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Summary 

 

Soil degradation processes have dramatically increased in their extent and intensity over the last 

decades. Progressively, actions have been taken in order to evaluate and reduce the major threats 

that have already wreaked havoc on soil conditions. Efficient and standardized monitoring of soil 

conditions is thus required but soil quality research is facing an important technological challenge 

because of the number of properties involved in soil quality. The objective of the present review is 

to examine critically the suitability of near infrared reflectance spectroscopy (NIRS) as a tool for soil 

quality assessment. We first detail the soil quality-related parameters (chemical, physical and 

biological) that can be predicted with NIRS through laboratory measurements. The ability of 

imaging NIRS (airborne or satellite) for mapping a minimum data set of soil quality is also 

discussed. Then we review the most recent research using soil reflectance spectra as an 

integrated measure of soil quality, from global site classification to the prediction of specific soil 

quality indices. We conclude that imaging NIRS enables the direct mapping of some soil properties 

and soil threats, but that further developments to solve several technological limitations identified 

are needed before it can be used for soil quality assessment. The robustness of laboratory NIRS 

for soil quality assessment allows its implementation in soil monitoring networks. However, its 

routine use requires the development of international soil spectral libraries that should become a 

priority for soil quality research. 
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Résumé 

 

Les processus de dégradation des sols ont fortement augmenté au cours des dernières décennies. 

Des mesures sont progressivement mises en place afin d’évaluer et de limiter l’impact des 

principales menaces qui ont déjà provoqué une diminution préoccupante de la qualité des sols. 

Des méthodes efficaces et standardisées de suivi de la qualité des sols sont donc indispensables, 

mais les nombreuses propriétés impliquées dans la qualité des sols compliquent son évaluation 

rigoureuse. L’objectif de cette revue est d’examiner le potentiel de la spectroscopie proche 

infrarouge (SPIR) comme outil rapide de caractérisation de la qualité des sols. Nous dressons 

d’abord l’inventaire des propriétés du sol liées à sa qualité qui sont prédictibles par des mesures 

SPIR en laboratoire. Le potentiel de l’imagerie embarquée SPIR (satellite, avion) est également 

abordé. Nous réalisons ensuite une synthèse des applications utilisant la réflectance spectrale des 

sols comme mesure intégrée de leur qualité, depuis la classification de sites selon leur état de 

dégradation jusqu’à la prédiction d’indices spécifiques de qualité du sol. Nous concluons que 

l’imagerie SPIR permet de cartographier quelques propriétés et menaces pesant sur les sols, mais 

les limites technologiques relevées exigent d’importants développements pour en faire un outil 

robuste d’évaluation de la qualité des sols. La fiabilité de la technique SPIR par mesures en 

laboratoire permet sa mise en œuvre rapide dans les réseaux de mesures de la qualité des sols. 

Toutefois, son utilisation en routine nécessitera le développement de librairies spectrales 

internationales, qui devrait constituer une des priorités de recherche sur la qualité des sols. 
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Introduction 

 

In a technology-governed and energy-intensive world, degradation of soil conditions has become a 

widespread problem with negative consequences for both agricultural, natural ecosystems and 

urban areas (Wander & Drinkwater, 2000; Biasioli et al., 2005). Scientific and political awareness 

of soil has emerged progressively during the second part of the 20th century (Breure, 2004), with 

concerns over the sustainability of agriculture and the increasing number of contamination 

incidents (Eijsackers, 2004). Soil scientists started attempting to define soil quality (Larson & 

Pierce, 1991) and the first soil protection policy appeared in the 1970s (Eijsackers, 2004), although 

the concept of soil quality is still debated (Sojka & Upchurch, 1999). Nowadays, quality or vitality of 

soils is considered to be their long-term ability to maintain their functions, which can be 

summarized by a combination of different elements: Robustness, Resilience, Recovery, and 

structural and functional Richness (Eijsackers, 2004). Another important feature in the definition of 

soil quality is its positive interaction with the external environment (Larson & Pierce, 1991), which is 

often described as the many ecosystem services provided by soils to human life (Lavelle et al., 

2006). 

Practical assessment of soil quality remains a challenging task since it requires the integrated 

consideration of key soil properties involved in soil functioning and their variation in space and time 

(Doran & Parkin, 1994; Doelman & Eijsackers, 2004). Soil monitoring is thus essential for the early 

detection of changes in soil quality (Morvan et al., 2008). However, selecting monitoring variables 

remains difficult (Zornoza et al., 2007) as the establishment of any a priori criterion and threshold 

for soil quality can be considered subjective since it relies on expert opinions (Sojka & Upchurch, 

1999; Andrews et al., 2004; Velasquez et al., 2007). 

Recent studies have proposed several conceptual frameworks for monitoring soil quality 

(Andrews et al., 2004; Velasquez et al., 2007). They usually share a common first step with the 

choice of a minimum data set (MDS, Table 1) made of chemical, physical, and biological properties 

essential in terms of soil functioning (Doran & Safley, 1997). Then soil attributes are selected from 
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the MDS for their suitability to assess a particular soil function (Andrews et al., 2004), a specific soil 

ecosystem service (Velasquez et al., 2007), or a key threat to soils (Morvan et al., 2008). Each 

indicator measure is further normalized to a unitless score, and finally integrated into a global soil 

quality index value (Andrews et al., 2004; Velasquez et al., 2007), fulfilling Haberern’s wish (1992). 

However, since many soil analyses are involved, monitoring such soil quality indices at the regional 

or global scale remains too expensive and time consuming when using standard procedures for 

the measurement of soil properties. This statement is particularly true when considering the five- to 

ten-year sampling interval required by soil monitoring networks (SMN; Jolivet et al., 2006) for an 

early detection of changes in soil quality, in order to implement policy measures to protect soils and 

maintain their sustainable use (Morvan et al., 2008). 

