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Abstract

This paper considers a mean shift with an unknown shift point in a linear process

and estimates the unknown shift point (change point) by the method of least squares.

Pre-shift and post-shift means are estimated concurrently with the change point. The

consistency and the rate of convergence for the estimated change point are established.

The asymptotic distribution for the change point estimator is obtained when the mag-

nitude of shift is small. It is shown that serial correlation affects the variance of the

change point estimator via the sum of the coefficients (impulses) of the linear process.

When the underlying process is an ARMA, a mean shift causes overestimation of its

order. A simple procedure is suggested to mitigate the bias in order estimation.

Keywords. Mean shift; linear processes; change point; rate of convergence; order

estimation; generalized residuals.



1. Introduction and notations

The problem of a mean shift with an unknown shift point in an independent and

identically distributed sequence has received considerable attention in the literature.

Sen and Srivastava (1975a,1975b), Hawkins (1977), Worsley (1979, 1986), James,

James, and Siegmund (1987), and Srivastava and Worsley (1986) proposed tests for

testing a shift in a sequence of normal means. Hinkley (1970), Bhattacharya (1987),

Yao (1987), and many others considered the estimation of the shift point in a sequence

of independent variables. For serially correlated data, Picard (1985) estimated a shift

in a Gaussian autoregressive process with a known order. These authors considered

maximum likelihood estimation (MLE).

In this paper, we apply the least squares method (LS) to the estimation of a shift

point. Unlike the MLE, the LS method does not need to specify the underlying error

distribution function and is computationally simple. The least squares procedure

also allows a broader specification of correlation structure in the data than MLE can

typically permit. In particular, we assume that observations are drawn from a linear

process of martingale differences, rendering ARMA processes as special cases. When

the underlying process is assumed to have an ARMA representation, the orders of the

process is not assumed to be known. This is important because of the following two

reasons. First, in practice, orders of an ARMA process are rarely known and have

to be estimated. Second, order determination via the AIC and BIC criteria tends

to overestimate the order of an ARMA process if a shift exists, as was reported by

MacNeill and Duong (1982). In this paper, a simple procedure is suggested to alleviate

the bias caused by a mean shift when estimating the orders.

The model considered in this paper is as follows:

Yt = µ(t) + Xt (t = · · · ,−2,−1, 0, 1, 2, · · ·) (1)

where µ(t) is a nonstochastic function in time and Xt is a linear stochastic process
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given by

Xt =
∞
∑

j=0

ajεt−j = a(B)εt (2)

with a(B) =
∑∞

j=0 ajB
j, Blεt = εt−l (l ≥ 0), and εt being white noise.

We consider the simple case that µ(t) only takes two different values, µ1 before

time k0 and µ2 after time k0. That is,

µ(t) =

{

µ1 if t ≤ k0

µ2 if t > k0

where µ1, µ2, and k0 are unknown and k0 is the change point.

The problem is to estimate µ1, µ2, and k0 given T observations Y1, Y2, · · · , YT . We

assume that k0 = [Tτ ] for some τ ∈ (0, 1), where [·] is the integer-valued function.

When Xt has an ARMA representation, we may also want to estimate its orders as

well as its coefficients.

The least squares (LS) estimation of a shift is not new. Hawkins (1986) examined

the LS method for a shift in an i.i.d. sequence. He proved that T 1/2−δ(τ̂ − τ) → 0 in

probability for any δ > 0, where τ̂ is the LS estimator of τ (defined below). Hawkin’s

rate of convergence is improved in this paper despite serial correlations in observations.

We shall show that T (τ̂ − τ) = Op(1). We also show how serial correlation in data

affects the variance of the change point estimator. In particular, we find that , when

Xt is an ARMA process given by Ψ(B)Xt = Θ(B)εt, the variance of the change point

estimator is smaller than that of an i.i.d. sequence with a shift if |Θ(1)Ψ(1)−1| < 1.

Throughout this paper, we assume:

(A) the εt are i.i.d. with mean zero and variance σ2, or

(A′) the εt are martingale differences satisfying: E(εt|Ft−1) = 0, Eε2
t = σ2,

n−1∑n
t=1 E(ε2

t |Ft−1) → σ2, and there exists a δ > 0 such that supt E|ǫt|2+δ < ∞,

where Ft is the σ-field generated by εs, s ≤ t.

We shall focus on the estimation of the change point. Once the change point is

estimated, µ1 and µ2 can be estimated by using the estimated pre-change and post

change subsamples. The least squares estimator k̂ of the change point k0 is defined as
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follows:

k̂ = argmink



min
µ1,µ2







k
∑

t=1

(Yt − µ1)
2 +

T
∑

t=k+1

(Yt − µ2)
2









 . (3)

Thus the shift point is estimated by minimizing the sum of squares of residuals among

all possible sample splits. Statistical properties of this estimator will be examined in

later sections.

We denote the mean of the first k observations by Ȳk and the mean of the last

T − k observations by Ȳ ∗
k . If the shift point is k, then Ȳk and Ȳ ∗

k are the usual least

squares estimators of µ1 and µ2, respectively. The corresponding sum of squares of

residuals is

S2
k =

k
∑

t=1

(Yt − Ȳk)
2 +

T
∑

t=k+1

(Yt − Ȳ ∗
k )2.

