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ABSTRACT

We model an asset market populated by two groups of boundedly rational agents--
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overrreactions, the model generates a number of other distinctive testable implications.
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1. Introduction

Over the last several years, a large volume of empirical work has documented a variety
of ways in which asset returns can be predicted based on publicly available information.
Although different studies have used a host of different predictive variables, many of the results
can be thought of as belonging to one of two broad categories of phenomena. On the one hand,

there is a tendency for asset prices to underreact to news in the short run. On the other hand,

there is also a tendency for prices to overreact to news in the long run.!

It is becoming increasingly accepted that the accumulated facts on underreaction and
overreaction are hard to reconcile with standard renditions of the efficient markets hypothesis
(EMH) in which asset prices reflect all public information. In the context of the EMH, all of
the predictable patterns--both at short and long horizons--must be explained by variations in asset
risk. And there is essentially no affirmative evidence at this point that any of the patterns
discussed above can be rationalized based on measured variations in risk.

The shortcomings of the EMH suggest that a new theory is needed to explain the
empirical facts about asset prices. Almost by definition, this new theory will have to be
"behavioral”, meaning that it will have to involve some departure from the EMH assumptions
of strict rationality and unlimited computational capacity on the part of investors. But there are
a potentially huge number of such departures that one might entertain, so it is hard to know
where to start. In order to impose some discipline on the process, it is useful to be clear about
the criteria that a new theory should be expected to satisfy. There seems to be widespread

agreement that to be successful, any candidate theory will, at a minimum: 1) rest on assumptions

'We discuss this empirical work in detail and provide references in Section 2 below.
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about investor behavior that are either a priori plausible or consistent with casual observation;
2) explain the existing evidence in a parsimonious and unified way; and 3) make a number of
further predictions which can be subject to testing and which are ultimately validated.

In our view, the unified-model criterion is especially important. There already exist a
number of behavioral models or informal stories which can each explain some pieces of the
empirical evidence.? There has been less success to date in building models which offer an
integrated explanation of both the underreaction and overreaction types of phenomena. Notably,
however, a couple of recent papers do take up this unified-behavioral-model challenge. Both
Barberis, Shleifer and Vishny (1997) and Daniel, Hirshleifer and Subrahmanyam (1997) take an
approach that might be described as modelling the psychology of the representative investor.
In other words, both papers assume that stock prices are determined by a single representative
agent, and then posit a small number of cognitive biases that this representative agent might
have. They then investigate the extent to which these biases are sufficient to simultaneously
deliver both short-horizon underreaction and long-horizon overreaction.’

In this paper, we pursue the same goal as BSV and DHS, that of building a unified
behavioral model. However, we adopt a somewhat different approach to the problem. Rather
than trying to say much about the psychology of the representative investor, our premise is that

the observed asset-pricing phenomena are inherently all about interactions between heterogeneous

’For example, pure noise shocks as in DeLong et al (1990a) can yield the negative
autocorrelations in returns that are characteristic of overreaction. And any story wherein agents
are slow to digest new information can generate positive short-run autocorrelations.

’We will have much more to say about these papers, as well as a number of other related
works, in Section 6 below.



agents. To put it loosely, less of the action in our model comes from particular cognitive biases
that we ascribe to individual investors, and more of it comes from the way these investors
interact with one another.

More specifically, our model features two types of agents, whom we term
"newswatchers” and "momentum traders". Neither type is fully rational in the usual sense.
Rather, each is boundedly rational, with the bounded rationality being of an especially simple
form: each type of agent is only able to "process” some subset of the available public
information. Thus newswatchers make forecasts that are conditioned only on news that they
privately observe about future fundamentals; they do not condition on current or past prices.
Momentum traders, in contrast, condition only on some simple measures of past price changes,
and do not observe news about fundamentals. Importantly, each type of agent makes the best
possible use of the information that he does process. For example, momentum traders’ forecasts
will be the optimal forecasts given the limited conditioning information that they use.

We begin by showing that when only newswatchers are active, prices adjust gradually
to new information--i.e., there is underreaction (positively correlated returns at short horizons)
but never any overreaction (returns are never negatively correlated). There is not much to this
result. Indeed, as will become clear, this baseline level of underreaction is essentially built into
the model by virtue of the assumption that newswatchers do not extract information from prices.

Things get more interesting when we add the momentum traders. It is tempting to
conjecture that because the momentum traders can condition on past prices, they will arbitrage
away any underreaction left behind by the newswatchers. In other words, if returns are

positively autocorrelated, momentum traders should rationally adopt a "trend-chasing” strategy



of buying after price increases, and selling after price decreases. If the momentum traders are
sufficiently risk-tolerant, one might expect that this would eliminate the underreaction, and lead
the market to be approximately efficient.

