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GMM WITH WEAK IDENTIFICATION

By James H. Stock AND JONATHAN H. WRIGHT!

This paper develops asymptotic distribution theory for GMM estimators and test
statistics when some or all of the parameters are weakly identified. General results are
obtained and are specialized to two important cases: linear instrumental variables regres-
sion and Euler equations estimation of the CCAPM. Numerical results for the CCAPM
demonstrate that weak-identification asymptotics explains the breakdown of conventional
GMM procedures documented in previous Monte Carlo studies. Confidence sets immune
to weak identification are proposed. We use these results to inform an empirical
investigation of various CCAPM specifications; the substantive conclusions reached differ
from those obtained using conventional methods.

KEywoRbps: Instrumental variables, empirical processes, Euler equation estimation,
asset pricing.

1. INTRODUCTION

THERE IS CONSIDERABLE EVIDENCE that asymptotic normality often provides a
poor approximation to the sampling distributions of generalized method of
moments (GMM) estimators and test statistics in designs and sample sizes of
empirical relevance in economics. Examples of this discrepancy in estimation of
stochastic Euler equations are investigated by Tauchen (1986), Kocherlakota
(1990), Neeley (1994), West and Wilcox (1994), Fuhrer, Moore, and Schuh
(1995), and Hansen, Heaton, and Yaron (1996); also see the articles in the 1996
special issue of the Journal of Business and Economic Statistics on GMM
estimation. Depending on the design, the sampling distributions of GMM
estimators can be skewed and can have heavy tails, and likelihood ratio tests of
the parameter values and tests of overidentifying restrictions can exhibit sub-
stantial size distortions. Although these problems are well documented, their
source is not well understood.

This paper investigates one possible source of these problems in GMM with
instrumental variables: that the instruments are, loosely speaking, only weakly
correlated with the relevant first order condition so that the parameters are
poorly identified. In the linear simultaneous equations model, it is well known
that when the instruments are weak in the sense that they have a low correlation
with the included endogenous variables, then the large-sample normal approxi-
mations work poorly; see, for example, Anderson and Sawa (1979), Nelson and
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Startz (1990), and Maddala and Jeong (1992). Intuition suggests that a similar
phenomenon could be important in nonlinear GMM problems. For example,
because lagged asset returns and consumption growth have low correlations with
current returns and consumption growth in postwar U.S. data, similar problems
might arise in nonlinear asset pricing models in which lagged consumption and
asset returns are used as instruments for a function of current returns and
consumption growth.

We therefore address four questions. First, is it possible to develop an
asymptotic theory for nonlinear GMM estimation when some or all of the
parameters are weakly identified? Second, does this theory explain the puzzling
failures found in Monte Carlo studies of conventional GMM asymptotics?
Third, if so, are there alternative econometric procedures that perform reliably
even if there is weak identification? Fourth, do these alternative procedures
produce different results than the conventional methods in empirical applica-
tions?

We find affirmative answers to all four questions. We develop nonstandard
asymptotic approximations to the distributions of GMM estimators and test
statistics when some or all of the parameters are weakly identified, in a sense
made precise in Section 2. In Section 4 we present a Monte Carlo study,
modeled on that of Hansen, Heaton, and Yaron (1996), of GMM estimation of
the intertemporal consumption capital asset pricing model (CCAPM). In this
study, the nonstandard asymptotic approximations generally are found to match
closely the finite sample distributions, although the usual normal approximations
do not.?

The weak-identification asymptotic approximations to the distributions of the
GMM estimators depend on nuisance parameters that are typically unknown in
empirical applications. Thus these approximating distributions cannot be used
directly for inference. Nonetheless, our asymptotic theory does lead to feasible
methods for hypothesis testing and for the construction of confidence sets.
These methods do not require knowledge of the nuisance parameters and yield
asymptotically valid tests and confidence sets even if there are weakly identified
parameters. These confidence sets are constructed by direct comparison of an
objective function, evaluated over the entire parameter space, to a chi-squared
critical value.

These findings are used to guide an empirical investigation of the CCAPM,
using aggregate data from the United States, under three specifications of
preferences: constant relative risk aversion (CRRA) utility, habit formation/
durability (Dunn and Singleton (1986)), and Epstein-Zin (1989, 1991) prefer-
ences. As predicted by our Monte Carlo study, there is considerable evidence of

2 3Some Monte Carlo studies have suggested that another possible source of the poor performance
of the conventional normal approximation is finite sample discrepancies between the GMM
weighting matrix and its population value; see Pagan and Robertson (1997) for a discussion. The
alternative asymptotic theory developed in this paper ignores this possibility and simply assumes that
this weight matrix is consistent (the details are given in Section 2), so as to focus solely on issues
related to weak identification.
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weak identification, and the new confidence sets we propose in this paper
typically differ from conventional GMM confidence sets.

Although there is a growing literature on instrumental variables estimation
with weak identification, it almost exclusively considers linear models. In the
linear case, the most closely related paper is Staiger and Stock (1997). They
consider single equation estimators and tests, and their main results obtain as a
special case of ours. However, the technical approach in this paper is quite
different than in Staiger and Stock (1997): their method of taking limits of first
order conditions seems not to generalize to the nonlinear case, so we consider
instead limits of the GMM objective function directly using empirical process
methods. Other recent papers that study weak instruments in the linear case
include Hall, Rudebusch, and Wilcox (1996), Pagan and Robertson (1997, 1998),
Chamberlain and Imbens (1996), Nelson, Startz, and Zivot (1998), Wang and
Zivot (1998), and Shea (1997). Sargan (1983) considered models that are linear
in the variables but nonlinear in the parameters, in which the derivative of the
population objective function with respect to the parameter vector is not of full
rank but the parameters are still locally identifiable in the sense of Fisher
(1966). He argued that in this circumstance estimators are consistent but not
asymptotically normal, and he used local asymptotic expansions to approximate
their distributions. None of these treatments handles GMM Euler equation
estimation in the general nonlinear case.

The main theoretical results are laid out in Section 2. These results rely on
high level assumptions that accommodate applications to either time series or
cross-sectional data. In Section 3, explicit formulas are provided for the special
case of single equation estimation in the linear simultaneous equations model.
Section 4 reports on a Monte Carlo study of GMM estimation of the parameters
of the power utility function in a representative agent model of consumption. An
empirical investigation of the CCAPM using U.S. data is reported in Section 5.
Section 6 concludes.

2. ASYMPTOTIC REPRESENTATIONS. GENERAL RESULTS

This section provides limiting representations of a GMM estimator with a
general weighting matrix when some of the parameters are weakly identified.
These general results are then used to obtain somewhat simpler expressions for
some specific estimators and test statistics, in particular the one-step and
two-step estimators and associated tests and what Hansen, Heaton, and Yaron
(1996) term the ““‘continuous updating” estimator.

2.1. The GMM Estimator

Let 6 be an n-dimensional parameter vector with true value 6,, which is
assumed to be in the interior of the compact parameter space ©@. The true
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parameter value satisfies the G equations,
2.0 E[h(Y,, 6,)|F]1=0

where F, is the information set at time t. Let Z, be a K dimensional vector of
instruments contained in_F,. The data are {(Y,, Z) t=1,...,TL

The GMM estimator 6 minimizes the objective functlon S.(0; 6:(0)) over
0 € O, where

(22)  S;(6;6:(0)) =

T ’
T2y ¢t(e)}wT(5T(e)) T
t=1

T
1/2 Z (bs(g)}’
s=1

where ¢,(6) =h(Y,, §) ® Z, and where W,(6,(6)) is an 0,(1) positive definite
GK X GK weighting matrix. The somewhat cumbersome notation for the
weighting matrix allows for various special cases. For the one-step GMM
estimator, W, does not depend on 6 and typically does not depend on the data;
for example it might be the identity matrix. For the efficient two-step estimator,
W, is computed using a preliminary estimator of 6, in which case ET does not
depend on 6. For the efficient continuous updating estimator, Wy is continu-
ously evaluated at the parameter values used for the moments, in which case
6:(#) = 6. For some of the test statistics considered below, W; is evaluated at a
fixed hypothesized value of 6, say 6; in this case 6(6) = 6,,. For notational
convenience, 6;(6) will simply be denoted 6, unless the explicit notation is
necessary.

We adopt the following additional notation. As is discussed in Section 2.3,
some expectation operators E depend on T, but this dependence is suppressed
for notational convenience. Let

T
v (0)=T12 ) [$(6) —E¢(0)],

t=1
.(2(61,62)=Tlim EV,(6,)¥;(6,),

N
Qy,= lim T EZZ,
To» t=1

Sn(0) = I|m T Z E{[h(Y,,6) — Eh(Y,, 6)]
t=1
x[h(Y,, 6) —Eh(Y,, 6)]}, and
- T
Q=T1') 2,7
t=1

0, 3,,,and Q,, are assumed to be finite. If cov[h(Y,, 0), h(Y,, 6)|Z,, Z,] does
not depend on Z, and Z, then the errors are conditionally homoskedastic and

(2.3) 0(6,,0,) =3,,(6,) ® Q,, (conditional homoskedasticity).
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2.2. Moment Assumptions

Our approach is to make so-called “high level” assumptions about the
properties of the moments that enter the GMM first order conditions. The
advantage of making high-level assumptions is that the results cover a wide
range of special cases. The disadvantage is that the assumptions must be
interpreted, and their plausibility checked, on a case by case basis. This process
of interpreting the assumptions in two leading cases (linear IV estimation and
the CCAPM) is undertaken in Sections 3 and 4.

The first assumption is that ¥;(6,) obeys a central limit theorem:

AsSUMPTION A: ¥.(6,) 5 NG, 0(6,, 6y)).

This assumption is local in the sense that it pertains to the properties of ¥,
only at 6,. This assumption typically will not be satisfied if the instruments are
integrated of order one or higher.

The next, stronger assumption is that ¥; obeys a functional central limit
theorem, so that ¥, treated as a function of 6 converges to a Gaussian
empirical process. Functional central limit theory and the related empirical
process literature in econometrics are surveyed by Andrews (1994). Let “="
denote weak convergence of random functions on ® with respect to the sup
norm; see Andrews (1994, Section 2).

AssUMPTION B: ¥, = ¥, where ¥(6) is a Gaussian stochastic process on @
with mean zero and covariance function E¥(6,)¥(6,) = Q(6,, 6,).

Assumption B implies Assumption A.

It is of course possible to provide primitive conditions that in turn imply
Assumption B. One such set of conditions applies to time series applications in
which ¢,(6) is m-dependent:

ASSUMPTION B':
(i) ¢,(6) is m-dependent;
(i) (0, — $(0,) <B0, — 0,], where lim;_ T !X E(B2"°) <o for
some 6> 0;
(iii) sup, c  Elp(0)I*"° < o for some &> 0.