By contrast, near infrared reflectance spectroscopy (NIRS) is a rapid, non-destructive, 

reproducible and cost-effective analytical method involving diffuse reflectance measurement in the 

near infrared region (NIR; 780-2500 nm; Sheppard et al., 1985). Reflectance signals result from 

vibrations in C–H, O–H, N–H chemical bonds, and provide information about the proportion of each 

element in the analysed sample (Ciurczack, 2001). Absorbances in the NIR are weak since they 

concern overtones or combinations of fundamentals (Figure 1; Wetzel, 1983). Although a 

qualitative interpretation of NIR spectra through visual analysis can be achieved (Stoner & 

Baumgardner, 1981), direct quantitative prediction of soil characteristics is almost impossible 

because soil constituents interact in a complex way to produce a given spectrum. The 

quantification of the property of interest is therefore usually done with statistical models and is the 

subject of the discipline called Chemometrics. An overview of the use of chemometrics in 

spectroscopy, its history and main concepts has been published by Geladi (2003). The quantitative 

analysis of NIRS data may be conducted in two ways, both requiring the implementation of 

multivariate statistics (Burns & Ciurczack, 2001). Firstly, clustering techniques can be used to 

discriminate samples or to detect changes in sample properties (Albrecht et al., 2008). Secondly, a 

set of regression methods allows the prediction of many properties of unknown samples using 

calibration equations that relate spectral information to sample properties measured by 

conventional methods, within a calibration subset (Martens & Dardenne, 1998; Chang et al., 2001). 
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Near infrared analysis is a well-known tool that has been utilized in many disciplines such as 

food science and pharmacology. Although its potential has been recognized by soil scientists for a 

few decades (Bowers & Hanks, 1965; Stoner & Baumgardner, 1981; Dalal & Henry, 1986), the use 

of NIRS for soil applications remains poorly developed (Ben-Dor et al., 2008a). Nevertheless, the 

appearance of portable and flexible NIR devices could provide the large amount of spatial data 

required for monitoring soil conditions or modelling soil processes. 

One can basically distinguish three types of NIRS measurements for soils (although other 

classifications are possible): (i) laboratory measurements, (ii) proximal sensing measurements and 

(iii) remote sensing measurements. The two latter techniques are able to collect spectral data in-

situ and are therefore usually exploited to map soil properties (Barnes et al., 2003). Many authors 

report the development of spectral sensors mounted on tractors (Shonk et al., 1991; Sudduth & 

Hummel, 1993; Mouazen et al., 2007). These systems are generally used in precision agriculture 

to manage the quantity of nutrient inputs into soils (Adamchuk et al., 2004). Proximal sensing may 

also include hand-held measurement, which is used as a fast tool to monitor soil properties in-situ 

(Kooistra et al., 2001; Udelhoven et al., 2003; Stevens et al., 2008). Ben-Dor et al. (2008b) recently 

presented a NIR sensing device able to collect in-situ 3D spectral data through an entire soil 

profile, allowing a rapid and objective soil classification. Remote sensing of soil properties has 

been attempted using aerial photographs (e.g. Chen et al., 2000), multispectral (e.g. Galvão et al., 

2001) or hyperspectral images (also called imaging spectroscopy; e.g. Ben-Dor et al., 2002). 

Imaging spectroscopy differs from multispectral imaging in its greater number of wavebands, 

enabling precise recording of the spectrum and a detailed analysis of spectral properties of the soil 

surface. 

 

The aim of this paper is to review the most recent applications of NIRS for soil quality 

assessment in order to examine critically the suitability of its implementation as a tool in soil 

monitoring plans and networks. First, we present laboratory and imaging NIR spectrometry as tools 

for the quantification and mapping of many MDS variables for soil quality assessment. Then we 

give a brief review of studies using NIRS as an integrated measure of soil quality. These range 
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from global site classification to the prediction of specific soil quality indices designed to assess 

particular soil ecosystem services or functions. Finally we review the main research needs that 

could allow the implementation of laboratory NIRS for the routine assessment of soil conditions in 

SMN, and develop the use of imaging NIRS for the regional monitoring of soil quality. 

 

Monitoring MDS of soil quality with NIRS 

 

MDS information within NIR spectra of soils: insights from laboratory spectrometry 

 

An increasing number of studies emphasise the ability of NIR analysis for the prediction of many 

soil attributes, including chemical, physical, and biological properties (Reeves et al., 2000; Malley 

et al., 2004; Viscarra-Rossel et al., 2006). Some of these variables are key properties which were 

included in the first MDS for soil quality assessment published at the beginning of the 1990s 

(Larson & Pierce, 1991; Doran & Parkin, 1994). Since a consensus is still to be found on a MDS for 

soil quality, we give a list of soil chemical (Table 1a), physical (Table 1b), and biological (Table 1c) 

properties included in published MDS along with the predictive efficiency of NIR analysis for these 

properties. Most NIR regression models presented in Table 1 are based on laboratory 

measurements under controlled conditions, which avoid disturbing factors characterizing field 

measurements like soil moisture content, soil roughness and vegetation cover (Stevens et al., 

2008). When available, we also provide the NIR wavelengths or spectral intervals closely 

associated to these MDS variables of soil quality. 

Regarding soil chemical properties (Table 1a), numerous authors have reported accurate 

NIRS predictions of soil total C and N (Al-Abbas et al., 1972; Chang et al., 2001; Brunet et al., 

2007) and pH (Chang et al., 2001; Reeves & McCarty, 2001; Shepherd & Walsh, 2002). This is 

consistent, considering that numerous bonds between C and O, N or H absorb light in the NIR 

region, while pH prediction has been attributed to O–H groups (Malley et al., 2004). Good 
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predictions for K have also been achieved using NIRS (Chang et al., 2001; Confalonieri et al., 

2001; Shepherd & Walsh, 2002) though Malley et al. (2004) considered it was generally not 

amenable to NIRS analysis. Good NIRS predictions are less frequent for soil P and mineral N as 

underlined by Malley et al. (2004): calibrations for P and mineral N rarely perform well in soil (R² = 

0.4-0.5 in general; Malley et al., 2002, for P and mineral N; Chang et al., 2001, and Shepherd & 

Walsh, 2002, for P), though good results have sometimes been obtained (Confalonieri et al., 2001, 

and Bogrekci & Lee, 2005, for P; Cho et al., 1998, for mineral N). Contradictory NIRS predictions 

have been reported for salt content in soil (R² = 0.1-0.6 for Chang et al., 2001, and Malley et al., 