Thus k̂ = argmink(S
2
k) and the LS estimators for µ1 and µ2 are µ̂1 = Ȳk̂ and µ̂2 = Ȳ ∗

k̂
,

respectively. Next, write Ȳ = ȲT , which is the overall mean of the given data. Since

for each k (1 ≤ k ≤ T − 1),

T
∑

t=1

(Yt − Ȳ )2 = S2
k + V 2

k

where

Vk =

(

k(T − k)

T

)1/2

(Ȳ ∗
k − Ȳk), (4)

it follows that

k̂ = argmink(S
2
k) = argmaxk(V

2
k ) = argmaxk|Vk|.

As will be seen, the statistical properties of the change point estimator are obtained

by studying the behavior of Vk and the argmax functional.

Denote the LS residuals by X̂t, which is defined as

X̂t = Yt − µ̂1 − (µ̂2 − µ̂1)I(t > k̂),

where I(·) is the indicator function. We shall call X̂t the generalized residuals in

view of the presence of a change point estimator. If Xt is an ARMA process, then

we can use the X̂t to estimate the orders and other parameters in Xt. Monte Carlo
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experiments show that the order estimation based on X̂t yields almost identical results

as those based on Xt, thus providing a practical solution to the problem reported by

MacNeill and Duong (1984). This two step procedure for estimating the parameters

of the model is much simpler than MLE from the computation point of view.

Denote τ̂ = k̂/T . We shall establish the consistency, the rate of convergence,

and the limiting distribution of τ̂ in the following several sections. We shall first,

however, generalize the Hájek and Rényi inequality to serially correlated variables.

This inequality is important to our results.

2. A generalization of the Hájek and Rényi in-

equality

Let ε1, ε2, · · · , be a sequence of martingale differences with Eε2
i = σ2, and {ck} be a

decreasing positive sequence of constants. Hájek and Rényi (1955) proved that

Pr

(

max
m≤k≤n

ck|
k
∑

i=1

εi| > α

)

≤ σ2

α2



mc2
m +

n
∑

i=m+1

c2
i



 . (5)

This inequality was initially stated in terms of i.i.d. random variables and was later

generalized to martingales by Birnbaum and Marshall (1961). We now generalize this

inequality to serially correlated variables. Let Xt be given by (2). We assume:

(B)
∑∞

j=0 j|aj| < ∞.

This condition is satisfied for stationary ARMA processes. Under assumptions (A or

A′) and (B), the generalized Hájek and Rényi inequality takes the following form:

Pr

(

max
m≤k≤n

ck|
k
∑

i=1

Xi| > α

)

≤ A
σ2

α2



mc2
m +

n
∑

i=m+1

c2
i



 , (6)

where A < ∞ is a constant only depending on the a′
js. The proof is given in the

appendix. For ck = 1/k, because
∑∞

k=m k−2 = O(m−1), we have

Pr

(

sup
k≥m

1

k
|

k
∑

i=1

Xi| > α

)

≤ A1

α2m
(7)
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for some A1 < ∞. The weak law of large numbers is an immediate consequence of the

above inequality. Next consider the case ck = 1/
√

k and m = 1. By inequality (6),

Pr

(

sup
1≤k≤n

1√
k
|

k
∑

i=1

Xi| > α

)

≤ A
σ2

α2

n
∑

k=1

1

k
≤ C log n

α2

for some C > 0. This implies

sup
1≤k≤n

1√
k

∣

∣

∣

∣

∣

k
∑

i=1

Xi

∣

∣

∣

∣

∣

= Op(
√

log n) (8)

Furthermore, the following invariance principle holds for Xt under assumptions (A or

A′) and (B) (see Hall and Heyde 1980, Theorem 5.5, p. 141-146),

T−1/2
[Ts]
∑

t=1

Xt ⇒ (
∞
∑

j=0

aj)σB(s) (9)

where B(s) is a standard Brownian motion on [0,1].

3. The consistency of τ̂

The proof of consistency is almost standard. Recall how we prove, in general, the con-

sistency of an estimator obtained by maximizing an objective function. We need to

argue that the objective function converges uniformly in probability to a nonstochas-

tic function of parameters and that the nonstochastic function has a unique global

maximum. The objective function in our problem is |Vk| (k = 1, 2, · · · , T − 1). How-

ever, we will be able to work with Vk (without the absolute sign). This is because

the expected values of Vk (k = 1, 2, · · · , T − 1) do not change signs. We shall prove

that the expected value of Vk has a unique maximum at k0 and that (Vk − EVk) is

uniformly small in k for large T .

First notice that

|Vk| − |Vk0
| ≤ |Vk − EVk| + |Vk0

− EVk0
| + |EVk| − |EVk0

| (10)

≤ 2

(

sup
k

|Vk − EVk|
)

+ |EVk| − |EVk0
|. (11)
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For the sake of simplicity, we shall assume that Tτ itself is an integer and is equal to

k0. Write d = k/T and τ = k0/T . We next show that |EVk| achieves its maximum at

k = k0 by showing that

|EVk0
| − |EVk| ≥ Cτ |λ(d − τ)| (12)

for some Cτ > 0, where λ = µ2 − µ1 is the magnitude of shift. We need only consider

the case k ≤ k0 because of symmetry. We assume without loss of generality that λ > 0

(otherwise consider the series −Yt). Then

EVk =
1 − τ

1 − d
{d(1 − d)}1/2λ > 0 for k ≤ k0. (13)

In particular, EVk0
= {τ(1 − τ)}1/2λ. It follows that

|EVk0
| − |EVk| = λ

(

{τ(1 − τ)}1/2 − {d(1 − d)}1/2(1 − τ)(1 − d)−1
)

= λ(1 − τ)





(

τ

1 − τ

)1/2

−
(

d

1 − d

)1/2


 .