Weak convergence (Assumption B) follows from the convergence of the finite
dimensional distributions of ¥,(6), stochastic equicontinuity, and the total
boundedness of ® (Andrews (1994)). Assumptions B'(i) and B'(ii) imply stochas-
tic equicontinuity (Andrews (1994, Theorems 1 and 2)). Assumptions B’'(i) and
B'(iii) imply the convergence of the finite dimensional distributions. The bound-
edness of @ and Assumption B'(ii) imply that ¢,(6) is totally bounded.
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2.3. ldentification, Lack of Identification, and Weak Identification

Identification in GMM is a combined property of the function h(Y,, 6), the
instruments Z,, and the weighting matrix W5. Identification hinges on whether
the population GMM moment conditions are satisfied uniquely. Assume (as we
shall below) that W; is positive definite. Then 6 is identified at 6, if 6= 6, is
the unique solution of E¢,(#) =0 for 6 € O, where the expectation is, as usual,
taken with respect to the true distribution (for which 6= 6,), cf. Newey and
McFadden (1994, Sec. 2.2.3). An extreme version of lack of identification arises
when E¢,(6) =0 for all 6 O, in which case we shall say that 6 is completely
unidentified at 6,,.

Our primary interest is not in whether 6 is strictly identified or unidentified,
but in the intermediate case in which 6, or a subset of 6, is weakly identified.
Because identification is a feature of E¢,(6), it is natural to characterize weak
identification in terms of E¢,(6). In finite samples, E¢,(6), while nonzero for
0+ 6,, might be small for a large set of 6, so that the population objective
function has large regions of plateaus or ridges; thus the population objective
function provides only limited ability to discriminate among a large set of
parameter values. If so, it is useful to think of 0 (or a subset of #) as being
weakly identified.

Our formal characterization of weak identification starts with an identity.
First adopt some additional notation. Partition 8 as 6 =(a’, 'Y, where a € A is
n, X 1 and will be treated as weakly identified, while 8 € B is n, X 1 and will be
treated as strongly identified. With this notation, it will at times be convenient to
write functions of 6 interchangeably as functions of « and g; for example
¥.(0) and ¥;(a, B) are equivalent. Also, let ET Y], ¢ (e, B) =M (a, B).
Now write the identity

2.4) fﬁT(a,B)=mT(aonBo)+m1T(a!B)+m2T(B)

where M;;(a, B) = M (a, B) — M(ay, B) and M, (B) = M (a,, B) —
M1 (ag, By). Because E¢(ay, By) =0, Mi(ay, By) =0, Mr(ay, By) =0, and
My7(By) = 0.

The key idea in this paper, made precise in Assumption C below, is to treat
M, (B) as large for B outside a neighborhood of B,, but M,(«, B) as small
for all « and B. Thus B can be thought of as well identified, whereas « is
weakly identified in the sense that the population moment conditions are zero at
(g, By) but are very nearly zero for a+ «,. In other words, the population
objective function is steep in B around B,, but is nearly flat in «.

The notion that B is well identified is implemented by assuming that M, ( 3)
satisfies conventional identification conditions in the GMM literature. Specifi-
cally, we suppose that M, ( 8) does not depend on T and (to simplify notation)
write M,;(B) =m,(B), where m,(B,)=0, m,(B)+#0 for B+ B, and
dmy(B)/dB'l g, has full column rank. If all the parameters are well identified so
that 6 = B, this becomes the standard set of GMM identification conditions that,
with additional conditions on moments and dependence, lead to T'/2-con-
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sistency and asymptotic normality of the GMM estimator of 8 (cf. Newey and
McFadden (1994)).

If, like M, ( B), M,;+(0) is nonzero for 6 # 6, and does not depend on T, then
the usual asymptotic approximation would obtain for the distribution of the
GMM estimator of «. However, the purpose of this paper is to develop a
nonstandard distribution theory for o that embodies its weak identification.
Whereas conventional asymptotics for estimators of well-identified parameters
rests on the assumption that it suffices to consider only those values of B close
to By, we question whether this is adequate to approximate the distributions of
estimators of weakly identified parameters. We therefore adopt the device of
linking the expectation of the moment condition to the sample size so that, even
asymptotically, the population objective function is finite globally in «, although
it is finite in B only in a local neighborhood of B,. This entails considering a
sequence of models in which E¢(6) depends on T for 6+ 6,, but the true
value 6, does not depend on T. Specifically, we adopt the nesting, M,;(0) =
T12my(6) + o(T~*/?), where m,(6) is bounded. The choice of the T~!/2 rate
in this nesting yields tractable asymptotic approximations to the sampling
distributions of GMM estimators and test statistics that reflect the fact that
weak identification results in an objective function that is nearly flat in «.

In the limiting special case that m;;(#) does not depend on 6 (and thus
equals zero), ET 'X]_,¢,(6) =m,(B), so that « is completely unidentified.
This would occur if, for example, Eh(Y,, «, 8) does not depend on « and Y, and
Z, are independent, so that the instruments are irrelevant. This is the so-called
partially identified model studied in the linear case by Phillips (1989) and Choi
and Phillips (1992).

We thus have the following assumption:

AsSUMPTION C: ET7'ET_ ¢(0) = my:(6)/VT +my(B), where:

(i m;7(0) - m(6) uniformly in 6 O, m,(6,) =0, and m,(6) is continuous
in # and is bounded on O;

(i) m,(By) =0, my,(B)+#0 for B+ B,, R(B) is continuous, and R( B,) has
full column rank, where R(B) = am,(B)/dB" is GK X n,.

Identification also depends on the weighting matrix W;, which, as was
mentioned above, is assumed to have a positive definite uniform limit.

% In the terminology of Davidson and MacKinnon (1993), this is a drifting DGP, conceptually akin
to the sequence of models used to study local asymptotic power of a test against a Pitman drift. Such
local nestings can be a useful device for approximating sampling distributions in the region of
knife-edge special cases. An example is the so-called local to unity model of an autoregression with a
nearly unit root (Bobkoski (1983), Cavanagh (1985), Chan and Wei (1987), Phillips (1987)). An
unusual feature here is that the local parameter is in general infinite dimensional in the sense that it
is the function m,(6).
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P

AssumpTION D: W; is positive definite and W;(6) — W(6) uniformly in 6,

where W(6) is a symmetric nonrandom GK X GK matrix that is continuous in 6
and is positive definite for all 6 € 6.

2.4. General Results

Theorem 1 provides a limiting representation for the GMM estimator by
first obtaining a limiting empirical process representation for the GMM ob-

~

jective function; let B(a) solve argming . g Sr(e, B; 6:(a, B)), let @ solve
argmin , . »S;(«, Bla); 0, (a, B(a))), and let 8= B(Q).

_ THEOREM 1. Suppose that Assumptions B, C, and D hold, and that 0:(0) =
0(0) uniformly in 6. Then:

Sr(a, By +b/TY? 6. (a, By))
=[V(a, By) + m(a, By) +R(B,b]’
XW(6(a, B)) W (a, By) + my(a, By) +R(By)b]
=5(a,b; B(a, By)).
(i) If S(e, b;6(e, By) has a unique minimum, then (&', TY2(g —
B,)) 5 (a*', b*), where a* = argmin_ . , S*(a; 8(a, B,)) and where
b* = — [R(BIW(8(a*, B)R(B)]
XR(BIW(0(a*, B))[W(a*, By) +my(a*, By,
$*(a; 6(a, By))
=[¥(a, By) + ma, B)]
XM(a, By; 0(a, B))[¥ (a, By) + my(a, By)], and
M(a, By; 0(a, By)) =W(0(a, By)) —W(6(a, By))
X ROBo)[RCBIYW(8(a, B))R(B)]
X R(BIW(6(a, By).

Proofs are given in Appendix A.

Several remarks are in order. First, although ,B is VT -consistent, @ is not
consistent but rather is O,(1). Because my(#) is finite on ©, the objective
function S;(a, By; 67) is unlformly O,(1), so a could not be consistently
estimated even if B, were known. The lack of consistency of a stems from
m,(6) being finite under Assumption C.



GMM WITH WEAK IDENTIFICATION 1063

Second, in general the limiting distributions of & and T¥?(3—B,) are
nonstandard. It is not surprising that @ has a nonnormal limiting distribution in
this setting because its limiting representation is the solution to a global,
generally nonquadratic rather than a local quadratic minimization problem. The
limiting nonnormality of T*2( 8 — B,), which is perhaps more surprising be-
cause B is well identified, arises from the inconsistent estimation of a. If &
were consistent for «, then the term ¥(a*, B,) + m,(a*, By) in the limiting
expression for b* would simplify to ¥(eay, By), 6 would have a nonrandom
probability limit, and b* would be normally distributed with mean zero and the
usual GMM covariance matrix. However, the inconsistent estimation of «
implies that in general the population moments are not evaluated within a local
neighborhood of « and so impart a nonzero bias to the limiting representation.
In the special case that W, does not depend on 6, the extent of the asymptotic
bias depends on Em,(a*, B,), Where the expectation is taken over a*. In
general this expectation need not be zero even if o™ is symmetrically dis-
tributed around «,, and in any event the distribution of a* need not be
centered around «g, so in general this contribution to the bias is nonzero.

Third, as a special case, these results provide limiting representations of the
estimators when « is completely unidentified in the sense that E¢,(«, B,) does
not depend on «, so m,(«, B,) = m,(a,, B,) =0. Then

S*(a; 0(a, By)) = ¥(a, B) M(a, By 0(a, By)) W(a, By)

and @ = oa* =argmin_ . , S*(a; 6(a, B,)). Complete characterizations of these
distributions depend on 2, W, and R(f,), which are specific to a given
application.

Because the limiting distributions are nonstandard, confidence intervals for 8
constructed by inverting the quasi-likelihood ratio (LR) statistic S;(6;, 6(6,))
—S.(6, 6:(8)) or the conventional Wald statistic will not in general be valid.
However, under weak conditions (Assumption A) confidence intervals can be
constructed directly from the objective function. This is a consequence of the
following theorems:

p
THEOREM 2: Suppose that Assumption A holds and W;(6,) = W(6,) =
0(6,,0,)"*. Then

d
St(60; 6p) = xSk

THEOREM 3: Suppose that Assumptions B, C, and D hold and that W(6,) =
0(6,,0,)"*. Then

Sy (o, Blag); ag, Blag)) > X2
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Thus, despite the weak identification, at the true values of the parameters the
objective function has a standard asymptotic y? distribution if an efficient
weighting matrix is used (efficient in the usual sense that W;(6,) consistently
estimates the inverse of the covariance matrix of ¢,(6,)). Theorem 2 holds
under quite weak conditions and does not involve any assumptions about
instrument validity except that the moment orthogonality condition E¢,(6,) =0
holds; the only assumptions on the properties of sample moments needed for
Theorem 2 are ones at the true parameter value. Theorem 3 does not require
m,(#) to be nonzero for 6 # 6,, but it does require that 8 be well identified in
the sense of Assumption C. Under these stronger conditions, the concentrated
objective function has an asymptotic y? distribution.

Theorem 2 provides a straightforward method for constructing asymptotically
valid hypothesis tests and confidence sets, that is, tests and confidence sets with
asymptotic size and coverage equal to their respective nominal levels uniformly
over the parameter space. To perform an asymptotically valid test of the
hypothesis 6= 6,, reject if S;(6,;6,) exceeds the appropriate xZ. critical
value. To construct an asymptotically valid confidence set, invert the test based
on S;(6y; 6,). That is, {6,: S;(6,, 0y) < xé« )} is an asymptotic 100(1 — r)%
confidence set, where x& . is the 100r% critical value of the x&y distribution.
Alternatively, a confidence set for a alone can be constructed by inverting the
test of a=«, based on S;(«,, B(ay); oy, B(ay)). Because they are based
directly on the objective function S;, we refer to these confidence sets as S-sets.
Note that Theorems 2 and 3 apply only to the continuous updating objective
function, and in particular the S-sets cannot be formed using the two-step
objective function.