2002; R² = 0.1-0.8 for Farifteh et al., 2008; but R² = 0.7-0.8 for Dunn et al., 2002) and for electrical 

conductivity (R² = 0.4-0.6 for Dunn et al., 2002; but R² = 0.7 for Malley et al., 2004). Very 

contradictory results have been reported regarding NIRS prediction of soil heavy metal content 

depending on the element, and apparently, on the site and on the reference method too. For 

instance, some authors reported good predictions of Cd, Co and Zn (Kooistra et al., 2001, Wu et 

al., 2007, and Kooistra et al., 2001, respectively) while others reported poor predictions (Wu et al., 

2007, Malley et al., 2004, and Chang et al., 2001, respectively). Contradictory results have also 

been achieved for Cr, Cu, Ni and Pb (Malley et al., 2004; Wu et al., 2007). Similarly, the fate of 

organic pollutants in soil is an important and widespread concern, although these are not currently 

included in MDS of soil quality. Bengtsson et al. (2007) reported promising results regarding NIRS 

prediction of pesticide sorption to soils. Contradictory results for K, P, mineral N, salt or heavy 

metals may have several causes, either relating to the reference methods (e.g. prediction of 

extractable cations varies with the extraction method; Chang et al., 2001), the nature of the studied 

element (e.g. spectrally distinct P-containing compounds may variably contribute to soil P content; 

Malley et al., 2004), its concentration (e.g. below detection limits), or possible interactions with 

other components (e.g. water, organic matter or iron oxides; Malley et al., 2004). To a larger 

extent, poor predictions may also result from low-quality reference data, subsampling errors 

(reference and spectral analyses being performed on dissimilar subsamples), heterogeneity of 

sample sets (optimal calibration requires limited but sufficient set heterogeneity), or inappropriate 

calibration (e.g. fail to improve the signal-to-noise ratio or overfitting). 
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There have also been attempts to predict soil physical properties using NIRS (Table 1b), which 

have yielded good results for soil particle size distribution (especially for clay content; Al-Abbas et 

al., 1972; Ben-Dor & Banin, 1995a; Chang et al., 2001; Morón & Cozzolino, 2003), soil moisture 

(Bowers & Hanks, 1965; Dalal & Henry, 1986; Ben-Dor & Banin, 1995a; Chang et al., 2001), water 

holding capacity (Sudduth & Hummel, 1993; Zornoza et al., 2008), infiltration of crusted soils 

(Goldshleger et al., 2002), and maximum temperatures reached by burned soils (Guerrero et al., 

2007), but not for the size distribution of water-stable aggregates (Chang et al., 2001). Particle size 

effects on light transmission and reflection, and strong absorption features exhibited by water, 

explain the accurate predictions for texture and moisture, while poor performance regarding 

aggregate distribution has been attributed to inappropriate procedures (Chang et al., 2001). 

NIRS prediction of soil biological properties has often yielded good results (Table 1c), as 

reported for microbial biomass (Reeves et al., 1999; Chang et al., 2001; Ludwig et al., 2002), soil 

respiration (Palmborg & Nordgren, 1993; Chang et al., 2001; Ludwig et al., 2002), potentially 

mineralizable N (Chang et al., 2001; Fystro, 2002; Ludwig et al., 2002; Shepherd & Walsh, 2002), 

and even for the ratio of microbial to total organic C (Ludwig et al., 2002; Cécillon et al., 2008) and 

for the density of soil microorganisms (Zornoza et al., 2008). Good predictions have been 

attributed to the similarity between spectral responses of most biological properties and that of soil 

organic C (Chang et al., 2001). 

 

Upscaling NIR assessment of soil quality: imaging spectrometry 

 

Imaging spectrometry might yield a new dimension to the field of NIRS for the prediction of soil 

properties by enlarging the envelope of laboratory spectrometry spatially (Ben-Dor et al., 2008a). 

This wider spatial dimension can be obtained using visible-NIR (Vis-NIR) spectrometers onboard 

either airborne or satellite. Remotely-sensed hyperspectral satellite data offer a synoptic view and 

a repetitive coverage which are two important advantages compared to ground observations and 

hyperspectral airborne data. While the contribution of multispectral satellite data in the analysis of 
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soil properties has been already investigated (e.g. Ben-Dor & Banin, 1995b; Nanni & Demattê, 

2006), the use of hyperspectral satellite data for soil property prediction remains poorly studied. 

Using airborne hyperspectral sensors, fairly good to good NIRS predictions have been 

achieved for soil organic C (R2 = 0.74-0.9, Ben-Dor et al., 2002; Selige et al., 2006; Stevens et al., 

2008; De Tar et al., 2008; Patzold et al., 2008), total N (R2 = 0.92, Selige et al., 2006), clay content 

(R2 = 0.61-071, Selige et al., 2006; De Tar et al., 2008; Lagacherie et al., 2008), sand or silt 

content (R2 = 0.75-0.95, Selige et al., 2006; De Tar et al., 2008), soil moisture (R2 = 0.64, Ben-Dor 

et al., 2002), Cation Exchange Capacity (R2 = 0.66-0.67, Ben-Dor et al., 2002; De Tar et al., 2008), 

pH (R2 = 0.52-0.61, Ben-Dor et al., 2002; De Tar et al., 2008) and Ca, Mg, Na, Cl, K, P (R2 = 0.58-

0.7, De Tar et al., 2008).  

Weng et al. (2008), obtained good predictive models for soil salt content in the Yellow river 

delta using the Hyperion satellite hyperspectral sensor (R2 = 0.78). By contrast, relatively low 

prediction accuracy was reported for soil organic C with the same sensor (R2 = 0.51, Gomez et al., 

2008). This lower accuracy was assumed to be the result of several factors: (i) the low signal-to-

noise ratio of Hyperion spectra, (ii) the low spatial resolution (30 m) which induces mixing 

problems, and (iii) the relatively low level of carbon in the soils. 

Despite the potential of imaging spectrometry for mapping soil properties within the MDS, there 

are still several limitations, which may preclude the use of such technique to address real 

problems. These limitations can be related to: (i) the measure itself (sensing device and measuring 

environment), and (ii) differences in sample preparation and conditions which cannot be controlled 

in the field.  