Multiplying and dividing the above expression by [τ/(1 − τ)]1/2 + [d/(1 − d)]1/2, we

obtain

|EVk0
| − |EVk| = λ

τ − d

1 − d





(

τ

1 − τ

)1/2

+

(

d

1 − d

)1/2




−1

(14)

≥ 1

2
λ(τ − d)

(

τ

1 − τ

)−1/2

.

This proves (12) for Cτ = [τ/(1 − τ)]−1/2/2. By (11), (12), and |Vk̂| − |Vk0
| ≥ 0, we

obtain immediately (replacing d by τ̂ = k̂/T ),

|τ̂ − τ | ≤ 2C−1
τ λ−1 sup

k
|Vk − EVk|.

From (4),

Vk − EVk = T− 1

2 (k/T )(T − k)−1/2
T
∑

t=k+1

Xt − T− 1

2 (1 − k/T )k−1/2
k
∑

t=1

Xt,

hence

|Vk − EVk| ≤ T− 1

2



(T − k)−1/2

∣

∣

∣

∣

∣

∣

T
∑

t=k+1

Xt

∣

∣

∣

∣

∣

∣

+ k−1/2

∣

∣

∣

∣

∣

k
∑

t=1

Xt

∣

∣

∣

∣

∣



 . (15)
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It follows from (8) that the above is T−1/2Op(log T ) uniformly in k. Therefore

|τ̂ − τ | = (T−1/2λ−1)Op(log T ), (16)

establishing the consistency. Notice that λ is kept on the right hand side in order to

illustrate how the rate depends on the magnitude of change. In addition, this allows us

to incorporate the case that λ varies with the sample size T . In fact, we will examine

specifically the case of a small change in the sense that λ = λT → 0. When λ is a

fixed constant, (16) implies that T 1/2−δ(τ̂ − τ)
p→ 0 for any δ > 0, giving rise to the

result of Hawkins (1986) for i.i.d. errors. This result is improved in the next section.

4. The rate of convergence

We shall establish the stronger result:

τ̂ − τ = Op

(

1

Tλ2

)

. (17)

To this end, choose a δ > 0 such that τ ∈ (δ, 1 − δ). Since k̂/T is consistent for τ ,

for every ǫ > 0, Pr(k̂/T 6∈ (δ, 1 − δ)) < ǫ when T is large. Thus we now only need to

examine the behavior of Vk over those k for which Tδ ≤ k ≤ T (1− δ). To prove (17),

we shall prove that Pr (|τ̂ − τ | > M(Tλ2)−1) is small when T and M are large. For

every M > 0, define DT,M = {k; Tδ ≤ k ≤ T (1 − δ), |k − k0| > Mλ−2}. Then

Pr
(

|τ̂ − τ | > M(Tλ2)−1
)

≤ Pr (τ̂ 6∈ (δ, 1 − δ)) + Pr
(

|τ̂ − τ | > M(Tλ2)−1, τ̂ ∈ (δ, 1 − δ)
)

≤ ǫ + Pr

(

sup
k∈DT,M

|Vk| ≥ |Vk0
|
)

.

Because |x| ≥ |y| implies either x − y ≥ 0 and x + y ≥ 0 or x − y ≤ 0 and x + y ≤ 0,

we have

Pr

(

sup
k∈DT,M

|Vk| ≥ |Vk0
|
)

≤ Pr

(

sup
k∈DT,M

Vk − Vk0
≥ 0

)

+ Pr

(

sup
k∈DT,M

Vk + Vk0
≤ 0

)

def
= P1 + P2.
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We next argue that P1 and P2 are small when T and M are large. Define b(k) =

{(k/T )(1 − k/T )}1/2 (k = 1, 2, ...T ). The following fact will be useful:

0 ≤ b(k) ≤ 1, |b(k0) − b(k)| ≤ B|k0 − k|/T for some B > 0 (18)

Now consider P2.

P2 = Pr

(

sup
k∈DT,M

{EVk0
− Vk0

− (Vk − EVk)} ≥ EVk0
+ EVk

)

≤ P

(

2 sup
k∈DT,M

|Vk − EVk| ≥ EVk0

)

since EVk > 0

≤ Pr



2 sup
Tδ≤k≤T (1−δ)

b(k)

∣

∣

∣

∣

∣

∣

1

T − k

T
∑

t=k+1

Xt −
1

k

k
∑

t=1

Xt

∣

∣

∣

∣

∣

∣

≥ EVk0





≤ Pr



2 sup
k≤T (1−δ)

1

T − k

∣

∣

∣

∣

∣

∣

T
∑

t=k+1

Xt

∣

∣

∣

∣

∣

∣

≥ 1

2
EVk0



+ Pr

(

2 sup
k≥Tδ

1

k

∣

∣

∣

∣

∣

k
∑

t=1

Xt

∣

∣

∣

∣

∣

≥ 1

2
EVk0

)

.

Because EVk0
= {τ(1 − τ)}1/2λ, inequality (7) implies that each of the two terms

above converges to zero as T tends to infinity.

The argument for P1 is more delicate. Note that

P1 = Pr

(

sup
k∈DT,M

{Vk − EVk − (Vk0
− EVk0

)} ≥ EVk0
− EVk

)

.