It turns out that this intuition is incomplete, if momentum traders are restricted to
following relatively simple strategies. For example, suppose that a momentum trader at time
t must base his trade only on the price change over some prior interval, say that from t-2 to t-1.
We show that in this case, momentum traders’ attempts to profit from the underreaction caused
by newswatchers lead to a somewhat perverse outcome: the initial reaction of prices in the
direction of fundamentals is indeed accelerated, but this comes at the expense of creating an
eventual overreaction to any news. This is true even when momentum traders are risk neutral.
Figure 1 illustrates the impulse response of prices to new information that arises in our model,
for the cases with and without momentum traders.*

Thus our model ties together the underreaction and overreaction phenomena in the
following way. We begin by more or less assuming some tendency toward underreaction on the
part of some traders. We then ask what happens when we allow a second group of traders to
try to take advantage of this underreaction. When the second group uses a simple (but optimal,
given its simplicity) arbitrage strategy, they only partially mitigate the underreaction, and in so
doing, create an excessive momentum in stock prices that must inevitably culminate in
overreaction. In other words, the very existence of underreaction sows the seeds for
overreaction, by making it profitable for momentum traders to enter the market.

The key to our results is the assumption that momentum traders use simple strategies--

*We will discuss how this example is calibrated below.
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i.e., do not condition on all publicly available information. Continuing with the above example,
if 2 momentum trader’s order strategy at time t is restricted to being a function only of the price
change from t-2 to t-1, it is easy to see that it must be an increasing function of this price
change. On average, this simple trend-chasing strategy will make money in equilibrium. But
if one could condition on more information, it would become apparent that the strategy does
better in some circumstances than in others. In particular, a simple momentum strategy earns
the bulk of its profits early in the "momentum cycle"--by which we mean shortly after
substantial news has arrived to the newswatchers--and loses money late in the momentum cycle,
by which time prices have already overshot long-run equilibrium values.

For concreteness, suppose that there is a single dose of good news at time t and no
change in fundamentals after that. The newswatchers cause prices to jump at time t, but not far
enough, so that they are still below their long-run values. At time t+1 there will be a round
of momentum purchases, and those momentum buyers who get in at this time will make money.
But this round of momentum trading creates a further price increase, which sets off more
momentum buying, and so on. Later momentum buyers--i.e., those buying at t+i for some i--
will lose money, because they will get in at a price above the long-run equilibrium.

Thus a crucial insight is that "early” momentum buyers impose a negative externality on
"late" momentum buyers.® Ideally, one uses a momentum strategy because a price increase
signals that there is good news about fundamentals out there that is not yet fully incorporated

into prices. But sometimes, a price increase is the result not of news but just of previous rounds

SAs we will explain in more detail below, this negative "momentum externality" is
reminiscent of the herding models of Banerjee (1992), Bikhchandani, Hirshleifer and Welch
(1992) and Scharfstein and Stein (1990).



of momentum trade. Because momentum traders cannot directly condition on whether or not
news has recently arrived, they do not know whether they are early or late in the cycle. Hence
they must live with this externality, and accept the fact that sometimes they will be buying when
earlier rounds of momentum trading have pushed prices past long-run equilibrium values.

In what follows, we develop a simple infinite-horizon model that allows us to capture
these ideas and to explore their empirical content. We begin in Section 2 by giving an overview
of the empirical evidence that motivates our work, and briefly discussing why the EMH is
unlikely to be able to explain it. In Section 3, we present and solve the basic model, and do a
number of comparative statics experiments. Section 4 contains several extensions. In Section
5, we draw out the model’s empirical implications, with particular emphasis on those that have

not yet been tested. Section 6 discusses related work, and Section 7 concludes.

2. Evidence of Underreaction and Overreaction

2.A Underreaction

The underreaction evidence can be decomposed along the following lines. First, returns
tend to exhibit unconditional positive serial correlation at short horizons on the order of six to
twelve months. This is true both for aggregate indices (Cutler, Poterba and Summers 1991) and
in cross-sections of individual stocks (Jegadeesh and Titman 1993). One possible interpretation
of this unconditional evidence--which fits most closely with the spirit of the model we develop
below--is that information which is initially private is incorporated into prices only gradually.