The first category of limitations is caused by the distance between the sensor and the soil 

surface. Appropriate correction techniques are required to handle the effects of varying light and 

atmospheric conditions on the signal. A precise georeferencing of the image is also needed to 

attribute correctly each soil sample to a pixel. A good introduction to the processing and 

geometric/atmospheric correction of hyperspectral data can be found in Aspinall et al. (2002). Ben-

Dor et al. (2004) examined the accuracy of several correction methods to retrieve the true 
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reflectance values from imaging spectroscopy data. They found a difference of up to 40% between 

modelled and true reflectance information at specific wavelengths, depending on the correction 

method used and variability in atmospheric conditions. When using a ‘top-down’ approach (i.e. 

detection of a given soil property based on field sampling) and when the spatial extent of 

hyperspectral images is small, atmospheric effects may be constant over the study area and a 

particular object will appear similar across the image (Aspinall et al., 2002). However, when the 

analysis is conducted over larger images or when a ‘bottom-up’ approach is used (i.e. detection of 

a given soil property based on laboratory-based spectral libraries), accurate atmospheric correction 

is crucial. Another limitation is the relatively low signal-to-noise ratio of hyperspectral data 

compared with laboratory data due to a low integration-time over the target area. Chabrillat et al. 

(2002) demonstrated for instance that the detection of expanding clays may be degraded because 

the spectral feature used to identify the type of clay may be of the same amplitude as the noise in 

the data. By comparing airborne hyperspectral HyMap and AVIRIS data over the same area, 

Chabrillat et al. (2002) also showed the influence of the spectral and spatial configuration of the 

sensor. The coarser spectral resolution of HyMap compared to AVIRIS in the 2000-2500 nm 

spectral region masked partly the doublet spectral feature at ~2150 nm related to clay type and 

reduced the effectiveness of the classification. Conversely, the higher spatial resolution of HyMap 

allowed obtaining purer spectral end-members (i.e. spectra not influenced by other soil 

constituents or by soil surface characteristics) in more heterogeneous sites. Spatial resolution is 

thus a matter of importance when the studied soil property occurs in a patchy way or is affected by 

a strong spatial variability (e.g. soil crusting). 

The second category of limitations is related to the spatial and temporal variability of soil 

surface conditions. This variability often reduces the accuracy of the prediction of soil properties by 

chemometric techniques in areas having different surface conditions than the ones in the 

calibration set (Stevens et al., 2008). Some of the properties that are subject to variation in time 

and space are: moisture content, degree of soil crusting, particle-size, soil roughness, vegetation 

or crop residue cover. In the study of Kooistra et al. (2003), soil moisture and vegetation cover 

were identified as the main causes of the loss of accuracy between field and laboratory spectra. 
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The effects of soil roughness on bidirectional reflectance behaviour have been studied in detail 

(see e.g. Cierniewski & Courault, 1993). Usually, rough soils present highest reflectance values 

when measured from the direction of the illumination source and lower reflectance values in 

positions away from this peak. Since remote sensors record the soil surface under varying 

illumination and viewing angles, this phenomenon induces a spectral variability not specifically 

related to the studied property. Another constraint of importance is the vegetation/residue cover, 

partly masking the soil signal. Bartholomeus et al. (2007) showed that even a small vegetation 

cover (5%) leads to large variations in the estimations of soil parameters. Imaging spectrometry 

campaigns must therefore be organized only in arid/semi-arid regions or when the soil has been 

recently tilled. Finally, imaging spectroscopy is only able to measure the reflectance within the first 

few millimetres of the surface and can therefore not predict a given property for the entire soil 

profile. As a consequence, such a method of data acquisition may be of little interest when strong 

vertical gradients in soil properties occur. 

 

An alternative solution: the rough quantification of MDS variables 

 

As presented above, NIR spectra of soil samples contain much information relevant to soil quality, 

and multivariate regressions of NIR spectra from laboratory and imaging spectrometry can 

accurately predict several properties of MDS. However, soil quality does not always need to be 

precisely quantified. Many industrial or agricultural applications only require a classification of soil 

condition with respect to a critical test value for key properties. Shepherd & Walsh (2002) were the 

first to propose the use of laboratory NIR analysis for the discrimination of soils falling above or 

below specific cut-off values for most properties related to soil fertility. They showed that soil 

samples could be roughly discriminated using classification trees even for properties like 

exchangeable K and extractable P which are poorly predicted by regression models. These 

promising findings were further confirmed by Cohen et al. (2005a) on an extensive data set of 

quality parameters for wetland soils, including soil microbiological attributes. 
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Integrated assessment of soil quality with NIR analysis 

 

NIRS as a fingerprint of global soil conditions 

 

Since NIR spectra of soils reflects a set of soil quality attributes like organic matter content and 

some chemical and biological properties, some researchers have hypothesized that laboratory 

NIRS could probably be used to discriminate clusters of soil samples differing in their “global” 

quality. Velasquez et al. (2005) first tested the use of principal component analysis (PCA) and 

discriminant analysis to separate soils from different land uses. This strategy successfully 

discriminated clusters of sites depending on land-use type, and co-inertia analyses revealed 

significant relationships between NIR spectra and various physico-chemical properties of soil 

samples. The authors also identified NIR wavelength intervals characteristic of the soil-use 

systems. This PCA strategy was further applied by Cécillon et al. (2009) on a NIR spectral data set 

of Mediterranean topsoils and earthworm casts collected in areas affected by wildfire (Figure 1). 

Soil samples and biogenic structures were well separated by PCA on NIR spectra, depicting the 

influence of earthworms on soil quality, as previously demonstrated by Hedde et al. (2005). 

Furthermore, a strong effect of wildfire on NIR spectra could also be identified in this PCA. This 

striking result was the first illustration of the use of laboratory NIRS to estimate the effect of an 

ecological factor (wildfire) on soil conditions. Odlare et al. (2005) coupled PCA of NIR soil spectra 

and geostatistics to map spatial variation of soil properties. Since principal components of PCA 

synthesize information on global soil condition, such an approach is interesting for mapping soil 

quality in precision farming, or for the quantitative spatial assessment of polluted areas in 

environmental remediation procedures. 