However,

Vk − EVk − (Vk0
− EVk0

)

= b(k)





1

T − k

T
∑

t=k+1

Xt −
1

k

k
∑

t=1

Xt



− b(k0)





1

T − k0

T
∑

t=k0+1

Xt −
1

k0

k0
∑

t=1

Xt





=



b(k0)
1

k0

k0
∑

t=1

Xt − b(k)
1

k

k
∑

t=1

Xt



+





b(k)

T − k

T
∑

t=k+1

Xt −
b(k0)

T − k0

T
∑

t=k0+1

Xt





def
= G(k) + H(k). (19)

Since (EVk0
− EVk) ≥ Cτλ(k0 − k)/T by (12), we have

P1 ≤ Pr

(

sup
k∈DT,M

|G(k)| >
1

2
λ
|k0 − k|

T
C

)

+ Pr

(

sup
k∈DT,M

|H(k)| >
1

2
λ
|k0 − k|

T
C

)

def
= P1,1 + P1,2
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We now prove that P1,1 is small if T and M are large. Again because of symmetry,

we consider only the case of k ≤ k0 and k ∈ DT,M . More precisely, we consider those

k′s such that Tδ ≤ k ≤ Tτ − Mλ−2. By adding and subtracting terms, G(k) can be

written as:

G(k) = b(k0)
k − k0

kk0

k0
∑

t=1

Xt + {b(k0) − b(k)}1

k

k
∑

t=1

Xt + b(k0)
1

k

k0
∑

t=k

Xt (20)

By (18) and k ≥ Tδ, we have

|G(k)| ≤ k0 − k

Tδk0

∣

∣

∣

∣

∣

∣

k0
∑

t=1

Xt

∣

∣

∣

∣

∣

∣

+ B
k0 − k

T

1

Tδ

∣

∣

∣

∣

∣

k
∑

t=1

Xt

∣

∣

∣

∣

∣

+
k0 − k

Tδ

1

k0 − k

∣

∣

∣

∣

∣

∣

k0
∑

t=k+1

Xt

∣

∣

∣

∣

∣

∣

. (21)

It follows that

P1,1 ≤ Pr

(

1

Tτ
|

Tτ
∑

t=1

Xt| >
1

2
δλC

)

+ Pr

(

sup
1≤k≤T

1

T
|

k
∑

t=1

Xt| >
1

2
δλCB−1

)

+ Pr

(

sup
k≤Tτ−Mλ−2

1

Tτ − k
|

Tτ
∑

t=k

Xt| >
1

2
δλC

)

≤ A
(

2σ

δCτ

)2 1

Tλ2
+ A

(

2Bσ

δC

)2 1

Tλ2
+

4A1

δ2C2M

by inequality (6) and (7). The last three terms are negligible when T and M are large.

The proof for P1,2 is similar.

5. The limiting distribution

In this section, we aim to derive the asymptotic distribution of τ̂ when the sample

size increases to infinity. The limiting distribution provides a way for constructing

confidence intervals for the change point. The limiting distribution also provides some

qualitative aspects on how the estimated change point is related to other parameters

in the model. We now assume that λ depends on T and it diminishes as T increases.

When λ is a constant not depending on T, the results of Hinkely (1971a, 1971b) for

the i.i.d. case indicate that the limiting distribution of τ̂ depends on the underlying
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distribution of the innovations εt and also on λ in quite an intricate way. Thus

confidence intervals can not be easily constructed. In addition, when λ is large (relative

to the variance of the innovations), the estimation of the change point is quite precise.

Thus it might be more important to be able to construct confidence intervals for small

changes. Furthermore, a confidence interval based on the limiting distribution for

small λ is expected to cover the corresponding interval when λ is actually large and

thus can always be used as a more conservative confidence interval even if λ is large.

We shall use V (k) and Vk interchangeably in this section. Now denote λ by λT . If

λT is not too small in the sense that T 1/2λT / log T → ∞, then the estimator τ̂ is still

consistent, as can be seen from (16). The consistency in turn leads to (17).

Let us now assume that, for some 0 < α < 1/2

(C) λT → 0, T 1/2−αλT → ∞.

This assumption is sufficient for τ̂ to be consistent and is used by Picard (1985). Also

note that λT ≫ T−1/2. From (17), we have τ̂ − τ = Op(T
−1λ−2

T ), or equivalently,

k̂ − k0 = Op(λ
−2
T ). (22)

Notice

k̂ = argmaxk(V
2
k ) = argmaxkT

(

V 2
k − V 2

k0

)

.

Given the rate of convergence in (22), to study the limiting distribution, we only need

to examine the behavior of T (V 2
k − V 2

k0
) for those k in the neighborhood of k0 such

that k = [k0 + vλ−2
T ], where v varies in an arbitrary bounded interval. We shall obtain

some weak convergence result for T (V 2
k −V 2

k0
) and then apply the continuous mapping

theorem for the argmax functional. The idea is similar to that of Picard (1985) and

Yao (1987). To this end, connect by linear segments the points (k, V 2
k − V 2

k0
) ∈

R2, (k = 1, 2, · · · , T − 1) and define:

ΛT (v) = T
{

V ([k0 + vλ−2
T ])2 − V (k0)

2
}

.

We will find the limiting process of ΛT on |v| ≤ M for every given M > 0. Let

C[−M, M ] be the space of continuous functions on [−M, M ] with the uniform metric.

