feytaudi is likely somewhere between the esti-
mates obtained with the regression distance and boundary 
displacement methods, i.e. on average, between 1.79 and 
1.89 km yr–1. That these contrasting methods reached simi-
lar conclusions suggests that we can have confidence in our 
estimates. The low rate of spread suggests that first-instar 
larvae of maritime pine bast scale, although transported by 
the wind, rapidly settle in the nearest neighbouring trees. 
Wainhouse (1980) showed that the dispersal distance of  
C. fagisuga was proportional to take-off height and wind 
speed. In another study, Raynor et al. (1974) showed that 
vertical air turbulence was about eight times stronger at 
mid-canopy level than at trunk level in pine forests. It there-
fore seems likely that the larvae of maritime pine bast scale, 
which are found predominantly on trunks (Jactel et al. 1996) 
and sporadically in the canopy (Schvester and Fabre 2001), 
would tend to settle predominantly on nearby trees, and only  
occasionally travel larger distances of up to ~18 km in a year. 
The distance travelled before settling may also reflect the 
mean distance to the nearest host stand in the area already 
colonised, which was 1.8  3.4 km ( SD) in Corsica.

Landscape heterogeneity

Interest in the effect of spatial heterogeneity on biological 
invasions is increasing, but coverage of this topic remains 
uneven (Hastings et  al. 2005, Melbourne et  al. 2007). 
Most studies have addressed invasion by alien plant species 
(Davies et al. 2005, Theoharides and Dukes 2007, Schreiber 
and Lloyd-Smith 2009, Gonzalez-Moreno et  al. 2013, 
Thomas and Moloney 2013); a few others have focused 

this relationship was not significant (p  0.059), due to the 
small number of range increase events occurring between 
2011 and 2012 (n  15).

Discussion

In this study, we demonstrate that landscape diversity – and 
more generally landscape heterogeneity (both composi-
tional and configurational) – has a significant influence on 
the rate of spread of the invasive maritime pine bast scale. 
Specifically, bast scales spread more slowly in heterogeneous 
forest landscapes with high densities of non-host decidu-
ous trees and high tree species diversity, whereas they spread 
more rapidly in landscapes in which open habitats were more 
abundant. Moreover, the rate of spread of this pest increased 
with increasing connectivity between maritime pine forest 
patches, up to a distance threshold of about 1 km between 
two patches.

Inference of spread rate and wind dispersal

On average, maritime pine bast scale is colonising Corsican 
maritime pine forests rather slowly compared to other 
regions. Our estimate is about half that reported for the 
species in the Maures and Esterel forest stands in the south 
of France (Carle 1974). This low spread rate also contrasts 
with the higher rates of spread reported for other wind- 
dispersed invasive insect species, such as the felted beech  
scale Cryptococcus fagisuga (15 km yr21, Morin et al. 2007) 
or the gypsy moth Lymantria dispar (16–41 km yr21, Sharov 
et al. 1999), but unbiased interspecific comparisons would 
require the use of similar study protocols and methods to 
infer the rate of spread. Theoretically, the inference of spread 
rates by interpolation techniques generally overestimates the 

Table 2. Explanatory variables retained in the study and their relative contributions to the fitted spread 
model. Ranges of values are given for the area colonised by 2011. The larger the relative (%) contribution 
of the explanatory variable, the greater its contribution to the model fit. Correlation coefficients (Pearson’s 
r) indicate the direction of individual explanatory variable effects on the spread of the invasion. Decrease* 
and increase** provide numerical indications concerning the extent to which the magnitude of each 
explanatory variable decreases or increases the average fitted spread rate. They were calculated as the 
difference between the mean (SR) and the minimum (SRmin) or maximum (SRmax) fitted spread rate, respec-
tively, for a given explanatory variable, keeping the other covariates constant, divided by SR (see table 
note * and **). A detailed description of the explanatory variables is presented in Supplementary material 
Appendix 1, Table A1.

Explanatory variables Range Contribution rPearson % Decrease* % Increase**

Wind (u sum) 0.00–0.14 39.03 0.18 19.41 5.47
Wind (u mean) 20.68–1.01 12.40 20.23 6.70 14.88
Wind (v mean) 20.97–0.12 11.56 0.87 10.79 11.57
Open habitat density 0–1 8.08 0.92 13.10 6.64
Diversity index 0.00–1.44 7.55 20.56 5.94 5.62
Elevation (m) 5.98–2148 7.16 0.63 3.73 3.41
Deciduous density 0–1 4.16 20.86 3.12 4.70
lag SR (m yr21, log-scale) 0.00–3.87 3.68 20.72 7.11 2.87
Mixed tree density 0–1 2.95 20.66 4.56 2.54
Distance [maritime p.] 250–1987 1.88 20.63 1.89 4.12
Cohesion index 0.00–9.01 0.94 0.89 2.65 1.89
Laricio pine density 0–1 0.60 0.70 1.44 0.45
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tree decrease in proportion with forest diversity in the land-
scape. Moreover, just as neighbouring non-host trees can 
act as physical barriers to the colonisation of individual host 
trees (Jules et al. 2002, Dulaurent et al. 2012), the presence 
of patches of non-host trees may impede dispersal and the 
invasion of host tree stands at the landscape scale. In particu-
lar, in the case of passively dispersed forest invaders, such as 
the maritime pine bast scale, patches of non-host trees (here 
black pines or broadleaved trees) can filter swarms of flying 
insects. We refer to this mechanism as the ‘pitfall effect’.