Other studies have focussed on the use of laboratory NIR analysis as an integrated tool for the 

assessment of global soil quality. Using a holistic definition of soil quality, Vågen et al. (2006) 

aggregated ten commonly used agronomic indicators of soil quality (pH, organic C, total N, P, Ca, 

Mg, K, CEC, clay, silt) and developed ordinal soil condition classes (poor, average, good), which 
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were used to identify spectral wavebands that could diagnose soil condition. They found that five 

wavelengths were related to their soil quality index: relative reflectance at 570, 1410, 2040 and 

2390 nm were negatively correlated with soil condition class whereas relative reflectance at 1940 

nm (which is almost certainly due to O–H bond of water) was positively correlated with soil 

condition class. The authors computed a soil fertility index (SFI), calibrating the membership of the 

three soil condition classes to reflectance spectra of soils using a proportional odds ordinal logistic 

regression model. Finally, the SFI was successfully applied to the spatial representation of global 

soil quality based on remote sensing satellite imagery. Awiti et al. (2008) applied the same 

proportional odds ordinal logistic regression modelling technique to chronosequence classes of 

forest-cropland plots and the 10 first principal components calculated from PCA of soil NIR spectra. 

Using this strategy, the authors could determine three global soil condition classes (good, average 

and poor) which were then used for the successful classification of soils from unknown sites. 

Cohen et al. (2006) used another NIR-based approach of global soil quality. They combined 

ordinal logistic regression and classification trees of soil NIR spectra to discriminate between 

ecological condition categories. Using classification trees, they identified key spectral regions for 

ecological condition classification: 2200–2300 nm, 1100–1200 nm, and 500–600 nm. They 

concluded that site classification with soil reflectance data was more efficient than with 

biogeochemical data, especially for the discrimination of severely degraded sites. Soil NIR spectra 

thus provide an effective tool for rapid condition diagnosis of soils and ecosystems (Cohen et al., 

2006). 

 

NIR-based diagnostics of specific soil quality 

 

Global assessment of soil conditions with NIRS, as presented above, enables a rapid tracking of 

states of soil quality or of its changes after a disturbance. In addition, successful classifications of 

sites have been built regarding land-use type or global soil condition classes. However, soil quality 

policies usually address specific management goals such as productivity, waste recycling or 
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environmental protection (Andrews et al., 2004). Thus, methodologies for soil quality assessment 

should be able to measure specific soil functions or soil ecosystem services associated with these 

management goals. Recently, the European Commission (2006) identified several key threats to 

European soils, including soil erosion, soil contamination and loss of organic matter. An important 

objective of soil quality research is thus to provide economically realistic tools for the monitoring of 

these threats (Morvan et al., 2008). 

Following the widespread use of remote sensing in environmental management, the suitability 

of imaging spectrometry for specific soil quality assessment has been tested since the 1990s and 

was recently reviewed by Ben-Dor et al. (2008a, see references therein). The authors listed 

promising results of imaging NIRS regarding the quantification and mapping of some specific soil 

threats. Salinisation of soils has been fairly extensively studied using airborne reflectance data 

(HyMap, DAIS-7915). Qualitative indicators of soil erosion have also been mapped using airborne 

AVIRIS imaging spectrometry, with an accuracy of about 80%, which was superior to that achieved 

using Landsat-TM imagery. HyMap airborne data have been used to estimate the distribution of 

sludge containing large concentrations of heavy metals, demonstrating the potential of NIRS 

imaging to map soil contamination and monitor environmental remediation procedures. Finally, 

airborne reflectance data (AVIRIS, HyMap) in the presence of significant vegetation cover and 

NIRS satellite imaging (ASTER, wavebands between 2145 and 2430 mm) have been shown 

reliable for mapping soil swelling. These results could be useful to engineers for construction 

planning, decision makers for better management of the environment, and farmers in allocating 

hazardous areas like floods and erosion sites (Ben-Dor et al., 2008a). 

The application of laboratory spectrometry for the specific assessment of soil quality started in 

the 2000s. Cohen et al. (2005b) presented the first application for the rough assessment of a 

specific soil threat. They showed that NIRS clearly outperformed a frequently used empirical model 

for classifying sites according to soil erosion status. They used classification trees to provide an 

objective definition of degraded and intact soil conditions and developed NIRS-based screening 

models calibrated with reliable visual observations of degraded sites. These NIRS classification 

models were found efficient in discriminating three degradation classes (intact, moderate and 
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severe erosion). This rough assessment of a soil threat could be a useful tool for characterizing 

site conditions prior to irreversible degradation (Cohen et al., 2005b). 

However, an important goal for soil monitoring is the detection of small changes in specific key 

threats, functions or services over space and time. Thus, most recent soil quality indicators have 

been designed to achieve these ends (Andrews et al., 2004; Velasquez et al., 2007), but their 

implementation in soil monitoring networks remains too expensive and time consuming to be 

economically realistic using conventional soil analyses. 

Recent research has focussed on the quantitative prediction of specific and targeted soil 

quality indices with laboratory NIRS. Shepherd & Walsh (2007) presented some preliminary tests 

of indices designed to assess particular soil functions or threats such as soil fertility, soil erosion 

rate, soil erodibility, soil infiltration capacity, and plant growth potential. Their specific spectral 

indicators were based on the Mahalanobis distance in the principal component space built using a 

library of soil reflectance spectra. Cécillon et al. (2009) recently proposed a tentative approach 

based on the direct prediction of specific soil quality indices related to soil ecosystem services 

using laboratory NIRS. The accuracy of three soil quality indicators derived from the general 

indicator of soil quality (GISQ; Velasquez et al. 2007) was tested on the impact of wildfire 

disturbance (time since last fire) and soil engineering activity of earthworms (topsoil versus casts 

samples). For each sample, conventional analyses related to three soil ecosystem services were 

performed. Organic matter storage was assessed through organic C and total and mineral N 

contents, nutrient supply through pH and exchangeable cations (Ca, Mg, K, Na, CEC), and 

biological activity through a set of microbiological parameters (microbial C, two extracellular 

enzymes, potential denitrification and microbial C to organic C ratio). Three specific indicators (SI) 

of soil quality, reflecting the provision of these soil ecosystem services, were then computed using 

the GISQ approach (Velasquez et al., 2007). Higher SI values indicate more ecosystem services 

produced, thereby an improved soil quality (Velasquez et al., 2007). The predictive ability of NIR 

analysis for the three SI was assessed with partial least squares regression (PLSR; Tenenhaus, 

1998). PLSR models for the three SI reached “reasonable” statistics (Williams, 1993), with cross-

validated coefficients of determination (Q2) above 0.90 and ratio of performance to deviation (RPD) 
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above 2.8 (Figure 2; Cécillon et al., 2009). These results are the first attempt to predict specific soil 

quality indices with laboratory NIRS. They open a new pathway for soil quality research, as a 

simple scan of a soil sample with a NIR spectrometer can provide quantitative information on the 

provision of a given soil ecosystem service. The same strategy could probably be applied for the 

assessment of a soil function or a soil threat critical for management goals. 