10



Theorem 1. Under assumptions (A), (B), and (C), then for every M < ∞, ΛT (v)

converges weakly in C[−M, M ] to

Λ(v) = 2
(

a(1)σW (v) − 1

2
|v|
)

(23)

and

Tλ2
T (τ̂ − τ)

d→ a(1)2σ2argmaxv

(

W (v) − 1

2
|v|
)

(24)

where a(1) =
∑∞

j=0 aj and W (v) is a two-sided Brownian motion on R. A two-sided

Brownian motion W (v) is defined as W (v) = W1(−v) for v < 0 and W (v) = W2(v)

for v ≥ 0 where Wi(v) (i = 1, 2) are two independent Brownian motions defined on

the non-negative half real line.

As a consequence of Theorem 1, we have

Theorem 2. When Xt is a stationary ARMA(p,q) process such that

Xt = ρ1Xt−1 + · · · + ρpXt−p + εt + θ1εt−1 + · · · + θqεt−q,

then

Tλ2
T (τ̂ − τ)

d→
(

1 + θ1 + · · · + θq

1 − ρ1 − · · · − ρp

)2

σ2 argmaxv

(

W (v) − 1

2
|v|
)

. (25)

A few comments are in order. First, if a(1) = 0, Theorem 1 implies that Tλ2
T (τ̂ −

τ)
p→ 0, a degenerate limiting distribution. Thus the convergence rate will be faster

than Tλ2
T . A simple example of a(1) = 0 is given by the first order moving average

process Xt = εt − εt−1. Second, in Theorem 2, when θ1 = · · · θq = 0 and ρ1 = · · · =

ρp = 0, the right hand side of (25) gives the limiting distribution corresponding to the

case of i.i.d. normal variables with a shift in mean and the result is consistent with that

of Bhttacharya (1987) and Yao (1987). Third, (25) agrees with the result of Picard

(1985) for a pure autoregressive process (θ1 = · · · θq = 0) under normality assumption

with maximum likelihood estimation. Thus it is reasonable to expect that (25) is

also the limiting distribution of the maximum likelihood estimator for ARMA model

under normality. Fourth, comparing with an i.i.d. sequence with a shift in mean, we
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find that the effect of serial correlation in Xt can be beneficial or detrimental to the

precision of the change point estimates depending on whether

∣

∣

∣

∣

∣

1 + θ1 + · · · + θq

1 − ρ1 − · · · − ρp

∣

∣

∣

∣

∣

< 1.

For example, in the ARMA(1,1) case (stationary and invertible), a negative ρ1 and a

negative θ1 should help us in locating the change point. On the other hand, when ρ1

is near the (positive) unit root, the change point estimator has a large variance since

(1−ρ)−1 can be very large. These qualitative results are all confirmed by Monte Carlo

simulations.

Proof of Theorem 1. We only consider the case of v ≤ 0 because of symmetry.

Define the set KT (M) = {k; k is the integer part of k0 + vλ−2
T for all |v| ≤ M}.

Notice

T (V 2
k − V 2

k0
) = 2TVk0

(Vk − Vk0
) + T (Vk − Vk0

)2

= 2T (EVk0
)(Vk − Vk0

) + 2T (Vk0
− EVk0

)(Vk − Vk0
) + T (Vk − Vk0

)2. (26)

Let us first prove that the last two terms on the right are negligible on KT (M). Since

T 1/2(Vk0
− EVk0

) is stochastically bounded due to (15), it is enough to show that

T 1/2(Vk − Vk0
) is negligible on KT (M). Because,

T 1/2|Vk − Vk0
| ≤ T 1/2|Vk − EVk − Vk0

+ EVk0
| + T 1/2|EVk − EVk0

|

= T 1/2|G(k) + H(k)| + T 1/2|EVk − EVk0
|, (27)

where G(k) and H(k) are defined in (19), it suffices to show that each of the two terms

on the right converges to zero uniformly on KT (M). It is clear that when k ∈ KT (M),

there exists a δ > 0 such that k ≥ Tδ. Thus the upper bound for G(k) given in (21) is

valid. This bound consists of three terms. Consider the first term of (21) multiplied

by T 1/2,

T 1/2k0 − k

Tδk0

∣

∣

∣

∣

∣

∣

k0
∑

t=1

Xt

∣

∣

∣

∣

∣

∣

≤ M

δτTλ2
T

∣

∣

∣

∣

∣

∣

1

T 1/2

k0
∑

t=1

Xt

∣

∣

∣

∣

∣

∣

=
1

Tλ2
T

Op(1) = op(1) (28)

12



uniformly for k ∈ KT (M). The second term of (21) can be treated similarly. Consider

the third term of (21) multiplied by T 1/2,

T 1/2 1

Tδ

∣

∣

∣

∣

∣

∣

k0
∑

t=k+1

Xt

∣

∣

∣

∣

∣

∣

=
1

T 1/2λT

λT

∣

∣

∣

∣

∣

∣

k0
∑

t=k+1

Xt

∣

∣

∣

∣

∣

∣

(29)

Because λT

∣

∣

∣

∑k0

t=k+1 Xt

∣

∣

∣ = Op(1) uniformly on KT (M) by the invariance principle (the

number of elements in KT (M) is no larger than 2Mλ−2
T ), (29) converges to zero in

probability uniformly. Similarly, we can show that T 1/2H(k) is negligible on KT (M).

Next consider the second term of (27). Notice that

0 ≤ T 1/2(EVk0
− EVk) = T 1/2

(

b(k0)λT − b(k)
T − k0

T − k
λT

)

≤ T 1/2{b(k0) − b(k)}λT + T 1/2b(k)
|k0 − k|
T − k

λT .

