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Abstract� We prove geometric ergodicity and absolute regularity of the nonpara�
metric autoregressive bootstrap process� To this end� we revisit this problem for
nonparametric autoregressive processes and give some quantitative conditions �i�e��
with explicit constants� under which the mixing coe�cients of such processes can
be bounded by some exponentially decaying sequence� This is achieved by using
well�established coupling techniques� Then we apply the result to the bootstrap
process and propose some particular estimators of the autoregression function and
of the density of the innovations for which the bootstrap process has the desired
properties� Moreover� by using some �decoupling	 argument� we show that the sta�
tionary density of the bootstrap process converges to that of the original process�
As an illustration� we use the proposed bootstrap method to construct simultane�
ous con
dence bands and supremum�type tests for the autoregression function as
well as to approximate the distribution of the least squares estimator in a certain
parametric model�
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�� Introduction

Since the seminal paper of Efron ������� bootstrap methods have become a widely
accepted and powerful tool to estimate the distribution as well as related quantities
of certain statistics of interest� Typical �elds of application are the construction
of con�dence sets for parameters or the closely related problem of determining the
critical region for tests� The basic idea of the bootstrap in its original form is to
mimic� on the basis of a single sample at hand� the whole structure of the data
generating process� In the context of time series� this leads to the additional challenge
of estimating the dependence structure of the process�
We assume throughout the present paper that data are generated by a nonparamet	
ric autoregressive process� Franke� Kreiss and Mammen ������ discussed di
erent
bootstrap methods in this context� Besides two regression	type approaches includ	
ing the wild bootstrap� they investigated the nonparametric autoregressive bootstrap
which was �rst proposed by Franke and Wendel ������ and Kreutzberger �������
and proved its consistency for the pointwise behaviour of nonparametric estimators
of the mean and the variance function� In subsequent papers� Neumann and Kreiss
������ and Kreiss� Neumann and Yao ����� showed the validity of the wild boot	
strap beyond the pointwise distribution� The ultimate goal of the present paper is
to open such a wide �eld of applications for the autoregressive bootstrap scheme�
For this purpose� we �rst prove important basic properties of the bootstrap process
such as absolute regularity and the convergence of the stationary distribution to that
of the original process� Since the autoregressive bootstrap process is in particular a
Markov chain� we can partially apply well	established techniques to prove the desired
results� However� in contrast to many qualitative results in this �eld which simply
state a certain rate for the decay of the mixing coe�cients� we need here uniformity
w�r�t� some parameters of the process varying within certain limits� This is because
the properties of the bootstrap process depend on the original sample which is itself
random� Hence� we will restate some well	known results with an explicit descrip	
tion of how constants depend on certain features of the process� To make the paper
understandable for statisticians who are not specialists in Markov chain theory� we
present self	contained versions of all major proofs�
These results can be used to prove consistency of the autoregressive bootstrap in
several instances� We illustrate this by constructing simultaneous con�dence bands
and supremum	type tests for the autoregression function as well as by approximating
the distribution of a least squares estimator in a certain parametric model�

�� Mixing of Markov chains revisited� A set of sufficient conditions

for geometric ergodicity

Throughout the present paper� our minimal assumption on the data generating pro	
cess is that fXtg forms a Markov chain� Properties like ergodicity and mixing are
usually derived under two main assumptions� First� the existence of some �drift�
towards a certain compact set K� and second� some condition on the conditional
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distribution of future states� given that Xt�� falls into K� The latter condition en	
sures that information about previous states will be forgotten su�ciently fast by the
Markov chain� Here is the �rst of our main conditions on the Markov chain�

�A�� There exists a compact set K such that
�i� there exist � � � and � � � with

E �jXtj jXt�� � x� � ���jxj � � for all x �� K�

�ii� there exists A �� with

sup
x�K

fE �jXtj jXt�� � x�g � A�

The drift criterion already ensures that the set K is reached from every point with
probability �� However� it is not clear so far� which particular point in K is the �rst
one visited by the Markov chain� If� for example� K contains more than one absorbing
set� then it is a priori not clear to which of these sets the Markov chain will converge�
Moreover� it might also happen that the Markov chain is periodic� that is� it moves
periodically through a �nite cycle of disjoint sets� There are well	known techniques
to handle such cases� however� in order to facilitate the technical part of this paper�
we will impose a condition that excludes them�

�A�� �i� K is a small set� that is�
there exist n� � N� 	 � � and a probability measure 
 such that

inf
x�K

fP n��x�B�g � 	
�B�

holds for all measurable sets B � P n�x� �� denotes the n	step transition
probability of the Markov chain started in x �

�ii� There exists � � � such that

inf
x�KfP �x�K�g � ��

Remark ��
�i� Classical properties like irreducibility� aperiodicity and the existence of a unique
stationary density follow readily from �A�� and �A��� see the proof of Theorem ����

�ii� To ensure aperiodicity and irreducibility� one often assumes instead of �A�� that
the innovations� �t � Xt � m�Xt��� � are i�i�d� with an everywhere positive den	
sity� However� as noted by Meyn and Tweedie ������ page ���� such a condition is
unnecessarily restrictive� A possible condition which immediately implies �A�� and
does not require an everywhere positive density of the innovations is the following one�

�A��� The conditional distribution L�Xt j Xt�� � x� has a density p�yjx� which ful�lls�
for some c� � � ��

p�yjx� � c � � for all x� y � K with jx� yj � � �
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�iii� Assumption �A�� allows the distribution of the innovations �t � Xt �m�Xt���
to depend on Xt��� which in particular allows for conditional heteroscedasticity� We
prove our results in this section in this general context� whereas we restrict them
when dealing with the autoregressive bootstrap in the next section�

�iv� If fXtg can be written as Xt � m�Xt��� � �t � where the innovations �t are
i�i�d� with mean � and Ej�tj ��� then �A�� follows from

lim sup
jxj��

fjm�x��xjg � ��

The following lemma provides an important result about exponential moments of
return times to K� The return time is de�ned as �K � infft � � j Xt � Kg �
Moreover� we denote by Ex the conditional expectation under the condition that
X� � x �

Lemma ���� Suppose that �A�� is ful�lled� Then

�i� Ex�
�K � ���jxj for all x �� K�

�ii� Ex�
�K � ��� � ���A� for all x � K�

Lemma ��� is the main tool to prove� in conjunction with assumption �A��� geometric
ergodicity of the Markov chain� that isZ

kP n�x� �� � kV ar ��dx� � C��
�n
� �����

for some �� � �� where k � kV ar stands for the total variation norm and � stands for
 if fXtg is started with the stationary distribution � or for the Dirac measure �x�
if fXtg is started at some nonrandom point x��
Exponential ergodicity will be proved via coupling of two Markov chains� one started
at some nonrandom point x� and the other one started with initial distribution �
We pair both chains in such a way that they are completely identical to each other
after they arrived at any state simultaneously� The coupling of fXtg and fX �

tg is
actually organized in two steps� Both chains are run independently until they reach
the set K simultaneously� perhaps still at di
erent points x and x�� By �A��� the
set K is an appropriate place for an attempt to initiate an exact pairing which may
occur after n� further steps with a probability of at least 	� Lemma ��� guarantees� in
conjunction with �A���ii�� that a simultaneous entry in the set K occurs su�ciently
often� This leads to the following theorem�

Theorem ���� Suppose that �A�� and �A�� are ful�lled� Then ����� holds true with
some �� � � and C� �� which only depend on K� �� ��A� n�� 	� ��

Having proved geometric ergodicity� we obtain the desired geometric absolute regu	
larity immediately from Proposition � of Davydov ������� The coe�cient of absolute
regularity is de�ned as follows�
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Let ���A� P � be a probability space and let U and V be two �	sub�elds of A� The
coe�cient of absolute regularity ��	mixing coe�cient� is de�ned as

��U �V� � E

�
sup
V�V

fjP �V j U� � P �V �jg
�

� sup
Ui�U�Vj�V

�

�

���X
i�j

jP �Ui�P �Vj� � P �Ui � Vj�j
��	 �

where the supremum in the last expression is taken over all �nite partitions �Ui�i�I
and �Vj�j�J of � with Ui � U and Vj � V�
In our particular case of a possibly nonstationary process fXtgt��������� we adopt the
de�nition of Davydov ������� namely

��s� � sup
t
E


� sup
B�M�

t�s

���P �B j Mt
�� � P �B�

���
� �

where Mv
u � ��Xu� � � � �Xv�� �Note that Davydov had an additional factor of � in

comparison with our de�nition of ��s���
The following lemma shows the close connection of ergodicity and absolute regularity
for Markov chains�

Lemma ���� �adapted from Davydov ���	
��
Let fXtg be a Markov chain with marginal distributions Xt 	 �t� Then

��s� �
�

�
sup
t

Z
�t�dx�kP s�x� �� � �t�skV ar�

Now we obtain� in conjunction with Theorem ���� the desired mixing property of
the Markov chain� Recall that � is used to denote the initial distribution� that is
X� 	 � �

Corollary ���� Suppose that �A�� and �A�� are ful�lled� Then

��n� � C��
�n
� �

So far we have derived su�cient conditions for geometric ergodicity in the general
context of a Markov chain fXtg� The nonparametric autoregressive bootstrap� which
we study in the next section� is taylored for the special case that fXtg can be written
in the form of a nonparametric autoregressive model�

Xt � m�Xt��� � �t� �����

where the innovations �t are independent� identically distributed random variables
with mean �� It can be easily seen that the following condition implies �A�� and �A���

�A�� fXtg obeys ������ where
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�i� jm�x�j � C� � C�jxj for all x and some C� �� � C� � � �
�ii� Ej�tj ���
�iii� p��x� � C� � � for all x � ��C��supx�Kfm�x��xg� C��infx�Kfm�x��

xg� and some C� � � � where K � ��C�� C�� � C� � �C��Ej�tj�����C�� �

�� The nonparametric autoregressive bootstrap

In this section we will investigate important basic properties of the autoregressive
bootstrap and therefore we restrict the quite general structure of the data generating
process as considered in the previous section to the special case ������ where �t are
i�i�d� with mean � and variance ��� To ensure mixing properties to hold for fXtg� we
assume that the �t have a density p��
The nonparametric autoregressive bootstrap is a generalization of an idea of Efron and
Tibshirani ����� and Holbert and Son ����� for the case of linear autoregression�
and has been �rst proposed by Franke and Wendel ������ and Kreutzberger �������
It was proved in Franke et al� ������ that this method is asymptotically consistent
for the pointwise properties of kernel estimators of m� We continue this investigation
and derive some important properties of this bootstrap method which will allow to
apply this technique also for other problems such as the construction of simultaneous
con�dence bands and supremum	type tests for the autoregression function as well as
for approximating the distribution of a least squares estimator in a certain parametric
model�

���� Some basic properties of the autoregressive bootstrap� The implemen	
tation of the nonparametric autoregressive bootstrap requires explicit estimates cm
and bp� of m and p�� respectively� Before we propose some particular estimators� we
formulate quite general conditions that ensure ergodicity and absolute regularity of
the bootstrap process as well as some consistency properties� The bootstrap process
is generated according to the equation

X�
t � cm�X�

t��� � ��t � t � �� � � � � T� �����

where the ��t are i�i�d� with density bp�� Under the conditions given below� there exists
a stationary distribution �� For simplicity we assume that fX�

t g is stationary� that
is� X�

� 	 � �
To prove ergodicity and absolute regularity of fX�

t g� we need only some analog to
�A�� for cm and bp� in place of m and p�� respectively� On the other hand� such a result
alone would be of little use because one applies bootstrap methods to imitate some
features of the original process� One of the minimal requirements is certainly that
the stationary distribution of fX�

t g approximates that of fXtg in some appropriate
sense� This will be ensured by suitable conditions on the consistency of the estimatescm and bp�� We make throughout this paper the convention that � � � denotes an
arbitrarily small and � � � an arbitrarily large constant� Moreover� we use the
letter � � � to denote some appropriately chosen positive constant� Besides �A���
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we will assume