Second, conditional on observable public events, stocks tend to experience post-event

drift in the same direction as the initial event impact. The types of events that have been



examined in detail and that fit this pattern include: earnings announcements (perhaps the most-
studied type of event in this genre; see e.g. Bernard 1992 for an overview); stock issues and
repurchases; dividend initiations and omissions; and analyst recommendations.®

Recent work by Chan, Jegadeesh and Lakonishok (1996) shows that these two types of
underreaction are distinct: in a multiple regression, both past returns and public earnings
surprises help to predict subsequent returns at horizons of six months and one year. This seems
to suggest that the market underreacts to both information which is initially private, as well as

information which is made publicly available to all investors simultaneously.

2.B Overreaction

One of the first and most influential papers in the overreaction category is DeBondt and
Thaler (1985), who find that stock returns are negatively correlated at long horizons.
Specifically, stocks that have had the lowest returns over any given five-year period tend to have
high returns over the subsequent five years, and vice-versa.” A common interpretation of this
result is that when there is a sustained streak of good news about an asset, its price overshoots

its "fundamental value", and ultimately must experience a correction. More recent work in the

SReferences include: Bernard and Thomas (1989, 1990) on earnings announcements;
Loughran and Ritter (1995) and Spiess and Affleck-Graves (1995) on stock issues; Ikenberry,
Lakonishok and Vermaelen (1995) on repurchases; Michaely, Thaler and Womack (1996) on
dividend initiations and omissions; and Womack (1996) on analyst recommendations.

"DeBondt and Thaler’s (1985) results generated a good deal of controversy, but they seem
to have stood up well to scrutiny (see, e.g. Chopra, Lakonishok and Ritter 1992). There are
also direct analogs to these results in the time series of aggregate market returns, although the

statistical power is lower. See Fama and French (1988), Poterba and Summers (1988) and
Cutler, Poterba and Summers (1991).



same spirit has continued to focus on long-horizon predictability, but has used what are arguably
more refined indicators of fundamental value, such as book-to-market, and cashflow-to-price

ratios. (See, e.g., Fama and French 1992, Lakonishok, Shleifer and Vishny 1994.)8

2.C Is It Risk?

In principle, the predictable patterns in asset prices discussed above could be consistent
with the EMH, to the extent that they reflect variations in risk, either over time or across assets.
Fama and French (1993, 1996) argue that many of the long-horizon overreaction types of resuits
—-such as return reversals, the book-to-market effect, and the cashflow-to-price effect--can be
largely subsumed within a three-factor model that they interpret as a variant of the arbitrage
pricing theory (APT) or intertemporal capital asset pricing model (ICAPM). However, this pro-
EMH position has been controversial, since there is little affirmative evidence that the Fama-
French factors correspond to any economically meaningful risks. Indeed, several recent papers

demonstrate that the contrarian strategies that exploit long-horizon overreaction are not

significantly riskier than average.’
There seems to be more of a consensus in the literature that the short-horizon
underreaction evidence cannot be explained in terms of risk. Bernard and Thomas (1989) reject

risk as an explanation for post-earnings-announcement drift. And even Fama and French (1996)

$Again, there are analogous "fundamental reversion" results in the time-series literature on
aggregate market predictability. (See Campbell and Shiller 1988.)

9See Lakonishok, Shleifer and Vishny (1994), and MacKinlay (1995). Daniel and Titman
(1997) provide direct evidence against the Fama-French notion that the book-to-market effect
can be given a multifactor risk interpretation.



acknowledge that the continuation results of Jegadeesh and Titman (1993) constitute the "main

embarrassment" for their three-factor model. (p. 81)

3. The Model

3.A Price Formation With Newswatchers Only

As mentioned above, our model features two classes of traders, newswatchers and
momentum traders. We begin by describing how the model works when only the newswatchers
are present. At every time t, the newswatchers trade claims on a risky asset. This asset will
pay a single liquidating dividend at some later time T. The ultimate realized value of this
liquidating dividend can be written as: Dy = Dy + ¥ T.-0 €, where all the €’s are independently
distributed, mean-zero normal random variables. Throughout the paper, we will consider the
limiting case where T goes to infinity. This simplifies matters by allowing us to focus on
steady-state trading strategies--i.e., strategies that do not depend on how close we are to the
terminal date.'