Construction of asymptotically valid confidence sets for subvectors of 6 (other
than «) or subvectors of « is somewhat more difficult. One approach is to
construct a valid 100(1 —r)% set for 6 (or «) and to project out the other
elements; see, for example, Dufour (1997, Section 5.2). A confidence set thus
constructed will be asymptotically conservative, with asymptotic coverage rate of
at least 100(1 — r)%.

The S-sets are related to standard GMM test statistics. Under conventional
asymptotics, S;(6,; 6,) is asymptotically the sum of the LR statistic testing
0= 6, and Hansen’s (1982) J statistic testing the overidentifying conditions.
Under weak-identification asymptotics, in the special case of the linear simulta-
neous equations model, S-sets are asymptotically equivalent to confidence sets
constructed by inverting the Anderson-Rubin (1949) test statistic.

The S-sets consist of parameter values at which one fails to reject the joint
hypothesis that 6 = 6, and that the overidentifying conditions are valid, that is,
E[h(Y,, 6,)|Z,1=0. This has some appealing consequences, but also requires
care in interpretation. If the model is misspecified so that the overidentifying
conditions are invalid, S-sets can be null. If the instruments are weak or
irrelevant, it is possible that no parameter value will be rejected, that is, the
S-sets can contain the entire parameter space. The case of a small but nonempty
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S-set is, however, more ambiguous. The S-set could be small either because the
model is correctly specified and precisely estimated or because the model is
misspecified but the evidence is too weak to reject it entirely.*

2.5. Results for Specific GMM Estimators

We now provide explicit expressions for some common GMM estimators and
their associated test statistics. The estimators differ in their choice of the
weighting matrix W;. Weighting matrices that are asymptotically equivalent
under conventional assumptions need not be with weak identification, and
indeed can produce substantially different inferences.

The two-step and continuous updating estimators entail construction of an
efficient weighting matrix. We consider both heteroskedasticity robust and
nonrobust versions of the weighting matrix, respectively V;* and (V{')~!, where

T

25 V(@) =T ¥ [¢(8) — ()[4 — 6],

(2.6) VNGB =53,,(0)®Q,,, where

T ~.

S =T Y [h(Y,,8) =R@][h(Y.7) - h®)]

The one-step estimator, 51, is computed using W; = 5. The efficient two-step
estimator, 6,, minimizes the objective function with the efficient weight matrix
evaluated at the one-step estimator, so in the heteroskedasticity-robust case
W, (6(6)) =V, (0) 1. The efficient continuous updating estimator, 6 mini-
mizes the objective functlon with the efficient weight matrix evaluated at the
same point as the moments themselves, so W;(6(6)) = V;(8)~. Accordingly,
the one-step, efficient two-step, and efficient continuous updating estimators

* The S-sets are consistent with the recommendations in Dufour’s (1997) study of confidence sets
with locally almost unidentified parameters. He provided finite-sample results and did not consider
GMM estimation in the general case. In linear instrumental variables estimation with weak
instruments and an unbounded parameter space, he showed that Wald-type confidence ellipsoids are
bounded with probability one and hence cannot be valid confidence sets. He also pointed out that
Anderson-Rubin (1949) sets are unbounded with positive probability and, with fixed instruments and
Gaussian errors, they constitute valid confidence sets in finite samples.
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respectively are the minimizers of the three objective functions,
' T
T2 Y ¢s(0)},
s=1

N
2.7 S+ (0)= [T 2% ¢,(0)
t=1

!

T B T
(2.8)  Syr(0)=5:(6;0,)=|T V2L ¢(6)|V,(6,) ey ¢5(0)},
t=1 s=1
T 4 T
(2.9 S,(0)=5:(0:0)=|T 2 Y ¢(0)|V;(0) T V2 Y ¢>s(0)}.
t=1 s=1

Either for computational convenience or because heteroskedasticity is consid-
ered negligible, the two-step and continuous updating estimators could alterna-
tively be computed using the nonrobust covariance matrix V{'. These will be
referred to as the nonheteroskedasticity robust versions of these estimators;
they will be denoted #) and 6, and their objective functions S)(6) and
S&(6) correspond to (2.8) and (2.9) with V; replaced by V.

The quasi likelihood ratio statistics, which test the hypothesis 6= 6, based
on the two-step and continuous updating estimators respectively, are

(2.10) LR, = S,7(8,) — S, (8,),
(2.20b) LR, =S (6,) — Ser(8,)-
The J-tests of overidentifying restrictions based on these two estimators reject
for large values of the statistics,
(2.112) 3, =S, (),
(2.11b) I, =S ().

We assume that the weighting matrices in the objective functions are consis-
tent. For some purposes, pointwise consistency is sufficient, while for others,
uniform (on @) consistency is used. These assumptions are as follows.

~ P - p P
AssUMPTION D": Q,, = Q,z, 3,,(6y) = 2,,.(6,), and V.(6,) — 0(6, 6,).

AssumPTION D”: Q,, 5 Qrzr Son(6) 5 3.n(6), and V1(0) 5 0(6,6) uni-
formly in 6 € 6.

The limiting behavior of the objective functions S,;, S,;, and S, and the
associated estimators and test statistics now follow from Theorem 1. To simplify
notation, let 2, denote (6, 6) and let £, , denote (6, 6) evaluated at
0="(a', By). Let w(a)=90,Y¥m(a, By and let z(a)=0.*{*¥(a, By), 5O
that z(«) is a mean-zero, GK-dimensional Gaussian process in « with covari-
ance function Ez(a,)z(a,) = Q;l}/i’ﬂ((a’l, By, (ah, B(’))’)Q;;/i (we adopt the
notational convention that B =BY#BY2 and B~! =B '/2B~1/%, where B is
any nonsingular symmetric matrix).
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CoROLLARY 4: Under Assumptions B, C, and D", the following representations
hold jointly:
(a) One-step objective function:

SlT(a, B‘l) =Sf(a)=[z(a) + u(a)]'Q,(a)[z(a) + u(a)],
uniformly in « € A, where
Qua) = X2 {1 = R(BIIR(B) R( B R(B) J 03
(b) One-step estimator:
(ai,Tl/z( B, — Bo)l) = (o, b¥), where
af =argmin, c , Sf(a) and
b = —[R(By) R(B)I "R(By) QY% [2(af) + uwla)].
(c) Two-step objective function:
Syr(a, B,) = Si(a), where
Si(a)=[2(a) + u(a)]'Q,(a)[2(a) + u(a)], where
Qua) = V{0 5 = 00t RCBO[R(BY) 22 5 R(BY)|
XROBo) 2, | OME.
(d) Two-step estimator:
(a'szl/z( B, — Bo)’) = (aj’,bi"), where
ay =argmin, . , S¥(a) and
b = —[RCBY 2.f 5, ROBY| T ROBe) 2t 5, 0% [2(a) + )],
(e) Continuous updating objective function:
Ser( @, B) =S¥ (a) =[2(a) + u(a)]

X[1=F(a)(F(a)F(a) 'F(a)]
X[z(a) + u(a)], where
F(a) = 0;Y?R( B,).

(f) Continuous updating estimator:
(aé:Tm( B, — .30)') = (a,b¥), where

af = argmin S¥(a) and

ac€A

b7 = —[RCBYY 02,25, R(BY]  RCBoY 2,231 2(a) + )]
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(@ LR, = S(a,,0; af) — S(af, b%; a¥), where
S(a,b;a) =[¥(a, By) + my(a, By) + R(By)b]’
X 0% [P (a, By) +my(a, By) + R(B,y)bI;

(h) LR, = S(ay,,0; ) — S(al, b al);
() J, = S(aj, by, af);
B J. = S(ak, bF; aX).

Limiting representations for the two-step and continuous updating GMM
estimators based on the nonheteroskedasticity robust objective function are also
readily obtained from Theorem 1. One that will be used in Section 4 is the
nonrobust concentrated continuous updating objective function, S («, B,),
which has the limit,

(2.12) SC’\-‘r(ax Ec)
=[z(a) + ula)]
X 012 [W* = W*R(B)(R( B )W*R( By)) ™ 'R(BYW*]
% Qi{é;[z(a) + w(a)l,

where W* = 3, .(«a, By) ® Q.

2.6. The Unidentified Case and Measures of ldentification

If E¢(a, By) =0 for all «, then « is completely unidentified and m,(«, 8,)
=0, so w(a)=0 for all «. In this case, the expressions above simplify and it
becomes possible to make some general comments about the behavior of these
estimators. First consider the concentrated continuous updating objective func-
tion, S.;(a, B,). In the unidentified case, this has the limit, S¥*(a) =z(a)[I -
F(aXF(a)F(a) *F(a)]z(a). Evidently, for fixed @, S¥(a) is distributed
/\/GZK—nZ’ so S} may be considered a chi-squared process indexed by «a. If «a is
not unidentified but rather is weakly identified, then w(a) is nonzero for
a # ag, and for fixed @, S¥(a) is distributed as a noncentral XéK,nz random
variable with noncentrality parameter u(a)u(a). Thus S¥ can be thought of as
following a noncentral XéK,nz process.

Consideration of the unidentified case suggests that the two-step estimator of
a will be biased towards the probability limit of the nonlinear least squares
(NLS) estimator, with the bias increasing as u(a)u(a) decreases. This parallels
the linear simultaneous equations case, in which TSLS is biased towards the
probability limit of the OLS estimator. To see this for GMM, consider the
nonrobust estimator with G = 1 when all the coefficients are weakly identified,
so 0=a, and suppose that Eh(Y,, «)=0. The NLS objective function is

Susla) =T 'XT_ h(Y,, @)? and S (a)—p>2hh(a) uniformly in «. The coun-

nls
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terpart to the result in Corollary 4(c) for the nonrobust estimator simplifies in
this case because the terms in R( 3,) vanish, and

SN(a) = [2(a) + uw(a)]QY2[ 3, (a¥)Q,,1 0V [2(a) + u(a)]

where Q,=3,.(a)Q,,. If a is unidentified, w(a)=0 so Spi(a)=
2(a)'2(a)( 3 (@) /3 (af)). Because 3, (af) is a scalar that does not depend
on a, this factor can be ignored for the minimization. Because Ez(a)'z(a) =K
in expectation the limiting objective function is proportional to the probability
limit of S, («). This suggests that the minimizer of S}%(a) will be biased
towards the probability limit of the NLS estimator.