�A	� There exists an appropriate sequence of sets �T 
 RT�� with P ��X�� � � � �XT � ��
�T � � o��� � such that for �X�� � � � �XT � � �T the following properties are
ful�lled�
�i� jcm�x��xj � C� � C�jxj � for some C� � � and C� � � � �W�l�o�g� we

assume that C� and C� coincide with the constants in �A����
�ii� supx�XT fjcm�x��m�x�jg � O�T��� for an appropriate sequence of sets

XT � R with P �Xt �� XT � � O�T��� �
�iii� kbp� � p�k� � CT�� �
�iv�

R jbp��x� � p��x�j dx � CT�� �
�v� for all M there exists some CM �� such thatZ

j�jM bp���� d� � CM �

We propose in the next subsection particular estimators cm and bp� that satisfy �A��
under suitable conditions� Under �A�� and �A��� cm and bp� ful�l the conditions
of �A�� �possibly with di
erent constants� with high probability� Hence� according
to Theorem ���� fX�

t g is geometrically ergodic� which implies geometric absolute
regularity� This is formalized in the following theorem�

Theorem ���� Suppose that the data generating process obeys ����� and that �A
�
and �A�� are ful�lled� Let ���n� be the coe�cient of absolute regularity of the process
fX�

t g� Then there exists some �b � � such that

���n� � Cb�
�n
b

holds if �X�� � � � �XT � � �T �

In the proofs of the previous theorems� we use coupling of Markov chains to get
geometric ergodicity� To prove closeness of the stationary distributions of fXtg and
fX�

t g� we use the opposite approach which we call decoupling� We start both chains at
a common point� X� � X�

� � x�� and analyze the decoupling of appropriately paired
versions of them� Since� according to �A��� the transition probabilities are similar�
we can couple both chains in such a way that P �Xn �� X�

n� increases slowly� On the
other hand� both chains are geometrically ergodic� Therefore� P n�x�� �� and P �n�x�� ��
converge quite fast to  and �� respectively� This idea leads to the following theorem
which characterizes the closeness of the respective stationary distributions  and ��

Theorem ���� Suppose that the data generating process obeys ����� and that �A
�
and �A�� are ful�lled� Then

sup
B measurable

��
��B�T�� � T��

��� j�B� � ��B�j
�
� C

holds if �X�� � � � �XT � � �T  where ���� denotes the Lebesgue measure�
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���� Particular estimators of m and p�� The consistency of the autoregressive
bootstrap follows from suitable consistency properties of cm and bp�� Franke et al�

������ proved an appropriate kind of uniform consistency of cm on a sequence of sets
��	T � 	T �� 	T  � � under the additional assumption that the stationary density
 is not less than cT � cT  � with a suitable rate� on ��	T � 	T �� Here we try to
avoid this condition and impose regularity conditions solely on m and p�� To be able
to estimate m with a su�cient accuracy� we assume that

�A
� m is Lipschitz continuous�

To facilitate our proofs� in particular that of the consistency of a certain estimator
of m� we assume that

�A�� All moments of �t are �nite�

In contrast to regression	type methods such as the wild bootstrap� it is also important
to estimate the distribution of the innovations �t consistently� We will assume that

�A�� p� is Lipschitz and of bounded total variation�

In view of the di
erent size of the stationary density in di
erent regions� it seems
natural to use a nearest neighbor estimator of m� which is de�ned as

cmN�x� � N�� X
t	 Xt��� bNN
x�

Xt� �����

The �random� neighborhoods cNN �x� � �x� bnN �x�� x � bnN�x�� are chosen such that

�ft � T j Xt�� � cNN�x�g � N � where N � N�T �  � as T  � � Instead
of cmN one could also use other nonparametric estimators such as kernel or local
polynomial estimators with appropriate adjustments of the bandwidths in regions of
a low stationary density�
Since many assertions in this article are of the type that a certain random variable is
below some threshold with a high probability� we introduce the following notation�

Denition ���� Let fZTg be a sequence of random variables and let f�Tg and
f	Tg be sequences of positive reals� We write

ZT � eO��T � 	T ��

if

P �jZT j � C�T � � C	T

holds for T � � and some C �� �
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This de�nition is obviously stronger than the usual OP and it is well suited for our
particular purposes of constructing con�dence bands and nonparametric tests� see its
application in Section ��
The following lemma provides a useful result about the uniform convergence proper	
ties of cmN �

Lemma ���� Suppose that the data generating process obeys ����� and that �A
�
�A�� and �A�� are ful�lled� Then there exists a sequence of sets XT � R with
P �Xt �� XT � � O�T��� and

sup
x�XT

fjcmN�x� � m�x�jg � eO �
T 	N�T � N��
� log�T �� T��

�
�

De�ne

bp��x� �
�

T

TX
t��

�

h
K
�
x� b�t
h

�
�

where b�t � Xt �cmN�Xt��� are the residuals�

Lemma ���� Suppose that the data generating process obeys ����� and that �A
�
and �A�� to �A	� are ful�lled� Furthermore let h and N be chosen such that h �
O�T��

�

�  h�� � O�N�
�T��
�

� and N � O�T ����� for some �� � � � Then there
exists some � � � such that

�i� kbp� � p�k� � eO �
T��� T��

�
�

�ii�
R jbp��x� � p��x�j dx � eO �

T��� T��
�
�

�� Application to parametric and nonparametric estimates of the

autoregression function

In the �rst part of this section we use the proposed bootstrap method to construct
simultaneous con�dence bands and supremum	type tests for the autoregression func	
tion� Similar results for a regression	type bootstrap� the so	called wild bootstrap�
can be found in Neumann and Kreiss ������� The validity of the wild bootstrap
in context with nonparametric estimation in autoregression relies on the fact that
the underlying statistic forms a sum of martingale di
erences� Moreover� bootstrap
methods based on the ��ctive� assumption of independent random variables are con	
sistent for many statistics based on nonparametric estimators in the context of general
processes since the e
ect of weak dependence vanishes asymptotically� see� e�g�� Neu	
mann ������ ������ Usually� this is not true for parametric estimation� In such a
situation a process bootstrap as proposed in this paper is really necessary for con	
sistency� since the whole dependence structure of the underlying process has to be
mimicked� One may argue that this may motivate the use of process bootstrap even
for nonparametric estimation� However� for nonparametric estimation� a rigorous
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comparison of process bootstrap with other resampling schemes would require higher
order methods�

���� Application to supremum�type statistics� condence bands and goodness�
of�t tests� We suppose that the data generating process obeys ������ A simulta	
neous con�dence band for m is usually based on and centered around some non	
parametric estimator cmh�x�� For simplicity� one can take a Nadaraya	Watson kernel
estimator�

cmh�x� �

PT
t��K

�
x�Xt��

h

�
Xt��PT

t��K
�
x�Xt��

h

� � �����

The di
erence of cmh�x� and m�x� can be decomposed into a stochastic term��X
t

K ��x�Xt����h�

���X
t

K ��x�Xt����h� �Xt � m�Xt����� �����

and a bias	type term��X
t

K ��x�Xt����h�

���X
t

K ��x�Xt����h�m�Xt��� � m�x��
�����

�We call the latter expression �bias	type term� rather than �bias term� since it is
only asymptotically nonrandom��
For the construction of con�dence intervals or bands� one may account for the bias	
type term by separate adjustments� i�e�� it is not necessary to imitate it by the
bootstrap� Usual techniques are undersmoothing or explicit bias correction� see�
e�g�� Neumann and Kreiss ������ for a discussion in the context of nonparametric
autoregression� In order to �nd an appropriate width of the con�dence band� it
remains to get knowledge about the stochastic term� This term can be approximated
by ��p �K���h���x������T �

P
tK��x�Xt����h��t � where p denotes the density of �

Hence� we have to approximate the distribution of

ST � sup
x��a�b

�
��p �K���h���x����

����� �T X
t

K
�
x�Xt��

h

�
�t

�����
�
� �����

For a parametric hypothesis H� � m � M � fm� j � � �g we can use the test
statistic

WT � sup
x�R

������X
t

K
�
x�Xt��

h

�
�Xt � ccm�Xt����

�����
�
� �����

where ccm is any estimator that satis�es on the hypothesis m � M

sup
x�R

������X
t

K
�
x�Xt��

h

�
�ccm�Xt��� � m�Xt����

�����
�

� oP
�
�Th��
��log T ���
�

�
�
�����

For the determination of critical values we have to approximate the distribution
of WT � A su�cient condition for ����� to be ful�lled is obviously that ccm itself
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converges on the hypothesis in the supremum norm to m with a faster rate than
�Th���
��log T ���
�� If ����� is actually satis�ed� it su�ces to �nd a consistent ap	
proximation to the distribution of the statistic

UT � sup
x�R

������X
t

K
�
x�Xt��

h

�
�t

�����
�
� �����

which is closely related to ST in ������
The distributions of ST and UT can be approximated by those of appropriate boot	
strap statistics� We discuss only the approximation of UT by

U�T � sup
x�R

������X
t

K
�
x�Xt��

h

�
��t

�����
�

����

more closely� Whereas a purely analytic approach of showing consistency is pre	
sumably quite cumbersome for such supremum	type functionals� a proof via strong
approximations is much more convenient�

Lemma 	��� Suppose that the data generating process obeys ����� and that �A
� and
�A�� are ful�lled� Then there exists on a su�ciently large probability space a pairing
of �X�� ��� � � � � �T � and �X�

� � �
�
�� � � � � �

�
T � such that

sup
x�R

������X
t

K
�
x�Xt��

h

�
�t � X

t

K

�
x�X�

t��
h

�
��t

�����
�

� oP
�
�Th��
��log T ���
�

�
holds uniformly over all bootstrap distributions L��X�

� � �
�
�� � � � � �

�
T � j X�� � � � �XT � for

�X�� � � � �XT � � �T  where �T is an appropriate set with P ��c
T � � o��� �

This strong approximation result basically says that the stochastic behaviour of the
process fPtK��x � Xt����h��tgx�R is well approximated by that of the bootstrap
counterpart fPtK��x � X�

t����h���tgx�R� This implies in particular that the dis	
tribution of UT is consistently approximated by that of U�T � As can be seen from
Lemma ��� in Neumann and Kreiss ������� the rate of oP ��Th��
��log T ���
�� for the
approximation error is just su�cient for the validity of the bootstrap in the context of
supremum	type functionals� Hence� we may apply the nonparametric autoregressive
bootstrap to determine the critical value for a supremum	type test based on WT � For
the same reason it can also be used for the construction of simultaneous con�dence
bands�

���� Application to a problem of parametric inference� As an illustration for a
situation where the nonparametric autoregressive bootstrap procedure �cf� Section ��
is really necessary� we consider the following example� Suppose that we intend to �t
a parametric model�

Xt � m��Xt��� � �t�

to the time series� For the sake of simplicity� let us deal with the simplest case� i�e��
m��u� � � � mo�u� for some known function mo and the least squares estimator ���
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which satis�es

p
T
�

�� � �
�

�
�p
T

P
t �Xt � �mo�Xt����mo�Xt���

�
T

P
tmo�Xt����

�

Recall that we do not assume that the parametric model coincides with the underlying
model� If we assume �A��� �A��� �A���i� for mo and EjXtj� �� for some 	 � �� then
we obtain from a CLT for strongly mixing processes� cf� Bosq ������ Theorem �����

asymptotic normality for the least squares estimator ��� namelyp
T
�

�� � �
�
�N

�
�� � ���Emo�X��

���
�
�

In the case of model inadequacy� the parameter � is de�ned in the sense of the best
approximation� that is

� � arg mine�
�
E
�
X� � e�mo�X��

���
�

EX�mo�X��

Emo�X���
�

The term

� � � E �X� � �mo�X���
�mo�X��

�

�� �
�X
k��

Cov ��X� � �mo�X���mo�X��� �Xk�� � �mo�Xk��mo�Xk��

� E��� �Emo�X��
� � E �m�X��� �mo�X���

�mo�X��
�

�� �
�X
k��

Cov ��X� � �mo�X���mo�X��� �Xk�� � �mo�Xk��mo�Xk��

depends on the whole dependence structure of the process� The application of the wild
bootstrap will lead in any case to an asymptotic normal distribution with variance
E����Emo�X��� which is in general not equal to � ���Emo�X����� � In contrast� the
process bootstrap described in Section � leads to consistency� This is the content of
the following result�

Lemma 	��� Suppose that the data generating process obeys ����� and that �A
�
�A�� and �A	� are full�lled� Then

p
T

�P
tX

�
tmo�X�

t���P
tmo�X�

t����
� ��

�
�N

�
�� � ���Emo�X��

���
�
�

holds if �X�� � � � �XT � � �T � �� denotes the value of the optimal �t �in the L��sense�
of a parametric model in the bootstrap world i�e� �� � E�X�

�mo�X�
� ��E�mo�X�

� �� 
EX�mo�X���Emo�X��� � � as T � �
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�� Proofs

Proof of Lemma ���� A condensed proof of this lemma has already been given in
Nummelin and Tuominen ������

�i� Let x �� K� We get immediately from �A���i�

jxj � �E�jX�j j X� � x� � ��� �����

Analogously we have

I�y � Kc� �jyj � �E�jX�j j X� � y�� � ��I�y � Kc��

Multiplying both sides with � and taking the expectation over X� under the condition
X� � x� we obtain

ExI�X� � Kc�
h
�jX�j � ��jX�j

i
� ���Px�X� � Kc�� �����

By analogous considerations� we get

ExI�X�� � � � �Xk � Kc�
h
�kjXkj � �k��jXk��j

i
� �k���Px�X�� � � � �Xk � Kc��

�����

Now we obtain from ����� to ����� that

jxj � �
�X
k��

�k��Px �X�� � � � �Xk � Kc� � �
�X
k��

�k��Px ��K � k� � �Ex�
�K �

�ii� For x � K� we obtain that

Ex�
�K � �

Z
K
P �x� dy� � �

Z
Kc

P �x� dy�Ey�
�K

� �
�
Px��K � �� � ���

Z
Kc

P �x� dy�jyj
�
�

�Notice that the term �Px��K � ��� was missing in Theorem ��� of Nummelin and
Tuominen ����� as well as on page �� in Doukhan ��������

Proof of Theorem ���� �i� Some preliminaries� Irreducibility recurrence and the
existence of 

First we check irreducibility of fXtg since this simpli�es the analysis by excluding
the case of more than one absorbing set� By Lemma ���� � � ��� �K� is obviously
an irreducibility measure� According to Proposition ����� from Meyn and Tweedie
������ p� �� there also exists a maximal irreducibility measure ��
Since K is a small set with Px��K ��� � � for all x� we obtain from Theorem ����
in Meyn and Tweedie ������ p� ��� that fXtg is recurrent� �fXtg is called recurrent
if it is �	irreducible and

P�
n�� P

n�x�A� � � for each x � R and every measurable
set A with ��A� � ���
Since fXtg is recurrent� we conclude from Theorem ������ of Meyn and Tweedie
������ p� ���� that there exists a unique invariant measure which we denote by �
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�ii� Coupling

Our proof of geometric ergodicity is mainly based on an appropriate coupling of one
Markov chain started in some state x with another chain having an initial distribution
equal to � This is one of the classical approaches to prove ergodicity of Markov
chains� see� for example� Lindvall ������ and Meyn and Tweedie ������� The most
substantial novelty of our proof is that we focus on explicit constants which are
necessary in view of the randomness of the parameters of the bootstrap process�
Coupling consists of establishing an appropriate pairing of two Markov chains�

X��X�� � � � with X� � x

and
X �

��X
�
�� � � � with X �

� 	 �

on a joint probability space� Let � be the �rst time that both chains reach any state
simultaneously� By the Markov property� we can pair these chains in such a way that
Xt � X �

t for all t � � � We call the time � the coupling time of the two processes� It
is easy to see that

kP n�x� �� � kV ar � sup
f 	jf j��

�����Z P n�x� dy�f�y� �
Z
�dy�f�y�

�����
� �Px�Xn �� X �

n� � �Px�� � n�� �����

For Markov chains with an accessible atom � �A set � is called an atom if there exists
a probability measure � such that P �x�B� � ��B� for all x � ��� the construction of
such a pairing is not di�cult� One simply lets run both chains independently until
they reach � simultaneously� and from that time both chains are identical�
In our context� which includes the case of purely continuous distributions of the
innovations �t� the existence of an accessible atom is not guaranteed� However� under
assumption �A���i�� we may use the splitting device of Nummelin ����� and Athreya
and Ney ����� to introduce an appropriate substitute� which we also denote by ��
and which is an atom for the n�	skeleton for the chain� that is

P n��x�B� � ��B� for all x � ��B measurable�

Hence� we can couple fXtg and fX �
tg in such a way that Xt � X �

t for all t � � �n��
where � is the time of the �rst common visit to the state ��
To de�ne a suitable substitute for the atom �� we apply the idea of Athreya and
Ney ����� and use an additional randomization with the aid of independent random
variables Nt and N �

t� t � �� � � � � T � with P �Nt � �� � P �N �
t � �� � 	� If Xt hits K�

then we de�ne the n�	step transition probability equal to ���� if Nt � � and equal
to �P n��Xt� �� � 	�������� � 	� if Nt � �� �The same is done for the chain fX �

tg in
dependence on the value of N �

t�� In other words� Xt hits the atom � if Xt � K and
Nt � ��

�iii� An experiment consisting of successive trials
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In view of ������ it remains to �nd a pairing of fXtg and fX �
tg such thatZ

Px �� � n� � n���dx� � C��
�n
� � �����

where Px refers to an initial condition of X� � x for the Markov chain�
To bound the probability Px���n� � n�� we consider successive trials of the chains
fXtg and fX �

tg to hit the state � at the same time� We de�ne stopping times �i and
� �i that refer to certain events that fXtg and fX �

tg visit K� Let

�� � min
j
fXj � Kg

and

� �� � min
j
fX �

j � K j j � ��g�
Further� we de�ne inductively

�i � min
j
fXj � K j j � � �i��g

and

� �i � min
j
fX �

j � K j j � �ig�
It is clear that �i and � �i are indeed stopping times with respect to the �	�eld Bi �
��X�� � � � �X�i �X