From (18) and k ∈ KT (M), we can easily show that T 1/2(EVk0
− EVk) is bounded

by C(T 1/2λT )−1 for some C > 0, which converges to zero. We now prove that for

k = [k0 + vλ−2
T ]

2 T (EVk0
)(Vk − Vk0

) = 2 {τ(1 − τ)}1/2T λT{V (k0 + vλ−2
T ) − V (k0)} (30)

has the stated limiting distribution. For the sake of simplicity, we shall assume that

k0 + vλ2
T and thus vλ2

T are integers. By (19) we have

TλT (Vk − Vk0
) = TλT{G(k) + H(k)} − TλT (EVk0

− EVk). (31)

As in proving (28), we can easily show that the first two terms in (20) multiplied by

TλT are op(1) uniformly on KT (M). However the product of TλT and the third term

of (20) does not vanish as T increases and can be written as:

TλT b(k0)
1

k

k0
∑

t=k+1

Xt = b(k0)
T

k





λT

|v|λ−2

T
∑

t=0

Xk0−t







for k = k0 + vλ−2
T . By the invariance principle of (9), (λT

∑|v|λ−2

T

t=0 Xk0−t) converges

weakly in C[−M, M ] to a(1)σW1(−v), where W1(·) is a Brownian motion on [0,∞).

13



Moreover, b(k0) = {τ(1− τ)}1/2 and T/k → τ−1 for k ∈ KT (M), therefore TλT G(k0 +

vλ−2
T ) converges weakly to

τ−1{τ(1 − τ)}1/2a(1)σW1(−v).

Similarly, we can prove that

TλT H(k0 + vλ−2
T ) = op(1) + b(k0)

T

T − k





λT

|v|λ−2

T
∑

t=0

Xk0−t





 .

As b(k0)T/(T − k) → (1 − τ)−1{τ(1 − τ)}1/2, we have

TλT{G(k0 + vλ−2
T ) + H(k0 + vλ−2

T )} ⇒ (τ−1 + (1 − τ)−1){τ(1 − τ)}1/2a(1)σW1(−v)

= {τ(1 − τ)}−1/2a(1)σW1(−v). (32)

From (14),

TλT (EVk0
− EVk) = Tλ2

T

τ − d

1 − d





(

τ

1 − τ

)1/2

+

(

d

1 − d

)1/2




−1

→ |v|{τ(1 − τ)}−1/2/2 (33)

since d = k/T → τ uniformly on KT (M) and Tλ2
T (τ − d) = −v = |v|. Combining

(30) to (33), we obtain for v ≤ 0,

ΛT (v) ⇒ 2
(

a(1)σW1(−v) − 1

2
|v|
)

.

Similarly, working with the case for v > 0, we find that

ΛT (v) ⇒ 2
(

a(1)σW2(v) − 1

2
|v|
)

,

where a(1)σW2(v) is the limiting process of λT
∑k

t=k0+1 Xt = λT
∑vλ2

T

t=1 Xk0+t. It remains

to show that W1(·) and W2(·) are independent. From (A.1) in the appendix,

λT

k0
∑

t=k+1

Xt = λT

k0
∑

t=k+1

a(1)εt − λT X∗
k0

+ λT X∗
k

but supk∈KT (M) λT |X∗
k | = op(1). This is because the number of elements in KT (M) is

not larger than 2Mλ−2
T and λT → 0 (see Chung 1968, p. 95). Thus W1(·) is determined

14



by εt with t ≤ k0. Similar arguments show that W2(·) is determined by εt with t > k0.

Thus W1 and W2 are determined by non-overlapping sequences of {εt} and hence

W1 and W2 are independent. This finishes the proof of (23). To prove (24), define

Cmax[−M, M ] to be the subset of C[−M, M ] such that each function has a unique

maximum. It is straightforward to show that the argmax functional is continuous on

the set Cmax[−M, M ]. This together with (22) permits us to invoke the continuous

mapping theorem, which implies

Tλ2
T (τ̂ − τ)

d→ argmaxvΛ(v).

For a rigorous treatment of the continuous mapping theorem for argmax functionals,

see Kim and Pollard (1990). Since bW (v)
d
= W (b2v) for every b ∈ R, a change in

variable leads to argmaxvΛ(v)
d
= a(1)2σ2argmaxs(W (s) − |s|/2), which is (24). The

proof of Theorem 1 is now complete.

Given the rate of convergence of τ̂ in Section 4, it is an easy matter to obtain the

limiting distributions of µ̂1 and µ̂2. Recall that µ̂1 = Ȳk̂ and µ̂2 = Ȳ ∗
k̂
.

Proposition 1.

T 1/2(µ̂1 − µ1)
d→ N(0, τ−1a(1)2σ2), (34)

T 1/2(µ̂2 − µ2)
d→ N(0, (1 − τ)−1a(1)2σ2). (35)

Thus the limiting distributions are the same as if k0 is known. The proof is given in

the appendix.

6. Monte Carlo simulation

In this section, we assess through Monte Carlo simulations some qualitative aspects

of the change point estimator predicted by the theory. We also examine the effect of a

mean shift on the order identification of an ARMA process via the AIC criterion. The

basic conclusion is that a shift in mean causes over-estimation of orders of the model.

This finding is consistent with that of MacNeill and Duong (1982) who considered a

15



shift in the AR coefficients rather than in the mean of an AR process. Since we can

obtain a consistent estimator of the change point, we can remove to some extent the

shifted mean and then use the generalized residuals X̂t in place of Xt to identify the

orders. The simulation results suggest that this is quite a satisfactory procedure.