This discussion also suggests that the function u(a)u(a) is a population
measure of the strength of identification. In single equation estimation in the
linear simultaneous equations model (examined in the next section) when n =1,
u(aYula) is quadratic in @ — a, and [, u(a)u(a) da/ [J(a— ay)(a — ay) da
(where A is symmetric around «,) equals the so-called concentration parameter
which governs the rate of convergence of the finite sample distributions of the
two stage least squares (TSLS) and limited information maximum likelihood
(LIML) estimators to their Gaussian limits (e.g. Anderson (1977)). This provides
a simple one dimensional summary of the quality of identification in this case. In
general, however, the dependence of u(a) on « is complicated, and u(a)u(a)
need not be monotone increasing in |« — a,| This introduces the possibility of
multiple peaks in the pdf of the continuous updating estimator even if u(a)u(a)
is steep for a close to «,. This suggests that, in general, a full characterization
of the extent of weak identification requires global knowledge of u(a)Yu(a).

3. SINGLE-EQUATION LINEAR INSTRUMENTAL VARIABLES ESTIMATION

In this section the results of Section 2 are specialized to the estimation of a
single equation in the linear simultaneous equations model. In this case, the
two-step estimator is TSLS and the continuous updating estimator is LIML.

There is a large literature on exact distribution theory of instrumental
variables estimators in the linear model; see Phillips (1983) for a review. Let Yy,
be the dependent variable in the equation of interest and let Y, denote the n
other endogenous variables included in that equation. Suppose that n, of these

variables, YA, have a small correlation with the instruments, while the remaining
n, variables, YB, have a large correlation. The coefficients on Y will be treated
as weakly identified, while the coefficients on YB will be treated as well
identified in the sense of Section 2. Suppose, for notational convenience, that
the equation of interest contains no exogenous variables (this is readily relaxed
using standard projection arguments). The equation of interest and the equation
relating the instruments Z, to Y, are, in matrix form,

(3.1) y YO+ u=Yya,+ Yg By + U,
(3.2) zZ+v=z[M, Hg]+[Va Vs,
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where U, =[u,V/] satisfies E(U,|Z,)=0, and II and V are partitioned con-
formably with Y. We follow the convention in that literature and assume that U,
is serially uncorrelated and homoskedastic, so E(UU,|Z,,Z,) =3, if t=s,
else = 0.

In the notation of Section 2, h(Y, ) =y, — Y/6, ¢(60) = (y, — Y,0)Z,,
3..(0) =lim; T2, var(y, — ¥/0), 3,.(0) = T-*T_,[h(Y,, 6) — h(),
and 0(6,, 0,) = 3,,(6,)Q,. The objective functions S;5(#) and S*(6) can be
written

(3.3) SN0 =(y—Y0) P,(y—Y0)/Z.n(6,).
34 sHO)=TL+A (7Y

where A (6)=(y—YOYP,(y—Y6)/(y—YOYM,(y—Y0), P,=0QQQ 'Q,
and Mg =1—-P, for any full rank axb matrix, Q, a>b. Evidently 6, =
(\?”PZ\?)’l\?"PZy is the TSLS estimator. Since the LIML estimator minimizes
A;(0) and SX.(6) is an increasing function of A;(6), 6, is the LIML estimator.

It is useful to translate Assumptions A-C and D” into more transparent
assumptions which are tailored to this model. Accordingly, suppose that sample
moments involving u, V, and Z converge in probability to their expectations and

that T-/?L{_,U,® Q,2/%Z, S &~ N(0, 3, ® I,). Then, by direct calculation,
- p p
3nn(6) = 3,,(8), VI(6) - 3,,(6)Q,, and

.
(3.5) v (0)=T 123 (¢(0) —Edp(6))
t=1
T
T2y ([1 (6,-0)]u)z,
t=1

- ([1 (0,—0)] ® Qyzz’)g.
Because the primitive moments do not involve 6 and the various functionals are
continuous in 6, all limits are automatically uniform in 6 on @, and Assump-
tions A, B, and D" follow.

Translating Assumption C requires making the notion of weakly correlated
asymptotics concrete in this model. Direct calculation reveals that

N
(3.6) ET ) ¢(0)
t=1

=Qz 1(0, — 0) = QI ,(ag — @) + Qz IIg( By — B).

Assumption C is satisfied by setting I1, = T~/?C, and II; = Cg, where C, and
Cg are fixed matrices with dimensions KX n; and K Xn,, respectively; then
m,(6) = Q,,C(ay — @) and m,(B) = Q,,Cy( B, — B). In the special case that
all parameters are weakly identified so that 6 = «, then the term in Il is not
present in (3.6) and Assumption C reduces to IT= T !/2C,, which is the nesting
used in Staiger and Stock (1997, Assumption L ;).
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The linearity of this model permits considerable simplification of the formal
limits in Theorem 1 and Corollary 4. Consider the TSLS estimator. Partition &
as (& vec(&, ) vec(§, )Y = (& vec(&,)), where &, is KX 1, &, is KXn,,
and &, is KXn,, so & is Kxn. For the TSLS estimator, W(6) = Q7,
R(B) = —Qz;Cqg, and

.
v(0)=T"Y2Y [u+(8,—0)V,]Z, so
t=1

Y (0) = () =QY [ &+ &, (6, —6)] and
¥ (a, By) = QY[ &+ &y (e — a)].

Define A, = QY¥?C, and Ay = Q¥Cg. Substituting these expressions into the
formulas in Theorem 1, we obtain

37  Si(a)= [gu + (A + &) (o — a)]’
MAB[fu + A5+ &y ) (g — a)]/Ehh(af‘,Bo).

Thus @ g, s = af =argmin, Si(«a). Because Si(a) is quadratic in «, this
minimization can be carried out analytically; this yields

~ / -1 /
(3.8) ArgLs = afg s =g+ [(/\A"‘ év,) MAB()‘A"'va)] (Ap+&y,)
XM, &,

(3.9 Tl/z( ETSLS - Bo) = (/\,B/\B)_l/\’B[ & — (/\A + va)(a?kSLs - ao)]-

Two special cases of (3.8) and (3.9) can be found in the literature. First, when
II, =0, « is unidentified and the model reduces to the partially identified case
considered by Choi and Phillips (1992), and (3.8) and (3.9) reduce to Corollary
3.1 in that paper. Second, in the special case that all coefficients are weakly
identified,

Grsis— @ = [(Aa+ &, O+ £,)] M+ &, ) &,

which, upon setting A, =A and ¢, = ¢y, is the limiting representation in
Staiger and Stock (1997, Thm. 1).

Clearly the linear model permits a substantial simplification, relative to the
general results in Section 2. The proof of uniform convergence (the verification
of Assumption B) is straightforward because 6 does not enter the primitive
sample moments, so uniform convergence follows from finite dimensional con-
vergence and the continuous mapping theorem. For the same reason, the
stochastic process z(a) is linear in «, which in turn leads to the relatively
simple expressions (3.8) and (3.9).
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4. THE INTERTEMPORALLY SEPARABLE CCAPM:.: MONTE CARLO EVIDENCE

This section reports numerical results for the prototype consumption-based
asset pricing model, the representative agent intertemporally separable CCAPM
model with CRRA preferences. Two sets of questions are addressed. Does this
new asymptotic theory explain the puzzling failures of conventional GMM
asymptotics found in previous Monte Carlo studies, and does it provide better
approximations to the finite sample distributions than the usual Gaussian
distributions?

4.1. Theoretical Considerations
With CRRA preferences, the G Euler equations are (2.1) with

(41  h(Y,0)=6(C,,/C) "Ry,—t; (CRRA)

where & is a discount factor, C, is consumption, R, is a G X 1 vector of asset
returns, and g is the G X 1 vector of ones (cf. Hansen and Singleton (1982)).
Moment conditions are available using a constant and lagged variables as
instruments. In the notation of Section 2, ¢,(6) =[8R,, (C,,,/C)™" — 5] ® Z,,
where 6 = (v, 8). The parameters are assumed to be bounded by 8., <6< §
and Yoin < Y < Ymax-

The first step is to provide primitive assumptions that imply the high-level
Assumptions A, B, C, and D". Assumption A holds under standard conditions in
the GMM literature; cf. Newey and McFadden (1994). If ((C,,,/C\), R,.1, Z)
are m-dependent, then Assumption B'(i) is satisfied. Also, E|R,,; ® Z,|° <=
and Eexp(5(ypay + DIci, 1)) <, where c..,=In(C,.,/C,), imply B'(ii) and
B'(iii), so Assumption B’ is satisfied, which implies Assumption B. Assumption
D", which implies Assumption D, holds if ((C,, ,/C)), R, ;, Z,) also have enough
moments.

Assumption C is satisfied by treating y as weakly identified and & as strongly
identified; in the notation of Section 2, « =y and B = §. Specific formulas for
implementing this assumption are given in Appendix B. The motivation for the
different treatment of 6 and y comes from the structure of the first order
conditions. First suppose G = 1. Given v, 4 can be estimated precisely from the
sample mean, 8(y)=[T*X[_(C,,,/C) "R, ;1" Under the assumptions in
the previous paragraph, §(y) is T 2-consistent for any fixed 7. In this sense, &
is strongly identified by a constant, which is one of the instruments. When
G > 1, if co((C,,,/C)~ ", R,,,) is nearly zero, then the additional first order
conditions with a constant as the instrument arguably will not result in improved
estimation. If the covariance between (C,,,/C,)"YR,,; and a stochastic instru-
ment is small, things will not be improved by adding that instrument. It should
be stressed that the success of this weak /strong treatment of y and & can and
will be ascertained numerically. For example, if both & and y are appropriately
modeled as weakly identified, the approximations will be less satisfactory than

max
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they could be. On the other hand, if both & and vy are appropriately modeled as
strongly identified, they will have the usual joint normal distribution and the
weak-identification approximation will offer no improvement.

4.2. Data Generation and Estimation Equations

The Monte Carlo design follows Tauchen (1986), Kocherlakota (1990), and
Hansen, Heaton, and Yaron (1996). The artificial data were generated by the
method discussed by Tauchen and Hussey (1991), which was used by Kocher-
lakota (1990) and Hansen, Heaton, and Yaron (1996). This method fits a 16 state
Markov chain to the law of motion of consumption and dividend growth,
calibrated so as to approximate a Gaussian VAR(1).> The consumption CAPM
with CRRA preferences is then used to price stocks and a risk-free bond in each
time period, thereby yielding a time series of asset returns.

Four combinations of true parameters values and estimation equations are
studied. Let c,, r/, and r¢ denote consumption growth, the risk-free rate, and
the stock return. These combinations, or models, are as shown in Table I.
Models M1b, M2, and M3 were selected as representative of models that
previously have been found to produce nonnormal estimator distributions.
Kocherlakota (1990) studied models M1a and M1b. Hansen, Heaton, and Yaron
(1996) studied models M1a, M2, and M3.

Preliminary simulations indicated that whether a heteroskedasticity robust or
nonrobust covariance matrix is used makes only a small difference for the
distribution of the estimator and test statistics. All the results reported here are
based on the nonrobust covariance matrix, which is faster to compute. In this
design errors are martingale difference sequences at the true values (there are
no overlapping data) so a correction for autocorrelation is not used. Each
Monte Carlo draw from the finite-sample distribution required numerical opti-
mization over (y, 8).°

TABLE |

Interest Rate(s) in
Model (v0,8¢) First Order Condition(s) Instruments
M1la (1.3,.97) re 1,18 1, ¢y
Mib (13.7,1.139) rs L8, ¢y
M2 (13,97 rrf Lrs 1,y
M3 (13,97 rerf 1,¢,

®Let A denote the VAR matrix (with A, the coefficient on consumption growth in the dividend
growth equation, etc.), and let f and H be the intercept vector and error variance-covariance matrix
in the VAR. Following Hansen, Heaton, and Yaron (1996), the values of the parameters used are
(Aggr Ao Acgr Ag) = (117,.414,.017, —.161), (fq, f,) =(004,.021), and (Hgyq, Hye, Heo) = (.014,
.00177,.0012).