�
�� � � � �X

�
� �i

�� These stopping times are de�ned in such a way that

� � �� � � �� � �� � � �� � � � � � �i � � �i � � � �

The time � corresponds to the �rst joint visit of the Markov chains fXtg and fX �
tg

at �� Accordingly� we call a trial ��i� �
�
i � Ni� N

�
i� successful if �i � � �i��� Ni � N �

i�� � �
or � �i � �i� N

�
i � Ni � �� Our next step consists of showing that the conditional

probability of a success of a trial ��i� � �i � Ni� N
�
i� given Bi�� is bounded away from

zero� �Actually� we were not able to prove that P ��i � � �i��� Ni � N �
i�� � � j Bi���

can be bounded in such a way� It might happen that � �i�� � �i�� is arbitrarily large�
Since we do not have an explicit lower bound for infj�L infx� P j

x�K�� we cannot
derive an explicit lower bound for P ��i � � �i��� Ni � N �

i�� � � j Bi����� However�
fortunately� we can �nd such a bound for P �� �i � �i� N

�
i � Ni � � j Bi���� This

explains why we are considering such �double trials� ��i� � �i � Ni� N
�
i� rather than single

trials�
Using the last	exit representation� we �nd by �ii� of Lemma ��� that

P
�
�i � � �i�� � L j Bi��

�
�

� �i����i��X
s��

Z
K
P
� �i����i���s
X�i��

�dy�Py��K � L � s�

�
�X
t�L

sup
y�K

fPy��K � t�g

�
�X
t�L

sup
y�K

n
Ey�

�K�t
o
� C

�X
t�L

��t � � as L�� �����
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Hence�

P
�
�i � � �i�� � L� j Bi��

�
� C

for appropriate C � � and L� ��� which implies that

P �the ith trial is successful j Bi���

� P �� �i � �i� N
�
i � Ni j Bi���

� 	�
L�X
j��

P
�
�i � � �i�� � j�X �

� �
i���j

� K
���Bi��

�

� 	�
L�X
j��

P
�
�i � � �i�� � j j Bi��

�
P
�
X �

� �i���j
� K

���X �
� �i��

�
� 	�P

�
�i � � �i�� � L� j Bi��

�
inf

��j�L�

inf
x�K

n
P j �x�K�

o
� e	 � �� �����

This is just the point where �A���ii�� which is slightly stronger than aperiodicity of
the Markov chain� enters into the proof of geometric ergodicity�

�iv� An exponential bound for the coupling time

Let � denote the number of the �rst successful trial ��i� � �i � Ni� N
�
i�� that is� � � ���

We split up�

P �� � n� � n� � P �� � ��n�� � P ����n � n� � n�� ����

where the constant � will be speci�ed below�
Let Ti be the indicator of the event that the ith trial is successful� that is�

Ti �

�
� if ��i � � �i��� Ni � N �

i��� or �� �i � �i� N
�
i � Ni�

� otherwise
�

According to ������ we have that

P �� � ��n��

� P �T� � ��P �T� � � j T� � �� � � �P �T��n � � j T� � �� � � � � T��n�� � ��

� P �T� � ���� � e	���n� �����

Now we are going to �nd an upper bound for Ex�
���n��n� �

Using the last	exit representation� we obtain

P
�
�i � � �i�� � k

���Bi��
�

�

� �i����i��X
s��

Z
K
P
� �i����i���s
X�i��

�dy�Py��K � k � s�

� sup
y�K

fPy��K � k�g � ��k sup
y�K

fEy�
�Kg �



�� FRANKE ET AL�

which implies� for � � r � ��

E
�
r�i��

�

i��

���Bi��
�

�
�X
k��

rkP ��i � � �i�� � k j Bi���

� sup
y�K

fEy�
�Kg

�X
k��

�r���k �� ��r� � �� ������

Analogously we obtain

E
�
r�

�

i��i
�����X�� � � � �X�i�X

�
�� � � � �X

�
� �i��

�
�
� ��r�� ������

which implies in conjunction with ������� for i � �� that

E
�
r�i��i��

�����X�� � � � �X�i���X
�
�� � � � �X

�
� �
i��

�
�

� E
�h
r�

�

i����i��E�r�i��
�

i�� j Bi���
i�����X�� � � � �X�i�� �X

�
�� � � � �X

�
� �
i��

�
�

� ���r���� ������

Next we bound Exr
� �� � where Ex refers to the initial condition X� � x� We can apply

������ if fX �
tg visited K before or at ��� Let � ��� � infjfX �

j � Kg� �We have either
� ��� � �� or � ��� � � ����
We have that

Exr
� �� � Exr

��I�� �� � � ���� � Exr
��I�� ��� � ���

� E�r
�K � Ex

h
r��E

�
r�

�

����
�����X�� � � � �X�� �X

�
�� � � � �X

�
� �
��

�
�i

� E�r
�K � ��r�Exr

�K � ������

�From ������� ������ and ������ we conclude

Exr
���n� � Ex

h
r���n���E

�
r���n� � r���n��� j B��n��

�i
� � � � � Ex

h
r�

�

�E�r����
�

� j B��
i

���r�����n��

� �E�r
�K � ��r�Exr

�K� ���r�����n��� ������

which implies

P ����n � n� � n� � rn��nExr
���n�

� rn��n �E�r
�K � ��r�Exr

�K� ���r�����n

� rn� �E�r
�K � ��r�Exr

�K�
�
��r����r

�n
� ������

Choosing � small enough� we obtain the assertion�

Proof of Theorem 
��� As already announced� we set X� � X�
� � x�� where x� �

K �XT� �for T su�ciently large� K � T is nonempty�� We pair the chains fXtg and
fX�

t g in such a way that we have at each transition step a maximal coupling� Given
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Xt�� � xt�� and X�
t�� � x�t��� then the joint distribution of Xt and X�

t is chosen such
that

P
�
Xt � X�

t j Xt�� � xt���X�
t�� � x�t��

�
�

Z
p�X�

t jX�

t���xt��
�z� � pXtjXt���x

�

t��
�z� dz� ������

If xt�� � XT � then we obtain from �A�� thatZ
p�X�

t jX�

t���xt��
�z� � pXt jXt���xt��

�z� dz

� � � �

�

Z ���p�X�

t jX�

t���xt��
�z� � pXtjXt���xt��

�z�
��� dz

� � � eO �
T��� T��

�
�

This implies� by P �X�� � � � �Xn�� �� X c
T � � ��O�nT��� � that

P
�
Xn�� �� X�

n�� j X� � X�
� � x�

�
� eO �nT��� T��� � ������

For the conditional densities of Xn and X�
n we get���pXnjX��x��z� � p�X�

njX�

��x�
�z�

���
�

Z
jp��z �m�y�� � bp��z �cm�y��j

h
pXn��jX��x��y� � p�X�

n��jX�

��x�
�y�

i
dy

�
Z
p��z �m�y��

�
pXn��jX��x��y� � p�X�

n��jX�

��x�
�y�

�
�
dy

�
Z bp��z �cm�y��

�
p�X�

n��jX�

��x�
�y� � pXn��jX��x��y�

�
�
dy

� sup
z
fkp����m�z�� � bp����cm�z��k�g

� �kp�k� � kbp�k��P
�
Xn�� �� X�

n��
���X� � X�

� � x�
�

� eO �
nT��� T��

�
� �����

Since fXtg and fX�
t g are geometrically ergodic� we obtain with n � �C� log T � that

j�B� � ��B�j
� jP n�x�� B� � �B�j � jP �n�x�� B� � ��B�j

� jP n�x�� B� � P �n�x�� B�j
� eO �

T��� T��
�

� eO �
��B�T��� T��

�
������

holds simultaneously over all measurable B�

Before we turn to the next proofs� we quote a useful lemma from Neumann and
Kreiss ������� This lemma describes the stochastic behavior of sums of geometrically
�	mixing random variables�

Lemma 
��� Suppose that �Zt�t������ �T is geometrically ��mixing and EZt � � �
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�i� If jZtj � � almost surely then

TX
t��

Zt � eO
��min

���qT log T �
sX

t

var�Zt� log T � �log T ��

��	 � T��
�A �

�ii� Under the weaker assumption that �M �� �CM �� such that EjZtjM � CM

we have
TX
t��

Zt � eO
��sX

t

var�Zt� log T � T 	� T��
�A �

Proof of Lemma 
��� First� we choose two constants � � �� � ��� with N�T �

o�T��	
��

� and de�ne

XT �
�
x � ��T 	�� T 	��

���� �x� � T�	
��

�
� ������

�i� Proof of �X c
T � � O�T���

It is obvious that


�
X c
T � ��T 	�� T 	��

�
� O

�
T��

�
� ������

Hence� it remains to show that


�
��T 	�� T 	��c

�
� O

�
T��

�
� ������

According to �A���i�� we have that

jm�x�j � �jxj � C�

holds for all x and some � � � � Hence� we get the estimate

jXtj � �jXt��j � �C� � j�tj�
� � � � � �tjX�j � �t�� �C� � j��j� � � � � � �C� � j�tj�
d
� �tjX�j �

tX
s��

�s�� �C� � j�sj� �

Setting for a moment X� � � � we obtain by �A�� thatZ
jxjM�x� dx �

Z
jxjM lim

t�� pXt�x� dx

�
Z

sup
t

n
pXt�x�jxjM

o
dx

� E

� �X
t��

�t�� �C� � j�tj�
�M

� E

� �X
t��

�t�� �C� � j��j�
�M

� ��
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which implies ������ by Markov s inequality�

�ii� Estimation of supx�XT fjcmN�x��m�x�jg

De�ne the intervals

Ikl � �F��
X �k�T �� F��

X �l�T ��� � � k � l � T�

where FX�t� �
R t
�� �x� dx is the cumulative distribution function of Xt� We obtain

from Lemma ��� that

�f� � t � T � Xt�� � Iklg � �l � k�

� eO �
min

�p
l � k log T � �log T ���

q
T log T

�
� T��

�
� ������

Let

NN�T �x� � �x� nN�T �x�� x � nN�T �x��

be the nonrandom counterpart to cNN�x�� where nN�T �x� is the minimal number such
that �NN�T�x�� � N�T � We obtain from ������ that

P
�
NN�C�

p
N logT�T �x� 
 cNN�x� 
 NN�C�

p
N logT�T �x� for all x � R

�
� � � O�T����

������

which implies� by NN�C�

p
N logT�T �x� 
 �x� CT 	

��

N�T� x � CT 	
��

N�T � �

�

N

X
Xt��� bNN
x�

m�Xt����m�x� � eO �
T 	

��

N�T� T��
�
� ������

Further� we have by Lemma ���

sup
x

�����
�������

X
t	Xt��� bNN
x�

�t

�������
����	

� sup
x

���
������

X
t	Xt���NN�T 
x�

�t

������
��	 � sup

x

�����
X

t	Xt��� bNN
x��NN�T 
x�

j�tj
����	

� eO �p
N log T� T��

�
� ������

which yields the assertion�

Proof of Lemma 
��� We de�ne

ep��x� �
�

Th

TX
t��

K
�
x� �t
h

�
and

m�x� �

�Z
NN�T 
x�

�x� dx

��� Z
NN�T 
x�

m�x��x� dx�
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The di
erence of bp��x� and p��x� will be decomposed as follows�
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It can be shown �see also ������� that

sup
y���T �� �T �� 

fjcmN�y� � m�y�jg � eO �
N��
�T 	� T��

�
�

which implies

sup
x
fjT��x�jg � eO �h��N��
�T 	� T��

�
� �����

Further� we can show for �xed x that

jT��x�j � jT��x�j � eO �
�Th���
� log T� T��

�
� O�h��

holds� By proving this result on a su�ciently �ne grid and using that P �j�tj � T 	� �
O�T��� we get

sup
x
fjT��x�j � jT��x�jg � eO �

�Th���
� log T� T��
�

� O�h��� ������

Since p� is Lipschitz� we have
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x
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By ������ we obtain
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and� by �������

sup
x
fjT��x�jg � O

�
T��

�
� ������

�From ������ to ������ we obtain �i��
To get �ii�� we �rst conclude from �i� thatZ