Implementing this cost-effective strategy could have wide implications for the spatial coverage 

and the sampling frequency of soil monitoring networks (SMN). Existing SMN sites and data could 

be used for the regional calibration of soil quality indices. Then a quantitative assessment of soil 

quality could be performed at the field scale depending on the end-user or land manager’s needs. 

The sampling frequency of SMN could also be increased enabling a seasonal assessment of soil 

quality, which is crucial for the early detection of changes in soil conditions. 

 

Research needs towards NIR monitoring of soil conditions 

 

Soil spectral libraries: enabling the implementation of laboratory spectrometry in SMN 

 

Hitherto, NIRS has mainly been applied to soils at the field or the landscape scale, and no 

generalization can be inferred from regression models obtained with such local studies. One of the 

main gaps in effective monitoring of soil quality with NIRS is the building of NIRS-based regression 

models capable of assessing soil conditions at the regional scale across various soil types. 

Shepherd & Walsh (2002) presented a new approach allowing the regional quantification of many 

soil properties with laboratory spectrometry. They proposed the use of soil spectral libraries as a 

tool for building risk-based approaches to soil evaluation. In the spectral library approach, soil 

properties are measured conventionally for a selection of soils representative of the diversity of the 

studied region, and then calibrated to soil reflectance spectra. Usually, the size of the calibration 

sample set is increased until calibrations are found to be sufficiently accurate for user 
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requirements. It is then possible to predict the soil properties for new samples that belong to the 

same population as the library soils. Soils that are poorly described in the library can be further 

characterized (conventionally) and added to the calibration library (Shepherd & Walsh, 2002). 

Brown et al. (2006) applied the soil spectral library strategy using more than 4 x 103 soil samples 

selected from all 50 US states, two tropical territories and 36 different countries in Africa, Asia, the 

Americas and Europe. They obtained satisfactory predictive efficiency for various soil physical and 

chemical properties and concluded that calibrations sufficient for many applications might be 

obtained with large but obtainable soil spectral libraries (104–105 samples). Genot et al. (2007) 

worked with a spectral library of ca. 103 soil samples representative of the Walloon region 

(Belgium) and obtained accurate predictions for the soil properties studied (organic C, total N, clay 

content and CEC). Their work now allows the routine application of laboratory NIRS by the five 

laboratories providing fertility advice in this region. All applications of soil spectral libraries used 

advanced multivariate regression techniques to infer soil properties from NIR spectra. Shepherd & 

Walsh (2002) and Brown et al. (2006) worked respectively with multivariate adaptive regression 

splines (MARS), and boosted regression trees (BRT), two non-linear multivariate techniques. 

Genot et al. (2007) used an improvement of the PLSR algorithm (PLS-Local; Shenk et al., 1997) 

which matches the sample to be predicted using a small homogeneous group of spectrally similar 

samples selected from a calibration library. These advanced regression techniques clearly 

outperformed the classical PLSR approach which is often not on its own an optimal solution for 

processing soil spectra, especially with large datasets and a wide range of values (Cécillon et al., 

2008; Fernández Pierna & Dardenne, 2008). 

All these promising results underline the urgent need to build a universal and standardized soil 

spectral library. Viscarra Rossel (2008) and colleagues from the International Soil Spectroscopy 

Group (http://groups.google.com/group/soil-spectroscopy?hl=en) are currently trying to implement 

such a spectral library for basic soil properties (e.g. organic C, clay content). This huge task 

sounds feasible for soil chemical properties using existing samples from SMN. When built, it should 

be possible to compute and monitor some of the specific soil quality indices presented above (e.g. 

organic matter storage, nutrient supply). However, the current lack of data for many MDS variables 
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of soil quality (especially physical and biological properties) could compromise the rapid 

construction of a universal soil spectral library for the global assessment of soil quality or the 

specific assessment of soil threats like soil erosion, contamination, or decline in soil biological 

activity and diversity. The soil spectral library approach for the quantification of soil quality might 

thus not be successful until the calibration of all MDS variables to soil reflectance spectra has been 

achieved, which will be difficult. 

Furthermore, building NIR spectral libraries for soils raises several problems.  The first problem 

relates to the fact that NIR spectra show subtle variations even when obtained on supposedly 

identical instruments. This is even more of a problem with spectra from different makes and 

models of instruments, or those from instruments based on different principles (diode arrays versus 

Fourier transform or gratings, etc.). The systematic differences between spectra from different 

instruments can make combining spectra useless for developing calibrations. To overcome these 

problems, chemometric procedures known as calibration transfer (e.g. Shenk et al., 1985) are used 

to make spectra from different instruments appear the same. Much research still needs to be done 

so as to achieve comparability between instruments used for soil spectral measurements. The 

second related problem is the question of whether the measures of soil attributes included in the 

spectral libraries, particularly biological measures, obtained at different laboratories, are the same 

or not. When the two problems are combined, spectral libraries lose much of their value. These 

problems, while known and discussed greatly in other areas of NIRS (see e.g. Cen & He, 2007), do 

not seem to have received much press for soils. 

McBratney et al. (2006) proposed an alternative approach that links soil diffuse reflectance 

spectroscopy with an inference system to predict soil functional properties which are difficult and 

expensive to measure directly. They measured soil spectra to estimate various basic soil 

properties which were then used to infer the desired soil functional property via pedotransfer 

functions. This approach could be promising for the assessment of soil conditions, but reliable 

pedotransfer functions for global or specific soil quality are not sufficiently developed. 
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Challenges for monitoring soil conditions with imaging spectrometry 

 

Compared to laboratory spectroscopy, imaging spectrometry has, at the present time, some 

difficulties in producing reliable and robust predictions for routine soil analysis. A large part of the 

problem is technological (signal-to-noise ratio, spatial and spectral resolution, etc.) or a matter of 

institutional/scientific will (training of scientists, finding potential end-users) and beyond the scope 

of this paper (see e.g. Ben-Dor et al., 2008a). 