® Numerical optimization details and the results of numerical sensitivity checks are available from
the authors upon request.



TABLE 11
SUMMARY MEASURES OF ESTIMATOR AND TEST STATISTIC DISTRIBUTIONS: MONTE CARLO, WEAK INSTRUMENT ASYMPTOTIC,

v.0T

AND NORMAL ASYMPTOTIC DISTRIBUTIONS:

Y

)

10% Median ~ 90%  KS(y) 10%  Median  90%  KS(8) J LR Ser(y0,80)  Ser(vo, 8(vo))
A. Model Mla: §,=0.97, y, =13
Two Step
Monte Carlo —1.284 1646 4359 — 0917 0976 1.028 — 3.2% 5.2% — —
Weak Iden. —1.139 1.750 4.538 0.03 0918 0.978 1.024 0.02 33% 45% — —
Normal —1.800 1.300 4.400 0.09 0910 0.970 1.030 0.09 10.0% 10.0% — —
Continuous Updating
Monte Carlo —4.685 1.368 5041 — 0.836 0969 1033 — 35% 142% 10.1% 9.3%
Weak Iden. —5.718 1325 4912 0.02 0.791 0968 1.026 0.02 33% 14.0% 10.0% 10.0%
Normal —1.800 1.300 4.400 0.10 0.910 0970 1030 0.12 10.0% 10.0%  10.0% 10.0%
B. Model M1b: §, = 1.139, vy, = 13.7
Two Step
Monte Carlo 5664 9470 16.052 — 1029 1.091 1164 — 21.3% 40.1% — —
Weak Iden. 5996 9.968 16.377 0.07 1.030 1.095 1.164 0.05 23.4% 36.8% — —
Normal 3.852 13.700 23542 0.34 1.052 1139 1226 0.34 10.0% 10.0% — —
Continuous Updating
Monte Carlo 8.374 12930 42315 — 0867 1104 1.188 — 72% 10.8% 10.3% 9.4%
Weak lden. 8.510 13.702 51.858 0.06 0.305 1.102 1.187 0.09 6.8% 11.3% 10.0% 10.0%
Normal 3.852 13.700 23542 0.14 1.052 1139 1.226 0.25 10.0% 10.0% 10.0% 10.0%

IHOIEIM "H ' ANV MO01S 'H T



C. Model M2: 8, =0.97, y, = 1.3

Two Step
Monte Carlo —0.904 0.814 3611 — 0924 0960 1001 — 10.3% 252% — —
Weak Iden. —0.481 0937 3.899 005 0932 0961 1.003 0.04 16.1% 29.0% — —
Normal 0.348 1300 2252 0.24 0954 0970 0986 0.30 10.0% 10.0% — —

Continuous Updating

Monte Carlo 0.756 1.308 4651 — 0960 0.969 1.025 — 9.3% 11.0% 9.8% 9.2%
Weak lden. 0.687 1.286 4315 0.05 0959 0970 1.015 0.05 105% 125% 10.0% 10.0%
Normal 0.348 1300 2252 0.16 0.954 0.970 0986 0.14 10.0% 10.0%  10.0% 10.0%

D. Model M3: 6, =0.97, y, = 1.3

Two Step
Monte Carlo —2.125 1256 5406 — 0905 0.966 1.030 — 4.9% 16.3 — —
Weak Iden. —1581 1361 5364 0.04 0.912 00967 1.023 0.02 59% 21.2% — —
Normal 0.292 1300 2308 0.23 0953 0970 0987 0.19 10.0% 10.0% — —

Continuous Updating

Monte Carlo 0728 1297 4809 — 0960 0969 1026 — 9.7% 11.2%  10.6% 10.5%
Weak lden. 0586 1.296 4595 0.08 0957 0970 1.018 0.07 10.1% 109% 10.0% 10.0%
Normal 0292 1300 2308 0.16 0953 0970 0987 0.15 10.0% 10.0% 10.0% 10.0%

Notes: § is treated as strongly identified and y is treated as weakly identified. The columns headed “y” and “8" summarize the distributions of the
estimators of these parameters. Kolmogorov-Smirnov statistics compare the Monte Carlo distribution with the asymptotic approximation in the relevant

row. The columns labeled “J,” “LR,” “Sc1(yg, 80),” and “Scr(yo, 8(y,))” report rejection rates of these four test statistics at the nominal (standard
asymptotic) 10% level, where the test statistics are described in the text.

NOILVOIdILNIAl MVIM HLIM NND

G.0T



1076 J. H. STOCK AND J. H. WRIGHT

Finite sample distributions were computed using 5000 Monte Carlo replica-
tions. Computation of the weak-identification asymptotic approximation is dis-
cussed in Appendix B.

4.3. Results

The results are summarized in Table Il for T=100. The finite-sample
distributions diverge substantially from the asymptotic normal approximation for
models M1b, M2, and M3. In almost all cases, the weak-instrument asymptotics
provides a much better approximation than the normal approximation, as
measured by the guantiles and the Kolmogorov-Smirnov statistic (the maximum
absolute difference between the two empirical cdfs). The weak-identification
asymptotic approximations also match the rejection rates of the J and LR
statistics.

The final two columns in Table Il present the rejection rates of the test
statistics used to form the S-sets (the S-set coverage rate is one minus this
rejection rate). The first statistic tests the joint hypothesis that y and & take on
their true values, according to Theorem 2, and the second statistic tests the
hypothesis that y takes on its true value based on the concentrated (over &)
continuous updating objective function, according to Theorem 3. In each of the
designs the finite-sample size of both these test statistics is very close to the
nominal size of 10%.

Cumulative distribution functions for the two-step and continuous updating
estimators of § and y are presented in Figure 1 for model M1b. Evidently, the
weak-identification asymptotic approximation captures the main qualitative fea-
tures of the finite-sample distribution, while the normal approximation typically
does not.’

In Section 2 it was predicted that, as u(a)Yu(a) gets large, the weak-instru-
ment asymptotic distribution will approach the usual Gaussian limit, and the LR
and J statistics will approach their usual x? distributions. In contrast, as
u(a)u(a) decreases, 6, was predicted to be biased towards the probability limit
of the NLS estimator, and the distribution of 6, was predicted to be tighter
than that of 6. These predictions are explored here by exploiting a scaling
property of the weak-identification approximation that permits ready computa-

" Results were also computed for T = 50, although these are not tabulated here to save space.
Relative to the T =100 results, the performance of both the conventional normal and the weak-
identification asymptotic approximations deteriorates when T = 50. Although the weak instrument
approximation generally provides a good approximation to the central tendency of the distributions,
the Monte Carlo distributions generally have heavier tails than the weak instrument approximations,
and the Kolmogorov-Smirnov statistics for the weak-identification approximation are greater for
T =50 than T = 100 by between .01 and .03. The weak instrument approximation nonetheless does
considerably better than the normal approximation in all cases considered.
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tion of the approximation for alternative sample sizes once it has been com-
puted for an initial sample size.®

The results, summarized in Table Ill, are consistent with these predictions.
For small T, and thus small u(a)Yu(e), the distribution of ¥, is tighter than
that of 3. In models M1a and M1b the median of ¥, is strongly biased towards
the probability limit of the NLS estimator, which is 2.39 for Mla and 3.91 for
M1b. As T increases this median shifts towards y,. For small T, the J and LR
statistics can have major size distortions, but as T increases their sizes approach
the desired 10% level. For the weak-identification and normal approximations to
converge, as measured by a Kolmogorov-Smirnov statistic of .05 or less, requires
T =1000 in M1la and 10,000 in M1b, M2, and M3. Because the weak-identifica-
tion approximation was found to work well in these designs, this suggests that
approximately a century of monthly data are needed before conventional normal
asymptotics provides a good approximation to the finite sample distributions of
these estimators.

5. EMPIRICAL RESULTS FOR U.S. DATA
5.1. Models

In this section, the tools developed in the previous section are applied to an
empirical investigation of several consumption-based asset pricing models. Three
sets of preferences are considered. The first is CRRA, with h(Y,, 6) given
in (4.1). The second allows for time nonseparability in the form of durabil-
ity and habit formation. In this model the representative agent maximizes
EX:_,8°(C,+pC,_ ' 7"—1]/(1— ), and

(5.0 h(Y, ) =R, 1[(Coy+pC) 7 +8p(Cpp +pCi) 7]/
(C,+pCy) 7
—[(C+pC) T+ 8p(Cpyy +pC) ] /(Ci+ pC )
(habit formation /durability).

8Let md(6), mI(8), and R(S8) denote these quantities computed for some T=T, so that
Ed, =Ty 1/2m(6) + m3(8). Because the functions E¢, and (2(6, 6) determine the weak-identifi-
cation asymptotic approximation, holding the design fixed and changing T amounts to holding these
functions fixed and changing T. Thus for general T,

1/2

.
ET-Y2 Y ¢= (T/T)?md(6) + TE2[(T /T mY(8)],
t=1

so the weak-identification asymptotic approximation for general T is obtained by making the
transformation m;(0) = (T /T 2md(8), m,(8) =(T/THY?m3(8), and R(8) =(T/T,Y2R%(S).
Note that (6, 8) does not depend on T, so no adjustment is needed for general T. Because the
mean and covariance functions need to be computed only once (for T,), the computational burden
of recomputing the asymptotic distribution does not depend on T.
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Positive values of p imply durability of consumption, negative values of p imply
habit formation, and p =0 corresponds to CRRA preferences. For additional
discussion see Dunn and Singleton (1986), Eichenbaum and Hansen (1990),
Ferson and Constantinides (1991), and Hansen, Heaton, and Yaron (1996).