Second, according to the ‘natural enemy hypothesis’ 
(Russell 1989), natural enemies of herbivores are more 
diverse and control herbivores more effectively in more 
diverse forests (Riihimäki et al. 2005). Consistent with this 
hypothesis, Jactel et al. (2006) attributed the lower density of 
M. feytaudi in mixed stands of maritime and Corsican pines 
to the higher abundance of the predatory bug Elatophilus 
nigricornis, a native predator of the native Matsucoccus pini, 
a sibling species feeding on Corsican pine. In the light of 
these results, we expected the rate of spread of M. feytaudi 
to decrease with increasing area under Corsican pines in the 
landscape. However, we found that this factor had no influ-
ence. Presumably, E. nigriconis predation on M. feytaudi was 
not effective or rapid enough to affect the rate of spread of 
the bast scale at the landscape level. In a previous study, we 
found that the pheromone release threshold triggering the 
attraction of E. nigricornis (a kairomonal effect) was much 
higher than that for the attraction of M. feytaudi males 
(Branco et al. 2006). This suggests that the predator cannot 
detect low-density prey populations and may therefore be 
unable to control the invader when it first begins to colonise 
the area (Fabre et al. 2000). We can therefore conclude that 
1) the pitfall effect may account for landscape diversity slow-
ing the invasion of Corsica by the maritime pine bast scale 
in the short term while 2) tree diversity increases top-down 
control of the scale by native predators in the longer term 
(Jactel et al. 2006), supporting two complementary mecha-
nisms of associational resistance operating at two different 
spatial and temporal scales.

Management implications

Our findings and the modelling framework we have devel-
oped have at least two applied perspectives that could prove 
useful for managing invasions, and particularly the ones 
of maritime pine bast scale in Corsica. First, we obtained 
encouraging results concerning the predictive capacity of the 
model. This aspect may be particularly valuable for identify-
ing areas of the landscape in which there is an imminent risk 
of invasion and targeting forest areas on which surveillance 
and management efforts should be focused. Second, several 
landscape attributes emerged as key drivers of the spread of 
M. feytaudi, providing clues to potentially useful landscape 
management approaches. For example, the presence of open 
areas resulted in a more rapid spread of the insect, suggesting 
that the clear cutting of forest stands in a buffer area around 
colonised pine stands would be counterproductive. By con-
trast, the presence of patches of non-host trees slowed the 
spread of the insect, providing support for approaches based 
on the maintenance or improvement of landscape diversity, 

on plant pathogens (Miller et al. 2002, Holdenrieder et al. 
2004, Condeso and Meentemeyer 2007, Plantegenest et al. 
2007, Haas et al. 2011) but, to our knowledge, very few have 
tackled the spread of phytophagous insects (Hunter 2002, 
Jeschke et  al. 2012). In addition, most studies also have 
either focused on the local scale (Knops et al. 1999, Tilman 
2004, Jactel et al. 2006) or have considered spatial hetero-
geneity in terms of habitat density and connectivity (With 
2002, Sebert-Cuvillier et  al. 2008), with very few taking 
habitat diversity into account (Onstad et al. 2003). Finally, 
landscape-scale studies investigating the link between spatial 
heterogeneity and invasions have mostly been carried out 
by simulations (Onstad et al. 2003, but concerning agricul-
tural insect pests; Pitt et  al. 2009, Fitzpatrick et  al. 2012, 
but not taking diversity into account). The question posed 
by Melbourne et  al. (2007): ‘Does species richness confer 
resistance to spatial spread?’ has thus remained largely unan-
swered, particularly for forest insects.

We found that the rate of spread of maritime pine bast 
scale increased with increasing connectivity between mari-
time pine stands in the landscape, a feature that would tend 
to maximise dispersal success. Similarly, an increase in the 
percentage of host trees has been shown to increase the spread 
rate of gypsy moth (Sharov et al. 1999) and hemlock woolly 
adelgid (Morin et  al. 2009), suggesting that connectivity 
between stands of host species favours invasion. This is prob-
ably because movement mortality decreases with decreasing 
distance between host patches (Fahrig 2007). However, we 
did not observe any effect of host (maritime pine) density on 
the spread rate of M. feytaudi. In contrast we found that a 
higher percentage of open habitats in the landscape increased 
the rate of spread of maritime pine bast scale, even though 
the presence of open habitats between maritime pine stands 
also reduces their connectivity. According to our model, 
minimising the proportion of open habitats in the landscape 
would decrease the mean rate of spread by up to 13.1%. A 
high percentage of open habitats would facilitate the wind-
mediated transport of bast scale to sites further away from 
the source, thereby increasing the likelihood of establish-
ment in remote host stands.

To our knowledge, our study is the first to demonstrate 
that high landscape diversity (i.e. high densities of non-host 
patches and high diversity of forest cover types) decreases 
the rate of spread of invasive species. The spread of maritime 
pine bast scale in Corsica was reduced by up to 13.6% in 
landscapes with high forest types diversity and high density 
of non-host trees. Kennedy et al. (2002) suggested that local 
biodiversity represents an important line of defence against 
the spread of invaders, but their study focused on processes 
operating at the local scale. Both the proportion of non-host 
tree species and the diversity of tree species at the landscape 
level were significantly negatively correlated with the rate 
of spread of maritime pine bast scale. These findings sug-
gest that associational resistance processes operating at the 
stand scale may also be relevant at the landscape scale. First, 
according to the ‘resource concentration hypothesis’ (Root 
1973), forest herbivores are more likely to find their host 
tree if it is present at high density, due, in particular, to a 
higher likelihood of immigration in monospecific patches 
(Hambäck et al. 2000). However, the proportion of host tree 
species and the number of monospecific patches of the host 
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