However, some progress can be rapidly achieved by applying more efficient analysis tools. 

The simplest solution to the problem of spatial variability in soil surface conditions is to record the 

surface conditions of the soil samples used in the calibration set and restrict the prediction to 

similar pixels (e.g. based on the Mahalanobis distance). Including a covariant such as soil moisture 

or roughness in the multivariate regressions is another solution, which requires the measurement 

of the disturbing factor over the entire study area. The recent convergence of several new 

measuring technologies aiming to map soil properties (e.g. synthetic aperture radar imagery) 

enables the investigation of such strategies in the mid-term. As presented above regarding 

laboratory spectrometry, the stability of the calibrations may also be improved by using more 

efficient chemometric approaches. For instance, the implementation of the PLS-Local algorithm 

with hyperspectral data would improve the accuracy, by using samples in the calibration set with 

surface conditions corresponding to the ones of the pixel to be predicted, providing that the 

spectral library would represent perfectly all surface conditions in the study area. Marx & Eilers 

(2002) have developed a multivariate technique – called penalized signal regressions – that forces 

the regression coefficients to vary smoothly across wavelengths. It allows the effects of noisy 

features in the spectral data to be removed from calibrations and yields more robust calibrations in 

general. Bartholomeus et al. (2008) proposed to use spectral indices (e.g. 1 / [slope 2138-2200 

nm]), which can be easily related to the biochemical composition of the soil samples and show a 

greater stability. 
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Conclusions 

 

This review has demonstrated that near infrared reflectance spectra contain much information 

related to soil quality. Using laboratory NIRS, good predictions can be achieved for many chemical 

and some physical and biological properties involved in soil conditions. Imaging NIRS can predict 

some soil chemical properties related to soil quality. Its ability to cover large surfaces in a single 

flight campaign and thus produce a complete picture of surface soil properties of bare soils 

represents a clear opportunity for monitoring. However, several technological limitations will delay 

its routine use for quantifying a MDS of soil quality. 

Soil NIR spectra can be used as an integrated measure of soil quality, so as to classify sites 

according to their global degradation status or for monitoring the effect of an ecological factor on 

soil quality. NIRS also opens a new way for soil quality assessment, as reliable quantification of 

particular soil functions, ecosystem services, or threats can be evaluated from a flight campaign or 

a simple NIR scanning of a soil sample. Implementing this specific approach to soil quality with 

laboratory and imaging NIRS will provide powerful tools to address the specific management goals 

of soil quality policies. Laboratory NIRS offers a low-cost solution for soil quality monitoring 

networks which could allow an increase in their spatial coverage and an increase in their sampling 

frequency. Imaging NIRS provides an interesting solution for the spatial assessment of some 

specific soil threats in environmentally sensitive areas. 

An urgent research need is the development of international soil spectral libraries that will 

improve the predictive ability of NIRS for soil quality attributes whatever the soil type. Coupling NIR 

spectral libraries with other diffuse reflectance measurements of soils, such as mid-infrared 

reflectance spectra, will probably be the next step towards spectral sensing of soil quality 

worldwide. 
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Figure 1  Weak absorption peaks in NIR spectra of topsoils (0-5 cm) and earthworm casts 

collected in French Mediterranean areas affected by wildfire (Cécillon et al., 2009). Each spectrum 

is an average of samples originating from five to ten plots. 

Wavelengths (nm) can be computed from wavenumbers (cm-1) with the following formula: 

Wavelength = [ 1 / Wavenumber ] x 107 

Abbreviation: TSLF = time since last fire 
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Figure 2  Predictive efficiency of laboratory NIRS for specific indices (SI) of soil quality related to 

three soil ecosystem services in French Mediterranean areas (modified from Cécillon et al., 2009). 

Squares correspond to topsoil samples and circles to earthworm casts. Black, grey and white 

symbols correspond to sites where time since last fire was 3, 16 and > 50 years, respectively. The 

dashed lines represent the 1:1 lines.  

Abbreviations: Q² = cross-validated R²; RMSECV = root mean squared error of cross-validation RPD = ratio of performance-to-deviation 
(calculated as RPD = SD RMSECV-1); SD = standard deviation of calculated SIs 
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TABLES 

Table 1a  Predictive efficiency of NIRS for MDS regarding soil chemical variables and associated soil functions, ecosystem services or threats. 

MDS 
variable1 

 

Soil 
functions2 

 

Soil 
ecosystem 
services3 

Soil threats 
studied in SMN4

 

NIRS 
predictive 
efficiency5 

Associated NIR wavelengths and references 
 
 

Organic C Nutr. Cycling6; 
filter-buffer; 
biodiv-habitat7 

Nutr. Cycling6; 
climate regul8; 
detox9 

SOM10 decline Good 1744, 1870, 2052 nm (Dalal & Henry, 1986); 1955-1965, 2215, 
2265, 2285-2295, 2315-2495 nm (Henderson et al., 1992); 
2218, 2350 nm (Salgó et al., 1998); 2200 nm (Confalonieri et al., 
2001); 1109, 1232, 1414, 1522 nm (Mouazen et al., 2007); 
1420, 1900-1950, 2040-2260, 2440-2460 nm (Rinnan & Rinnan, 
2007); 1130, 2410 nm (Terhoeven-Urselmans et al., 2008) 

Total and 
organic N 

Nutr. Cycling6; 
filter-buffer; 
biodiv-habitat7 

Nutr. Cycling6; 
climate regul8; 
detox9 

SOM10 decline Good For total N: 1702, 1870, 2052 nm (Dalal & Henry, 1986); 1726, 
1826, 2038 nm (Morra et al., 1991) 

PH Nutr. Cycling6; 
filter-buffer; 
biodiv-habitat7 

Nutr. Cycling6 Contamination Mid  

Electrical 
conductivity 

Nutr. Cycling6 Nutr. Cycling6 Desertification; 
salinisation 

Mid  

Mineral N, P, 
K 

Nutr. Cycling6 Nutr. Cycling6 Contamination Mid For NH4: 1510-1650 nm (Murray & Williams, 1990); for total P: 
2021-2025, 2081-2084 nm (Bogrekci & Lee, 2005); 2240-
2400 nm (Velasquez et al., 2005) 