6.1. Estimation of the change point

In this simulation, the series is generated according to

Yt = µ + λI(t ≥ k0) + Xt (t = 1, 2, · · · , T )

where Xt is an ARMA(1,1) process Xt = ρXt−1 + εt + θεt and I(·) is the indica-

tor function. Experiments are carried out for T = 100, k0 = .5T , λ = 2, ρ =

−.8,−.6,−.4, 0.0, .4, .6, .8, and θ = −.5, .5. The εt are i.i.d. N(0, 1). The least squares

estimator of k0 is defined by (3). The change point is estimated by maximizing V 2
k

defined in (4).

Theorem 2 indicates that the asymptotic variance of the estimated change point

is smaller for a negative ρ than a positive ρ even if the magnitude of change λ is the

same. A similar conclusion applies to the sign of θ. More precisely, the asymptotic

variance is a decreasing function of |(1 + θ)/(1 − ρ)|. Thus the range of the change

point estimates in the simulation is expected to be smaller for a negative value of ρ

and a negative value of θ than any positive values. Indeed these theoretical results are

all confirmed by simulations. Figure 1 plots the histograms of the estimated change

points for θ = .5 and for different values of ρ. It is seen that as ρ varies from -.8 to .8,

the range of k̂ is becoming larger. The case for θ = −.5 is graphed in Figure 2. By

examining the seven sub-figures in Figure 2, one finds that the range of the estimated

change points is smaller than each of its counterparts in Figure 1, as predicted by

Theorem 2.
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6.2. Effect of a mean shift on order estimation

ARMA models have been proved to be a powerful tool in time series analysis. In

practice, however, the order of a series is unknown and has to be estimated. In

fact, order determination often turns out to be the most challenging part in time

series modeling. Akaike (1974) identifies the order by the AIC criterion which, for an

autoregressive process, is defined as:

AIC(k) = T log σ̂2(k) + 2k

where σ̂2(k) is the residual variance when an AR model of order k is fitted and T

is the sample size. The AIC criterion is an automatic procedure and is found in

many computing packages. We thus investigate the effect of a mean shift on the order

selection via the AIC procedure. The findings presumably shed light on other order

selection criteria as well. It is interesting to compare our simulated result with that

of MacNeill and Duong (1982) who considered a shift in AR coefficients rather than

in mean. The mean shift seems to have more adverse effect on order estimation.

The model employed in the simulation is the following AR(1) with a mean shift:

Yt = µ + λI(t ≥ k0) + Xt

Xt = ρXt−1 + εt (t = 1, 2, · · · , T )

Simulations have been performed with T = 50, 100, 500, ρ = −.8,−.6,−.4, 0, .4, .6, .8

and λ = 1, 2 in various combinations. The change point k0 is chosen to be T/2.

For each combination, 100 series are generated. The white noise εt are normally

distributed with zero mean and unit variance. For comparison purposes, the data are

generated in such a way that across different combinations of parameters, the white

noise series is the same. In searching for an order, the upper bound is limited to 10.

The autoregressive parameters are estimated using the Yule-Walker method. Note

that parameter µ plays no role because the overall mean is subtracted from the series

before fitting a model.
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It is expected that a change in parameter, when ignored, introduces distortions in

order identification, consequently rendering incorrect order selection. In other words,

misspecification causes bias in order estimation. This is indeed the case and is verified

by Monte Carlo simulations. Table 1 summarizes the simulation results in terms of the

mean and standard deviation of the selected orders. Means and standard deviations

are computed based on 100 repetitions for each combination. Standard deviations are

provided in parentheses. The rows for λ = 0 correspond to models with no shift. By

inspecting the table, one concludes that a change in mean causes over estimation of

orders. The over estimation is particularly significant for negative ρ′s. For positive

and large ρ′s, order selection is virtually unaffected by a shift. For example, for

ρ = −.8, the average value of selected orders is 1.56 with no shift (λ = 0) and 3.56

with a shift (λ = 1); whereas for ρ = .8, the corresponding values are 1.55 and 1.54

respectively. The bias in order selection becomes larger as the number of observations

(T ) increases. Consider the column for ρ = −.8, for instance, when the number of

observations varies from 50 to 100 then to 500, the average selected orders are 3.56,

5.23, and 9.38 respectively (λ = 1). To see how the selected orders are distributed,

We plot histograms of the selected orders for two cases. Figure 3 plots the selected

orders when no shift exists (λ = 0). Figure 4 plots the counterpart when a shift does

exist (λ = 1).

6.3. Order estimation based on generalized residuals

In the previous subsection, the shift is ignored and the order determination is based on

a misspecified model which leads to over estimation. Thus if a high order is identified in

practice, one should consider a possible parameter change. Tests should be performed

to test the parameter constancy. Many tests have been proposed in the literature

for testing parameter stability for time series models, for example, Andrews (1990),

Bai, Lumsdaine, and Stock (1991), Hansen (1990), MacNeill and Duong (1982), and

Ploberger, Kramer, and Alt (1989).