TABLE 111
WEAK IDENTIFICATION ASYMPTOTIC APPROXIMATIONS, VARIOUS SAMPLE SIZES

% 8
T 10% Median 90% KS(y) 10% Median 90% KS(8) J LR
A. Model M1a
Two Step
10 —1.482 2267 6.527 0.26 0.891 0.984 1.064 0.20 28% 3.6%
100 —1.139 1750 4538 0.12 0.918 0.978 1.024 0.10 33% 4.5%
1000 0.338 1354 2265 0.03 0.951 0.971 0.988 0.03 55% 7.7%

10,000 0.998 1310 1.604 0.02 0964 0.970 0976 001 8.0% 9.1%

Continuous Updating

10 —12.983 1262 6.961 0.14 0513 0.965 1.065 0.16 1.6% 15.2%
100 —5.718 1325 40912 011 0.791 0.968 1.026 0.13 3.3% 14.0%
1000 0220 1.315 2259 0.02 0.948 0970 0988 0.03 83% 9.9%

10,000 0.992 1303 1.600 0.01 0964 0.970 0976 001 91% 9.5%

B. Model M1b
Two Step
10 1137 6.014 11931 043 0914 1.029 1.152 0.38 12.8% 57.9%
100 5996 9.968 16.377 0.30 1.030 1.095 1164 0.31 23.4% 36.8%
1000 11.092 13.258 16.826 0.08 1110 1.134 1160 0.11 11.9% 14.7%

10,000 12.806 13.659 14.672 0.03 1.130 1.138 1147 0.04 89% 10.6%

Continuous Updating

10 5440 13494 71562 030 —2.017 1.058 1371 020 54% 12.7%
100 8510 13.702 51.858 0.17 0305 1102 1.187 024 6.8% 11.3%
1000 11.385 13.712 18.109 0.08 1111 1135 1162 0.07 88% 10.1%

10,000 12.843 13.705 14.734 0.04 1131 1139 1147 0.02 92% 9.9%

C. Model M2
Two Step
10 —1.041 0.740 5990 0.11 0.897 0.951 1.024 0.23 12.0% 27.5%
100 —0.481 0937 3.899 0.20 0.932 0961 1.003 0.26 16.1% 29.0%
1000 0942 1273 1.833 0.11 0.963 0.969 0978 0.12 29.0% 35.1%

10,000 1194 1300 1.415 0.04 0968 0.970 0972 0.06 155% 18.6%

Continuous Updating

10 0.426 1316 17.665 0.29 0949 0.968 1.095 021 8.6% 152%
100 0.687 1286 4315 0.15 0959 0.970 1015 014 105% 12.5%
1000 1.026 1299 1.770 0.09 0.965 0.970 0.978 0.08 11.0% 10.7%

10,000 1198 1.300 1.412 0.04 0968 0.970 0972 0.03 10.3% 10.7%
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TABLE I11—(Continued)

Y 8
T 10% Median 90% KS(y) 10%  Median  90% KS(8) J LR
D. Model M3
Two Step
10 —-3975 1316 11.338 0.21 0.832 0950 1.098 0.19 53% 10.8%
100 —1581 1.361 5364 0.24 00912 0.967 1.023 0.19 5.9% 21.2%

1000 0985 1364 2021 0.17 0964 0970 0980 0.13 10.0% 36.1%
10,000 1.198 1307 1.437 0.08 0968 0.970 0972 0.06 9.6% 18.6%

Continuous Updating

10 0.144 1275 20430 0.26 0946 0966 1129 021 9.3% 12.8%
100 0586 1296 4595 0.16 0957 0970 1.018 0.15 10.1% 10.9%
1000 1.004 1294 1766 0.07 0.965 0970 0978 0.07 11.0% 10.9%

10,000 1193 1.298 1420 0.04 0968 0.970 0972 0.04 10.0% 10.7%

Note: Kolmogorov-Smirnov statistics compare the weak identification and normal asymptotic approximations.
See the notes to Table II.

The third set of preferences considered are the time-separable Kreps-Porteus
(1978) preferences as developed by Epstein and Zin (1989, 1991). With CRRA
preferences, the coefficient of relative risk aversion is the reciprocal of the
intertemporal elasticity of substitution. With Epstein-Zin preferences, this link
is broken, and

(52)  h(Y,6)=8Cy,/C) ""RALR, 1~ (Epstein-Zin)

where y now denotes the reciprocal of the intertemporal elasticity of substitu-
tion, R, , denotes the return on the optimal portfolio, and R, ,,, denotes a
G-vector of returns on arbitrary asset portfolios. When A =1 this reduces to the
CRRA case.

5.2. The Data

Two data sets are used. The first is an updated version of the long annual data
set used by Campbell and Shiller (1987), and consists of annual U.S. data on
stock returns, bond returns, and consumption covering the period 1871 to 1993.
The stock returns are based on the Cowles Commission index, followed by the
annual average price of the Standard & Poors monthly composite index. The
interest rate is the nominal rate for prime 4-6 month commercial paper. The
spread, used as an instrument in some models, is the difference between the
yield on long term U.S. Treasury bonds and the commercial paper rate. Asset
returns were put on a real basis using the producer price index. The consump-
tion series is the real consumption of nondurables and services per capita.
Sources and construction of the data are detailed in Campbell and Shiller (1987)
(asset data) and Shiller (1982) (consumption data).
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The second data set consists of Campbell’s (1996) monthly U.S. data from
1959:1 to 1990:12 on twelve assets: returns on 11 portfolios of stocks sorted
by sector (petroleum, finance /real estate, consumer durables, basic industry,
food /tobacco, construction, capital goods, transportation, textiles and services,
and utilities) and the one-month U.S. Treasury bill rate. For details and data
sources, see Campbell (1996). We augmented these data by real per capita
consumption, constructed as nominal personal consumption expenditures on
nondurables (taken from CITIBASE, mnemonic GMCN), divided by the adult
population (POP) and deflated by its implicit deflator (GMDCN). This deflator
was also used to convert all the monthly nominal asset returns into real returns.
Following Epstein and Zin (1991), the optimal portfolio in (5.2) was proxied by
the market portfolio as measured by the NYSE value-weighted index of stock
returns, and the GMM statistics were computed with G = 13 (eleven sectors, the
NYSE value-weighted return, and the Treasury bill rate).

5.3. Results

Conventional two-step GMM results are reported in Tables IV (CRRA
preferences), V (habit formation /durability), and VI (Epstein-Zin). Most instru-
ment sets include only the first lag. Because of concerns about temporal
aggregation bias, however, in some cases only second lags were used as instru-
ments. The details are given in the tables.

These results, when analyzed using conventional normal asymptotics, gener-
ally accord with the existing literature. When stocks and bonds are both priced
and the full set of instruments is used (first lags; CRRA-4 and CRRA-10), the
overidentifying restrictions implied by the CRRA model are rejected at the 5%
level by the J statistic in both data sets. For the habit formation/durability
model with the annual data, a moderate positive value of p is estimated,
indicating durability, but all estimates of y are, nonsensically, negative, and the
J statistic rejects three of the four specifications at the 10% level. In the
monthly data, conflicting results are obtained for the two models not rejected at
the 10% level by the J statistic. With first lags as instruments (H/D-5), p is
precisely estimated as positive, but with second lags as instruments (H /D-7), p
is imprecisely estimated as negative. For Epstein-Zin preferences, when lagged
returns on the market and consumption growth are used as instruments (EZ-1
and EZ-2), the J statistic fails to reject and the hypothesis A =1 (CRRA
preferences) is rejected at the 1% level, but the estimates of y are negative.
When the spread and the dividend yield are added as instruments, the J statistic
rejects at the 5% level (EZ-3 and EZ-4).

Because of the possibility of weak identification, we computed S-sets for these
models, both for all parameters jointly (based on Theorem 2) and for the weakly
identified parameters (based on Theorem 3). In the CRRA model, § is treated
as strongly identified as discussed in the previous section. In the habit forma-
tion /durability and Epstein-Zin models, it remains reasonable to treat the
function of the parameters describing the unconditional mean as well identified
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TABLE IV
GMM EsTIMATION RESULTS, CRRA PREFERENCES

Model Assets GK Instruments 8 y J 90% S-set fory  S-set

A. Annual Data, 1871-1993

CRRA-1 SR 3 SR,CG 0.903 0.132 0.69 (-2.0,23) Fig.2
(0.022)  (1.037) [0.69]
CRRA-2 SR,BR 6 SR,CG 0.958 —0.507 22.93%** (%) %]
(0.007) (0.298) [25.27]F**
CRRA-3 SR,BR 8 SR,BR,CG 0.952 —0.819 32.73%** (%) (%)
(0.007)  (0.306) [39.10F***
CRRA-4 SR,BR 10 SR,BR,CG, 0.953 —0.745 37.81F** %) (%)
Spread, DY (0.007) (0.277) [46.82]"**
CRRA-5 SR,BR 8 AsCRRA-3, 0.971 6.436 10.11 (18.8,40.8) Fig. 3
second lag (0.037) (2.994)  [33.00]%**
CRRA-6 SR,BR 10 AsCRRA-4, 0.822 —3.333 12.02 (16.0,58.8) t

second lag (0.042) (2.269) [70.81]**

B. Monthly Data, 1959:1-1990:12

CRRA-7 SR 3 SR,CG 0.999 0.641 2.79 (-0.1,15) t
(0.002)  (0.743) [2.79]
CRRA-8 SR,BR 6 SR,CG 0.999 0.122 3.07 (%) %]
(0.000) (0.068) [20.36]***
CRRA-9 SR,BR 8 SR,BR,CG 0.999 0.210 4.38 %) %]
(0.000) (0.071) [81.78]***
CRRA-10 SR,BR 10 SR,BR,CG, 0.998 0.035 20.43%** %) (%)
Spread, DY (0.000) (0.064) [113.58]+**
CRRA-11 SR, BR 8 AsCRRA-9, 0.999 1.148 153 (0.6,) t
second lag (0.001)  (0.396) [3.23]
CRRA-12 SR,BR 10 AsCRRA-10, 0.999 0.289 13.88* %) (%)

second lag (0.000) (0.160)  [54.59F+**

Notes: J statistics are significant at *10%, **5%, ***1% significance levels, based on the standard chi-squared critical
value. & denotes an empty S-set, and t denotes a nonempty S-set, which is not presented graphically to save space; these
figures are available upon request from the authors. Point estimates, standard errors (in parentheses), the first J statistic
in each row are two-step estimates. The J statistics in square brackets were computed from the continuous updating
objective function. The S-set for y is based on the objective function, concentrated with respect to 8. The instruments are
the indicated variables, lagged once, except for the models in which the instruments are stated as lagged twice. The
instruments always include a constant term. Variable definitions: SR = stock returns (returns on a market portfolio);
BR = bond returns; CG = consumption growth, spread = long bond rate minus short interest rate, DY = dividend yield.
See the text for a discussion of the data.

(the constant term is a strong instrument). This function depends on & and p
(habit formation-durability) or 6 and A (Epstein-Zin); as in the CRRA case, y
enters this function only weakly when movements in consumption are small, as
they are in the data. In those models, we therefore report two concentrated
S-sets, one in which & is concentrated out and one in which either p or A is
concentrated out.

The results for the CRRA models are summarized in the final columns of
Table 1V, and selected 90% S-sets (along with conventional two-step GMM
confidence ellipses) are graphed in Figures 2 and 3. When only stocks are priced
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TABLE V

GMM ESTIMATION RESULTS, HABIT FORMATION / DURABILITY PREFERENCES

1083

Model Assets GK Instruments 8 y p J S-set
A. Annual Data, 1871-1993
H/D-1 SR,BR 8 SR,BR,CG 0.944 —0.897 0.116  24.77*** Fig.4
(0.009) (0.438) (0.187) [42.86]***
H/D-2 SR,BR 10 SR,BR,CG, 0.944 —0.895 0.112  28.08*** t
Spread, DY (0.008) (0.421) (0.187) [50.21]***
H/D-3 SR,BR 8 AsH/D-1, 0.866 —2.154 0.082 11.17* t
second lag (0.037) (2.152) (0.318) [76.09]**
H/D-4 SR,BR 10 AsH/D-2, 0.790 —6.480 0.286  13.09 T
second lag (0.067) (3.864)  (0.258) [59.86]***
B. Monthly Data, 1959:1-1990:12
H/D-5 SR,BR 8 SR,BR,CG 1.004 5.182 0.443 3.87 Fig. 5
(0.002) (1.604) (0.074) [6.83]
H/D-6 SR,BR 10 SR,BR,CG, 0.999 1111 2,111 19.89%** %}
Spread & DY (0.0000 (0.299) (0.482) [64.17[***
H/D-7 SR,BR 8 AsH/D-5, 0.999 1174 —0.336 1.43 T
second lag (0.002) (1.709) (0.359) [3.98]
H/D-8 SR,BR 10 AsH/D-6, 0992 —1.88 —0.332 12.99* T
second lag (0.004) (2.061) (0.275) [25.83]**

Notes: J statistics are significant at *10%, **5%, ***1% significance levels, based on the standard chi-squared
critical value. & denotes an empty S-set, and t denotes a nonempty S-set, which is not presented graphically to

save space. See the notes to Table IV.