��T ��T �
jbp��x� � p��x�j dx � O

�
T��

�
�

Since� furthermore�
R
��T ��T �c p��x� dx � O�T��� � we obtain �ii��

Proof of Lemma ���� In order to save space� we give only a brief sketch of the proof�
We assume throughout this proof that �X�� � � � �XT � � �T �
We consider �small� intervals Ik � ��k � ��g� kg� � where an appropriate choice of g
will become clear from the calculations below� To construct a pairing of X�� � � � �XT

and X�
� � � � � �X

�
T such that supxf

P
tK��x�Xt����h��t � P

tK��x�X�
t����h���tg

is small� we try �rst to �nd a pairing such that the partial sums w�r�t� the Ik�

Zk �
X

t	 Xt���Ik
�t

and

Z�k �
X

t	 X�

t���Ik
��t �

are close to each other� This will be achieved by a simultaneous embedding of
��� � � � � �T and ���� � � � � �

�
T in a common set of independent Wiener processes Wk

assigned to these intervals�

�i� Embedding of ��� � � � � �T and ���� � � � � �
�
T

In order to embed the �t in the Wiener processes� we de�ne appropriate stopping

times �

t�
k � To initialize this procedure� we set �


��
k � � for all k� Let k� be the index

of that interval Ik into which X� did fall� Then we embed �� in the Wiener process
Wk� � that is� according to Lemma A�� in Hall and Heyde ����� Appendix A��� we

choose an appropriate stopping time � 
��k�
such that

�� � Wk���

��
k�

� � Wk���

��
k�

��

For k �� k� � we set �

��
k � �


��
k �

Now we repeat this procedure to embed successively ��� ��� � � � � �T � Assume that
��� � � � � �t�� are already embedded� Let kt be the index of that interval into which
Xt�� did fall� Then we use the remaining part of the process Wkt to represent �t�

that is we choose a stopping time � 
t�kt
such that

�t � Wkt��

t�
kt

� � Wkt��

t���
kt

��

For k �� kt � we set �
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k � �
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After T such steps we obtain the representation

Zk � Wk��

T �
k ��

Now we use the same Wiener processes to embed successively ���� � � � � �
�
T � By exactly

the same steps as above we obtain

Z�k � Wk�e� 
T �k ��

�ii� Closeness of Zk and Z�k

The proof of the closeness of Zk and Z�k will be based on an upper estimate of

j� 
T �k � e� 
T �k j � First of all� note that �

t�
k � �


t���
k depends only on Xt�� and

fWkt�s�� �

t���
kt � s � �


t�
kt g� Hence� these di
erences are also geometrically �	mixing�

Therefore� we obtain from Lemma ����ii� that
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Moreover� we get from Theorem ��� that
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Provided that ��g � O�T ���� � these two estimates yield that
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holds for some � � � � This implies� by Lemma ����� in Cs!org"o and R#ev#esz �����
p� ���� that
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With a simple extra argument we can also prove that
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�
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�iii� Closeness of
P

tK��x�Xt����h��t and
P

tK��x�X�
t����h���t

To exploit the result of our partial sum approximation� we approximate K��x� ���h�
by piecewise constant functions� i�e��

K��x� y��h� �
X
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This yields the decomposition�����X
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Now we obtain by ������ that
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�T��
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SinceK is Lipschitz we have supx�yfjr�x� y�jg � O�g�h� � which implies by Lemma ���
that

jU��x�j � jU��x�j � eO �
�Th��
�g�h log�T � � T 	� T��
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It is clear that there exists some setK� of cardinalityO�TC� such that X� 
 S
k�K�

Ik �
Proving ������ for x on a su�ciently �ne grid on

S
k�K�

Ik we can show that

sup
x�X�

fjU��x�j � jU��x�jg � eO �
�Th�
�g�h log�T � � T 	� T��
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Finally� one can show by simple extra arguments that

sup
x�RnX�

fjU��x�j � jU��x�jg � eO �
T 	� T��
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� �����

The assertion follows now from ������� ������� ������ and ������

Proof of Lemma ���� We will show that
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if �X�� ����XT� � �T � Since the method of proof is simple we demonstrate the ar	
gument by showing weak convergence of ������� only� Concerning this we make use
of a CLT for a triangular array of strongly mixing random variables given in Politis�



�� FRANKE ET AL�

Romano and Wolf ������ Theorem A��� Since the bootstrap process is assumed to
be stationary the assumptions of Politis� Romano and Wolf ������ simplify to

�i� E� �X�
�mo�X�

� �����	 � $ for all T and some � � � �
�ii� there exists �� � ����� such that for T �

Var

�
�p
T

TX
t��

X�
tmo�X

�
t���

�
 �� �

�iii�
P�

k���k � ����
	

��	�
T �k� � K for all T �

Here �T ��� denote the strong mixing coe�cients of the bootstrap process�

Since all moments of the bootstrap process exist and are uniformly bounded �use
�A���v� and the same argument as in the proof of Lemma ���� we obtain �i� because
of �A���
�iii� is an immediate consequence of Theorem ��� and the inequality j�T ���j � j�����j �
To see �ii�� let

�� � Var �X�mo�X��� � � �
�X
k��

Cov �X�mo�X���Xk��mo�Xk�� �

Thus� it su�ces to prove �as T ��

�a� E� X�
�mo�X�

� �  E X�mo�X��
and
�b� E� X�

k��mo�X�
k �X�

�mo�X�
� �  E Xk��mo�Xk�X�mo�X��� k � �� �� �� � � � �

The left	hand side of �b� equalsZ
R

k�� xk��mo�xk�x�mo�x���p��xk�� � �m�xk�� � � � �p��x� � �m�x���
��x�� dxk�� � � � dx�

�
Z
X k��
T

xk��mo�xk�x�mo�x���p��xk�� � �m�xk�� � � � �p��x� � �m�x���
��x�� dxk�� � � � dx� � o���

� E Xk��mo�Xk�X�mo�X�� � o��� �

because of �A���ii�� �iii� and Theorem ����
The argument for �a� is quite similar and therefore omitted�
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