Heavy metal 
content 

Nutr. Cycling6; 
resilience; 
filter-buffer 

Nutr. Cycling6; 
detox9 

Contamination Mid For Cu: ca. 900, 1300, 1500 nm (Gaffey & Reed, 1987); for Cd 
and Zn: 1050, 1400, 1850, 2150, 2280, 2400, 2470 nm (Kooistra 
et al., 2001) 

Salt content Nutr. Cycling6  Desertification; 
salinisation 

Mid For NaCl: 1930 nm; for KCl: 1430 nm; for MgSO4: 1480 nm; for 
Na2SO4: 1825 nm; for MgCl2: 1925 nm (Farifteh et al., 2008) 

1 modified from Doran & Parkin, 1994; 2 after Andrews et al., 2004; 3 after Lavelle et al., 2006; 4 after Morvan et al., 2008; 5 based on validation 
statistics (R², standard error of prediction); 6 nutrient cycling; 7 biodiversity and habitat; 8 climate regulation; 9 detoxification; 10 soil organic 
matter. 
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Table 1b  Predictive efficiency of NIRS for MDS regarding soil physical properties and associated soil functions, ecosystem services or threats. 

MDS  
variable1 

 

Soil  
functions2 

 

Soil  
ecosystem 
services3 

Soil threats 
studied in 

SMN4 

NIRS 
predictive 
efficiency5

Associated NIR wavelengths and references 
 
 

Soil loss Physical support; 
water relations 

Erosion control Soil erosion Poor For infiltration of crusted soils: ca. 1400, 1450, 1900, 2200 nm 
(Goldshleger et al., 2001, 2002) 

WSA6 Physical support; 
water relations 

Erosion control; 
climate regul7 

Soil erosion; 
SOM8 decline 

Mid  

Soil 
texture 

Physical support; 
biodiv-habitat9; 
filter-buffer 

Erosion control; 
detox10 

Compaction; 
soil formation 

Mid For clay: 2200 nm (Ben-Dor & Banin, 1995a); 1700 nm (Viscarra 
Rossel & McBratney, 1998); 1901, 1912 nm (Islam et al., 2003); 
2206 nm (Lagacherie et al., 2008); for particle size: 1323, 2021, 
2081 nm (Bogrekci & Lee, 2005) 

Soil 
structure 

Physical support; 
biodiv-habitat9; 
filter-buffer 

Erosion control; 
climate regul7; 
water supply; 
detox10 

Compaction;  
soil formation  

Poor For aggregate fractions: 1940, 2250 nm (Mutuo et al., 2006) 

Depth of 
soil and 
rooting 

Physical support; 
water relations; 
biodiv-habitat9 

Erosion control; 
soil formation; 
detox10 

Soil formation Poor  

Bulk 
density 

Physical support; 
water relations 

Water supply;  
soil formation 

Compaction; 
SOM8 decline; 
soil formation 

Poor  

WHC11 Physical support; 
water relations 

Water supply  Mid  

Water 
content 

Physical support; 
water relations 

Water supply  Good 1400, 1900, 2200 nm (Bowers & Hanks, 1965; Ben-Dor & Banin, 
1995a; Demattê et al., 2006); 1926, 1954, 2150 nm (Dalal & 
Henry, 1986); 1450, 1920 nm (Salgó et al., 1998); 1450, 1950, 
2500 nm (Viscarra Rossel & McBratney, 1998); 1420, 1920 nm 
(Confalonieri et al., 2001) 

Soil 
tempera-
ture 

Water relations; 
nutr. Cycling12; 
biodiv-habitat9 

Nutr. Cycling12; 
climate regul7; 
soil formation 

 Poor  

1 modified from Doran & Parkin, 1994; 2 after Andrews et al., 2004; 3 after Lavelle et al., 2006; 4 after Morvan et al., 2008; 5 based on validation 
statistics (R², standard error of prediction); 6 water stable aggregates; 7 climate regulation; 8 soil organic matter; 9 biodiversity and habitat; 
10 detoxification; 11 water holding capacity; 12 nutrient cycling. 
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Table 1c Predictive efficiency of NIRS for MDS regarding soil biological properties and associated soil functions, ecosystem services or threats. 

 

MDS variable1

 
Soil functions2 

 
Soil ecosystem 

services3 

Soil threats 
studied in 

SMN4 

NIRS 
predictive 
efficiency5 

Associated NIR wavelengths and references 
 

Microbial 
biomass 

Nutr. Cycling6; 
resilience; filter-
buffer; biodiv-
habitat7 

Nutr. Cycling6; 
climate regul8;  
soil formation; 
plant production 
and protection 

Biodiversity 
decline 

Good 1408, 1842, 2414 nm (Terhoeven-Urselmans et al., 
2008); wavelength interval 1750-2500 nm (Cécillon 
et al., 2008) 

Soil respiration Nutr. Cycling6; 
resilience; filter-
buffer; biodiv-
habitat7 

Nutr. Cycling6; 
climate regul8 

Biodiversity 
decline 

Good 800 (Fe oxide effect), 2030, 2180, 2200 (clay 
mineralogy effect), 2250, 2440, 2460 nm (Mutuo et 
al., 2006); for basal respiration: 1836, 2274 nm (alkyl 
groups), 1510 nm (amino groups) (Terhoeven-
Urselmans et al., 2008) 

Potentially 
mineralizable N

Nutr. Cycling6; 
resilience; filter-
buffer 

Climate regul8  Mid  

Cmic / Corg 
ratio 

Nutr. Cycling6; 
resilience; filter-
buffer; biodiv-
habitat7 

  Good Wavelength interval 1750-2500 nm (Cécillon et al., 
2008) 

Respiration/ 
biomass ratio 

Nutr. Cycling6; 
resilience; filter-
buffer; biodiv-
habitat7 

  ND  

Biodiversity Resilience; biodiv-
habitat7 

Soil formation; 
plant production 
and protection 

Biodiversity 
decline 

Poor  

1 modified from Doran & Parkin, 1994; 2 after Andrews et al., 2004; 3 after Lavelle et al., 2006; 4 after Morvan et al., 2008; 5 based on validation 
statistics (R², standard error of prediction); 6 nutrient cycling; 7 biodiversity and habitat; 8 climate regulation; ND: not determined. 