TABLE VI

GMM EsTIMATION RESULTS, EPSTEIN-ZIN PREFERENCES

MONTHLY DATA, 1959:1-1990:12

Model Assets GK Instruments 8 y A J S-set
EZ-1 BR, MR, 39 MR, CG 0.999 —0.025 0.710 45.87 %)
returns on 11 (0.000) (0.065) (0.079) [52.92]**

sector portfolios

EZ-2 BR,BR 39 AsEZ-1, 0995 —4.082 0.055 29.42 T
returns on 11 second lag (0.005)  (4.597) (0.041) [33.68]
sector portfolios

EZ-3 BR, MR, 65 MR, CG, 0.999 —0.031 0.738 93.447%%* %)
returns on 11 Spread & DY (0.000)  (0.062) (0.031) [114.37]**
sector portfolios

EZ-4 BR, MR, 65 AsEZ-2, 0997 —1.892 0.738 82.70%* Fig. 6
returns on 11 second lag (0.001) (0.906) (0.038) [81.09]*

sector portfolios

Notes: J statistics are significant at *10%, **5%, ***1% significance levels, based on the standard chi-squared critical
value. & denotes an empty S-set, and t denotes a nonempty S-set, which is not presented graphically to save space.
MR is the return on the market portfolio (the proxy for the optimal portfolio). In each model there are 13 Euler

equations (G = 13). See the notes to Table IV.
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FIGURE 2.—Joint S-set and concentrated objective function: model CRRA-1. (a) Joint 90% S-set
(shaded) and 90% GMM confidence ellipse for (y, 8) (upper panel); (b) objective function concen-
trated with respect to & (lower panel).

using annual data (CRRA-1), inferences based on the S-sets and conventional
GMM agree closely. Although the objective function in which & is concentrated
out has multiple minima (Figure 2b), the second minimum is well above the y?
critical value used to construct the concentrated S-set. Similarly, for models
CRRA-2, CRRA-3, and CRRA-4, the S-sets are null, indicating that there are
no parameter values consistent with the overidentifying conditions, the same
conclusion as is reached using the conventional J statistic. However, when the
second lags are used as instruments (Figure 3 for CRRA-5; CRRA-6 is similar),
the conventional confidence ellipse and the S-sets have no points in common;
the S-sets are much larger, and the degree of risk aversion is greater. Among
the CRRA models with monthly data, the S-set and standard GMM inferences
agree most closely when only stock returns and consumption growth are used as
instruments (CRRA-7). When both stocks and bonds are priced (CRRA-8 and
CRRA-9), the two-step J-statistic fails to reject but the S-sets are null. When
second lags are used as instruments, the S-set differs sharply from the seemingly
precise GMM confidence ellipse.
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Ficure 3.—Joint S-set and concentrated objective function: model CRRA-5. (a) Joint 90% S-set
(shaded) and 90% GMM confidence ellipse for (y, ) (upper panel); (b) objective function concen-
trated with respect to & (lower panel).

The differences between conventional GMM inferences and those based on
the S-sets are dramatic for the habit formation /durability models. Although the
J statistic suggests that models H/D-1, H/D-2, and H/D-3 are rejected at the
10% level, the 90% S-sets are nonempty; in fact they contain a large set of
parameters and are disjoint with the standard GMM confidence sets (see Figure
4 for H/D-1; H/D-2 is similar). Although H/D-4 is not rejected at the 10%
level using the J-statistic, the S-sets and standard GMM ellipses for H/D-4
differ sharply. With only second lags as instruments the S-sets are somewhat
larger. Comparing the S-sets for H/D-1 and H/D-5 (Figures 4 and 5), which
use comparable sets of instruments, reveals that the annual data are consistent
with habit formation while the monthly data are consistent with durability. This
accords with the theoretical results in Heaton (1993) (although his functional
form differs), but this is not revealed by the two-step GMM point estimates,
which suggest durability in both the monthly and annual data.

Conventional and S-set inferences also disagree for the Epstein-Zin prefer-
ences. The only non-null S-sets obtain using second lags as instruments. For the
long instrument list in EZ-4 (Figure 6), the S-sets are consistent with moderate
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FIGURE 4.—Concentrated S-sets: model H/D-1. (a) 90% S-set (shaded) and 90% GMM
confidence ellipse for (y, 8), p concentrated out (upper); (b) 90% S-Set (shaded) and 90% GMM
confidence ellipse for (v, p), 8 concentrated out (lower); (c) joint S-set: model H/D-1. Joint 90%
S-set (shaded) and 90% GMM confidence ellipse for (v, 8, p), sliced in p dimension.
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FicurRE 5(a, b).—Concentrated S-sets: model H/D-5. (a) 90% S-set (shaded) and 90% GMM
confidence ellipse for (y, §), p concentrated out (upper); (b) 90% S-set (shaded) and 90% GMM
confidence ellipse for (y, p), 6 concentrated out (lower).

and high levels of risk aversion (the coefficient of relative risk aversion in the
EZ model is 1 — A + Ay). The S-sets for A =1 in models EZ-2 and EZ-4 are
nonempty, indicating that these data are in fact consistent with the CRRA
model, the opposite conclusion as reached using the standard GMM Wald
statistic.

These results reveal several symptoms of weak identification. Conclusions
based on the J statistic evaluated using the two step and continuous updating
objective functions often differ (e.g. CRRA-5, CRRA-6). The two-step point
estimates are sensitive to instrument choice even in models for which the
two-step J statistic does not reject (e.g. CRRA-5, CRRA-6, or EZ-1 and EZ-2).
The continuous updating estimates (not tabulated here to save space) often
differ substantially from the two-step estimates, and in some cases tended
towards arbitrarily large values. Importantly, the S-sets and conventional GMM
confidence sets typically disagree, even when the J statistic does not reject.
These observations lead us to conclude that the inferences based on conven-
tional GMM methodology are unreliable.
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The S-sets lead to different substantive conclusions than the conventional
GMM analysis. The S-sets generally indicate greater degrees of risk aversion
than found using conventional GMM. Although such high risk aversion might
seem counterintuitive, these results are consistent with the view, recapitulated in
Campbell, Lo, and MacKinlay (1997, Ch. 8.2), that very high risk aversion is
needed to resolve the equity premium puzzle. Among the specifications in which
both stocks and bonds are priced and first lags are used as instruments, the only
models for which the S-sets are nonempty are habit formation/durability
models. In the annual data, these sets suggest habit formation, but in the
monthly data, they suggest durability. For Epstein-Zin preferences, the only
nonrejected specifications have second lags as instruments, and the associated
S-sets provide little evidence against the CRRA specification in favor of Ep-
stein-Zin preferences.

6. DISCUSSION AND CONCLUSIONS

From a methodological perspective, it is noteworthy that the empirical conclu-
sions based on the S-sets and conventional GMM analysis differ. The puzzling
Epstein-Zin conventional GMM point estimates in the nonrejected models are
less puzzling when viewed in the context of the S-sets. Using conventional
GMM, the habit formation /durability model is largely rejected, or the point
estimates are nonsensical from an economic perspective, but using S-sets these
models are often not rejected and the confidence sets are consistent with risk
aversion. Generally speaking, the S-sets point to higher degrees of risk aversion
than suggested by the conventional GMM analysis. These differences under-
score the importance of using procedures that are robust to the problem of
weak identification in Euler equation estimation.

The weak-identification asymptotic theory developed here might be extended
in several ways. Although ¢,(6,) is assumed to be a martingale difference
sequence, if instead ¢,(0,) is integrated of order zero and autocorrelated, then
the efficient estimator would use a heteroskedasticity and autocorrelation
consistent covariance matrix. The extension to the autocorrelated case is con-
ceptually straightforward as long as Assumptions A-D are satisfied. Another
extension is to develop approximations to the distributions of statistics testing q
linear restrictions on 6 when the instruments are weak. This is relevant for
understanding distortions of sizes of tests and coverage rates of conventional
confidence intervals. An explicit asymptotic representation of the likelihood
ratio statistic for g =K has been provided, and the specialization to g <K is
conceptually straightforward. The extension to Wald statistics and conventional
standard errors appears to be more difficult. Although explicit limiting represen-
tations for Wald statistics can be obtained in some special cases (e.g. when ¢,(6)
is a finite order polynomial in ), in the general GMM problem with arbitrary
nonlinearities it appears that additional assumptions are needed. This extension
is left for future work.
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Although some tools for inference robust to weak identification have been
developed in this paper, here too work remains to be done. For example, as
discussed in Section 2.4, the interpretation of the S-sets can be complicated
because they jointly test 6= 60, and instrument validity. It would be useful to
have a method for constructing confidence sets that are robust to weak identifi-
cation, conditional on model (instrument) validity. Staiger and Stock (1997) and
Wang and Zivot (1998) proposed such methods in the linear case, but these do
not extend naturally to nonlinear models. It also would be useful for a re-
searcher to have a statistical measure of whether she faces weak identification in
a particular application. In general this depends on the global properties of
u(a)u(a), an unobserved function. Outside of the linear case, where u(a)Yu(a)
is quadratic, there are no extant methods for reliable inference about this
function directly. The development of a simple and reliable statistic to detect
weak identification remains an open challenge.

This analysis nevertheless points to several symptoms of weak identification
that can be readily detected in empirical work. One such symptom is that the
objective function is clearly nonquadratic and has plateaus or ridges that are not
far (in terms of LR statistics) from its minimum value, as seen in Figures 3 and
4. A second, related symptom is that S-sets and conventional GMM confidence
sets have substantial areas of disagreement. A third symptom is obtaining
substantially different point estimates and inferences using GMM estimators
that, under the conventional theory, are asymptotically equivalent. A fourth
symptom is when a Monte Carlo study of a model calibrated to the empirical
problem at hand yields economically significant biases in GMM point estimates
and size distortions in LR and J statistics. If such symptoms are present, a
diagnosis of weak identification is appropriate, and it is prudent to report S-sets
in addition to, or instead of, conventional GMM statistics.
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MA 02138, U.S.A.
and
Board of Governors of the Federal Reserve System, Washington, D.C. 20551,
US.A.
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APPENDIX A

PrROOFs OF THEOREMS

Before proving the theorems, it is shown that E is YT -consistent for Bo-

LEMMA AL: Under the assumptions of Theorem 1, TY/2( 8 — ;) = 0,(D.