For our present model, order identification could be based on generalized residuals
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Table 1: Mean and Standard Deviation of Selected AR Orders

ρ = -0.8 -0.6 -0.4 0 0.4 0.6 0.8

T = 50 λ = 0 1.56 1.48 1.55 0.61 1.44 1.66 1.55
(1.34) (1.16) (1.45) (1.41) (1.49) (1.44) (1.21)

λ = 1 3.56 3.21 2.64 1.57 1.55 1.45 1.54
(1.48) (1.81) (2.01) (1.84) (1.35) (1.04) (1.27)

T = 100 λ = 0 1.56 1.59 1.63 0.72 1.75 1.73 1.64
(1.44) (1.51) (1.47) (1.79) (1.59) (1.63) (1.56)

λ = 1 5.23 5.01 4.72 3.19 2.05 1.74 1.71
(1.54) (1.71) (1.84) (2.12) (1.81) (1.61) (1.67)

λ = 2 4.61 4.74 4.86 4.59 2.89 2.01 1.61
(1.11) (1.38) (1.51) (1.78) (1.92) (1.76) (1.57)

T = 500 λ = 0 1.63 1.85 2.01 1.13 1.77 1.94 1.96
(1.42) (1.75) (1.89) (2.14) (1.57) (1.82) (1.85)

λ = 1 9.38 9.33 9.27 8.81 5.81 2.88 2.08
(0.75) (0.87) (0.94) (1.45) (2.88) (2.73) (1.99)

once a change point is estimated. Recall that the generalized residuals are defined as

X̂t = Yt − µ̂1 − (µ̂2 − µ̂1)I(t > k̂).

Because µ1, µ2, and τ can be consistently estimated we expect that order determina-

tion using the generalized residuals will remove, to some extent, the bias caused by

a shift. Figure 5 displays the selected orders based on the generalized residuals X̂t.

Comparing with Figure 3, which is based on Xt, we find that the results are almost

the same.
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Figure 1: Histogram of Estimated Change Points. Data is Generated According to:
Yt = µ + λI(t ≥ k0) + Xt, with Xt = ρXt−1 + εt + θεt−1, λ = 2, θ = .5, T = 100, and
k0 = .5T (From 100 Repetitions).
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Figure 2: Histogram of Estimated Change Points. Data is Generated According to:
Yt = µ + λI(t ≥ k0) + Xt, with Xt = ρXt−1 + εt + θεt−1, λ = 2, θ = −.5, T = 100,
and k0 = .5T (From 100 Repetitions).
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Figure 3: Selected Orders Via AIC Criterion, the Case of no Shift. Data is Generated
According to: Xt = ρXt−1 + εt, T = 100 (100 Repetitions).
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Figure 4: Selected Orders Via AIC Criterion When a shift is Ignored. Data is Gener-
ated According to: Yt = µ + λI(t ≥ k0) + Xt, with Xt = ρXt−1 + εt, λ = 1, T = 100,
and k0 = .5T (100 Repetitions).
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Figure 5: Selected Orders Via AIC Criterion Using Generalized Residuals X̂t. Data
is Generated According to: Yt = µ + λI(t ≥ k0) + Xt, with Xt = ρXt−1 + εt, λ = 1,
T = 100, and k0 = .5T (100 Repetitions).
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A Appendix

Proof of (6). Write a∗
j =

∑

k≥j+1 ak and X∗
t =

∑∞
j=0 a∗

jεt−j. Under assumptions

(A or A′) and (B), X∗
t is second-order stationary. Let σ2

1 = E(X∗
t )2 = σ2∑∞

j=0(a
∗
j)

2.

Then we have

Xt = a(1)εt − X∗
t + X∗

t−1, (A.1)

thus

ck

k
∑

i=1

Xi = a(1)ck

k
∑

i=1

εi + ckX
∗
0 − ckX

∗
k ,

where a(1) =
∑∞

j=0 aj. Since ck ≤ cm for k ≥ m by assumption, we have

Pr

(

max
m≤k≤n

ck|
k
∑

i=1

Xi| > α

)

≤ Pr

(

max
m≤k≤n

ck|a(1)
k
∑

i=1

εi| > α/3

)

+ Pr (cm|X∗
0 | > α/3) + Pr

(

max
m≤k≤n

ck|X∗
k | > α/3

)

≤ 9σ2a(1)2

α2



mc2
m +

n
∑

i=m+1

c2
i



 by Hájek and Rényi inequality

+
9σ2

1

α2

(

c2
m +

n
∑

i=m

c2
i

)

by Chebyshev inequality.

Hence if we choose A = 9 max{a(1)2,
∑∞

j=0(a
∗
j)

2}, then inequality (6) follows. Equation

(A.1) is called the Beveridge-Nelson decomposition in the econometrics literature.

Phillips and Solo (1991) provide many interesting applications of this decomposition.

Proof of Proposition 1. Write µ̂1(k) = 1
k

∑k
t=1 Yt, then µ̂1 = µ̂1(k̂). If k0 is known,

the LS estimation for µ1 is µ̂1(k0). To prove (34), consider

T 1/2
(

µ̂1(k̂) − µ̂1(k0)
)

= T 1/2





1

k̂

k̂
∑

t=1

Yt −
1

k0

k0
∑

t=1

Yt





= I(k̂ ≤ k0)



T 1/2k0 − k̂

k0k̂

k0
∑

t=1

Xt + T 1/2 1

k̂

k0
∑

t=k̂

Xt





+I(k̂ > k0)



T 1/2k0 − k̂

k0k̂

k0
∑

t=1

Xt − T 1/2 1

k̂

k̂
∑

t=k0

Xt + λT
k̂ − k0

k̂





Now use k0 = Tτ , k̂ = k0 + Op(λ
−2
T ), and Tλ2

T → ∞, we find that the above is

(T 1/2λT )−1Op(1), which converges to zero in probability. Thus µ̂1(k̂) and µ̂1(k0) have
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the same limiting distribution. The latter has a limiting distribution given by the

right hand side of (34). The proof of (35) is similar.
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