PROOF: We first show that / Bo. Let mp(6) = ET1/2XT_, 4,(6), so
St(60;0:(0)) =[P (8) + m()IW, (67 (0N (0) + m(0)].
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By the various assumptions,

T-15,(8; 87 (8)) 5 my( BYW(B(0))m,( B)

uniformly in 6. Because W is positive definite by Assumption D and m,(8) =0 iff 8= B,, by the

~ P
continuity of the argmin operator, 8 — ;.
To show \/?—consistency, use the fact that # minimizes S; and Assumption C to write,

Sr(0: 0:(8)) = S1(8; 67(685)) = [¥(8) + my7(8) + VT my( )]
X Wy (87 (O[5 (8) + myr (8) + VT m,(B)]
— V(0 Wy (87 (8)) ¥ (8,) <0
or, equivalently,
(A1) Tm,( BY Wy (81 (8)m,( B) + 29T m,( BYWy (87 (N[ W (8) + my7 (8)] +dyy (8) <0,
where
dy7(8) = [ (0) + my (0)]'Wr (87 (0D[ Wy (0) + my7(6)]
— W1 (0 Wy (61 (6,)) ¥ ().

Without loss of generality, let Wy be symmetric (if_ not, replace it by 1/2(W;+ W;z)). Now
Tm,( BYW; (67 (8)m,( B) = VT m,( B)II* minevallW; (6;(6))], where mineval( A) denotes the min-
imum eigenvalue of the matrix A. Also,

VT M, BYWy (B (B[ W (8) + myr ()]
> — VT my( B)IHIW (87 (NI P; (8) + myr (]I,

Using these inequalities and dividing (A.1) through by minevaI[WT(éT(g))] (which is positive with
probability one by Assumption D),

(A2) IVT my( I = 2d,7 IVT my( Bl + dar <0,

where
dyr = Wy (87 (D)7 () + myr (0)]ll/minevall Wy (; (8))]  and
day = dyr (8) /mineval[Wy (8, (6)].

Now take the roots of (A.2) and write vT m,(B)=R(BWT(B—B,), where e (B, B) and
R(B)=adm,(B)/dB’. Thus for (A.2) to hold it must be that

(A3) IRCBWT (B = Byl < dyr + (d2 — dyp) 2.

~P ~ P
Because 8 — B;. R(B) — R(By) which has full column rank by Assumption C. The desired result,
that YT (B — B,) = 0,(1), follows if (i) dyr = O,(1) and (ii) dar = O,(1). These are now shown.

@ dyr = Wy (87 (9P (8) + my7 (8)]ll/mineval[ Wy (61 ()]
< supy Wy (8 (D[ W () + my1 (8)]Il/inf, mineval[Wy (6 (6))]
(A.4) = sup, IW(8(ON[¥ () + m,(8)]ll/inf, minevall[W(6(6))]

by Assumptions B, C, and D. By these assumptions, the numerator in (A.4) is O,(1) and the
denominator is a positive constant, so d, = O,(1).
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(i) |dgr| = |dy7 ()]/mineval[Wy (61 (6))]
< supyld; ()1 /inf, mineval[W; (8 (6))]
< 25upg[ P (68) + My ()1 W (67 (0[P () + my7(6)]/
inf, mineval[W; (81 (6))]
(A.5) = 25up,[¥(6) + my(0)I'W(B(ON[W(0) +my(6)]/inf, mineval[W(6(6))]
by Assumptions B, C, and D. The right-hand side of (A.5) is O,(1), s0 d = O,(D). Q.E.D.

PROOF OF THEOREM 1:
(i) By Lemma AL, it suffices to obtain a limiting representation for Sr(a, By + b/T?) as an
empirical process in (a’, b’y € A X B, where B is compact. Now,

.
T 2N dla, By +b/TV2) =W (a, By +b/TY2) + myp(a, By +b/TH?)
t=1

+TY2m,( By +b/TY2).

By Assumption B, ¥;(a, By +b/TY%) = W(a, By); by Assumption C(i), m;(a, By +b/T¥?)
- my(a, By); by Assumption C(i), T¥2m,(B,+b/T/2) > R(Byb; and by Assumption D,
Wi (07 (e, By)) = W(B(a, By)). These limits are all uniform in (a’,b'y € AX B, proving ().

(ii) By Lemma 3.2.1 of van der Vaart and Wellner (1996, p. 286), it follows that (a’, T*/2( 8 —
Bo)) = (™, b*") = argmin . 1y < axgS(a, b; 6(a, Bo)). To obtain the concentrated limiting objec-
tive function S*(«; 6(ea, By)), fix «, differentiate S(a, B; 6(«, By)), and rearrange the first order
conditions to obtain

b* (&) = —[R(BeYW(B(a, By))R(B)]
X R( Bo)rw(é(a, BO))[W(OL, Bo) + ml(a, BO)]

Setting S*(a; 0(«, By)) = S(a, b*(a); 8(«, By)) and rearranging yields the expression for S*(a;
6(a, By)) in the theorem.

A consequence of the continuous mapping theorem and the envelope theorem is that
a=a* =argmin, . , S*(a). Because = B(a), T¥2( B — B,) = b*(a*), which yields the expres-
sion in the theorem. Q.E.D.

PROOF OF THEOREM 2: Because E¢(8,) =0, S;(6,) = Y1 (6,) W (6,)¥1(6,) by Assumption

d
A and the assumption W;(6,) > W(8,) = 2(6,, 0,)" L, St(6,, 0y) = W (0,Y W (0,)%1(0,) =
P(6,)02(6,, 0,) W (8,) ~ x&xk- Q.E.D.

PROOF OF THEOREM 3: Because my(ay, By) =0 and by assumption W(8,) = 2(8,, 6,) ", from
Theorem 1 we have

ST(a01 E; g, E) = [0(90, 00)_1/211,(00)]/ M(eo)[Q(GOY 90)_1/2W(00)]7

where M(6,) = | — Ry[R, Ry1"1R), where R, = £2(6,, 6,)"*/2R( B,). The result follows from not-
ing that 2(6,, 8,)*/2¥(8,) is a GK X 1 standard normal random variable and M(6,) is idempo-
tent with rank GK — n,. Q.E.D.

ProOF OF COROLLARY 4: For each of the estimators, the assumption 6.(6) = 6(6) in Theorem 1
must be verified. For the one step estimator, we can set 6:(6) = 0(6) =0 and the assumption is
satisfied trivially, and parts (a) and (b) follow. For the two-step estimator, 6:(6) = 6,, and the
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assumption is implied by part (b); parts (c) and (d) thus follow. For the continuous updating
estimator, 6:(6)=60(6)=6 and the assumption is satisfied, so parts (e) and (f) follow. The
remaining results are direct implications of parts (¢)—(f). Q.E.D.

APPENDIX B
CoMPUTATION OF WEAK ASYMPTOTIC APPROXIMATION FOR THE CRRA CCAPM

The weak asymptotic approximations to the GMM estimators and test statistics analyzed in the
Monte Carlo analysis of Section 4 were computed in three steps: (i) for each design and set of
instruments, compute the functions m;, m,, and Q using a Taylor series approximation to (4.1),
where the parameters were computed by simulation of the DGP of Section 4.2; (ii) given these
functions, obtain 5000 Monte Carlo draws of the limiting objective functions of interest; and (iii) for
each Monte Carlo realization of each objective function, compute the various statistics of interest
(the optimizing estimator and the test statistics), which yields 5000 Monte Carlo draws of each
statistic. The global Taylor series approximation is feasible because «, and §, are known, along
with the other parameters describing the DGP, and because the parameter space was bounded. The
main numerical advantage of using a finite order Taylor series approximation is that the limiting
random function ¥ can be represented as a function of a finite-dimensional normal random
variable. The Taylor series approximation was only used to compute the weak-instrument asymptotic
distributions.

Without loss of generality, let the first element of Z, be a constant and let the remaining
elements have sample mean zero. To order m, the Taylor series approximation is

(B.1) h(Y,,0) =8(Cy1/C) "Ryyq — t1g = 8Ry, 8707 M1 /g¥oluin — o
m .
= 6Ry 18 o 1+ Y el i(yg = ) /il =g
i=1
=8m19(yVC{IM — s

=81 = 80 g s 1CIM T9(y) +(8/8 — Dig

where
Tes1 = Rey18Xp(—0Cri 1),
9 =11 (=) 1/2y=77 = (y—y"/mi], and
cim=mn cmni,
where C(™ =1[c,,, ¢Z, - cm,I" Thus,
T T
(B.2) T2Y p()=6T Y2 [Lg(W]®Z+TY2(8/8,— L) ® e
t=1 t=1
.
=58[(1®g) @ I IT Y2 ) vec(¢) ® Z,+ TH2(8/8, — )i ® g
t=1

where e, is the Kx 1 vector (1 0 -+ 0Y and & =1[m.1— 85 4 ms1C{M)'] (the first equality in
(B.2) uses L{_; Z, = Tey). It follows that 3,,(6) = §%(lg ® g(y))3,, (I ® g(y)), where

T

S =limg, T! Z Elvec(¢/) — Evec(¢)1lvec( &) — Evec(¢)]'.
t=1

Also, under conventional moment assumptions, T~1/2XT_, vec({/) ® Z, — Elvec({/) ® Z, 1=,
where v ~ N(0, w), where o is the average covariance matrix of vec({/) ® Z,.
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With this notation, Assumption C is satisfied by assuming

.
(B.3) ET Y2 vec({)®Z, > M
t=1

uniformly in 6. Thus

(B.42) my(8) = 8[(Ig ® g(y)) ® I M,

(B.4b) m,(8)=(8/8,— Vg ® ey,

(B.4c) R(8,) = 85 1 ® e,

(B.4d) 0[(yy,8)), (5, 8)1 = 8,8,[(1g ® g(y,)) ® I Jol(1g ® g(y,)) @ I 1.

Computation of the asymptotic distributions proceeds as follows. Suppose that M, w, and Q.
are known. Given 6, then m;, m,, R, and  are computed using (B.4). A realization of the random
variable v is obtained as a pseudorandom draw from a N(0, ) distribution. Then

n(y) = 2,5 [(1g @ g(y)) @ I, M and

2(y) = ();,13{)2’60[( Ic®g(y))® I v

These expressions are then used to compute a realization of the objective functions and their
minimizers in Corollary 4 or their nonrobust counterparts such as (2.12). Repeating this for multiple
draws of v gives multiple draws from the limiting distributions of these statistics.

The only information about the DGP required for computing these asymptotic distributions by
this Monte Carlo method are the values of M, w, and Q. These moments are not readily obtained
analytically and instead were computed by averaging their sample counterparts over 5000 Monte
Carlo replications generated according to the design in Section 4.2. Given these moments, the
asymptotic distributions of the various statistics were computed by numerical minimization of the
limiting stochastic process for the objective function. The Taylor series expansion (B.1) was
implemented with m = 6. To check the sensitivity of the results to the choice of m, the approxima-
tion for model M1b was recomputed using m = 4, 8, and 10, with negligible change in the results.
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