The newswatchers are divided into z equal-sized groups. At any time t, every one of
these groups observes D, = Dy + ¥'-0 €. In addition, at time t, news about €., begins to
come out. This news is broken into z smaller "packets", €' ,,,...... €%4,.1, Which collectively sum

to €,,,,. Each of the z groups observes one of the packets (a different one) over each of the next

194 somewhat more natural way to generate an infinite-horizon formulation might be to
allow the asset to pay dividends every period. The only reason we push all the dividends out
into the infinite future is for notational simplicity. In particular, when we consider the strategies
of short-lived momentum traders below, our approach allows us to have these strategies depend
only on momentum traders’ forecasts of price changes, and we can ignore their forecasts of
interim dividend payments.



z periods. This implies that at time t, each of the packets is known by 1 group. At time t+1,
“each of the packets is known by 2 groups, and so forth until time t+z-1, at which point every
one of the z groups has seen all of the information that comprises €.,.,.

The most straightforward interpretation is that €., is information that is unavailable
before time t, and that gradually diffuses to the investing public--in the sense of being directly
observed by more and more people--over the period from t to t+z-1. By time t+z-1, everybody
knows all the new information. As will become clear shortly, this interpretation is sufficient if
our goal is to capture the sort of underreaction that shows up empirically as unconditional
positive correlation in returns at short horizons (e.g., that documented by Cutler, Poterba and
Summers 1991, and Jegadeesh and Titman 1993) However, if we are also interested in
capturing phenomena like post-earnings-announcement drift--where there is apparently
underreaction even to data that is made available to everyone simultaneously--we will need to
embellish the story. We will discuss this embellishment later on; for now it is easiest to think
of the model as only speaking to the unconditional evidence on underreaction.

All the newswatchers have CARA utility with the same risk-aversion parameter, and all
live until the terminal date T. The riskless interest rate is normalized to zero, and the supply
of the asset at all times is fixed at Q. So far, all these assumptions are completely standard.
We now make two that are less conventional. First, at every time t, newswatchers formulate
their demands for the asset based on the static-optimization notion that they will buy and hold

until the liquidating dividend at time T."" Second, and more critically, while newswatchers can

I'There is an element of time-inconsistency here, since in fact newswatchers may adjust their
positions over time. Ignoring the dynamic nature of newswatcher strategies is more significant
when we add momentum traders to the model, so we discuss this issue further in Section 3.B.
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condition on the information sets described above, they do not condition on current or past
prices. In other words, our equilibrium concept is a Walrasian equilibrium with private
valuations, as opposed to a fully revealing rational expectations equilibrium.

As suggested in the Introduction, these two unconventional assumptions can be motivated
based on a simple form of bounded rationality. One can think of the newswatchers as having
their hands full just figuring out the implications of the €’s for the terminal dividend Dy . This
leaves them unable to also use current and past market prices to form more sophisticated
forecasts of Dy (our second assumption); it also leaves them unable to make any forecasts of
future price changes, and hence unable to implement dynamic strategies (our first assumption).

Given these assumptions, and the symmetry of our set-up, the conditional variance of

fundamentals is the same for all newswatchers, and it is easy to see that the price at time t is

given by:

P, = D, + {(z-De, + (Z2)erz + .- + e, Mz - 6Q (1)

where @ is a function of newswatchers’ risk aversion and the variance of the €'s. For simplicity,
we will normalize the risk aversion so that § = 1 hereafter. In words, equation (1) says that
the new information works its way gradually into the price over z periods. This implies that
there is positive serial correlation of returns over short horizons (of length less than z). Note
also that prices never overshoot their long-run values, or equivalently, that there is never any

negative serial correlation in returns at any horizon.

Even given the eminently plausible assumption that private information diffuses gradually
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across the population of newswatchers, the gradual-price-adjustment result in (1) hinges critically
on the further assumption that newswatchers do not condition on prices. For if they did--and
as long as Q was common knowledge--the logic of Grossman (1976) would imply a fully

revealing equilibrium, with a price P°,, satisfying (for § = 1):

P‘t = D!+z-l - Q (2)

Clearly, in the rational expectations setting, gradual information diffusion does not by itself
generate gradual adjustment of prices--i.e., there is no serial correlation of returns at any horizon
as long as Q is nonstochastic.'

We should therefore stress that we view the underreaction result embodied in equation
(1) to be nothing more than a point of departure--it is neither terribly interesting in and of itself,
nor satisfactory as a complete account of asset pricing. It is not so interesting because we have
to some extent hardwired in the baseline level of underreaction with our combination of
assumptions about gradual information diffusion and lack of conditioning on prices. It is not
satisfactory as an account of asset prices, because it begs an obvious question: even if
newswatchers are too busy processing fundamental data to incorporate prices into their forecasts,
can’t some other group of traders focus exclusively on price-based forecasting, and in so doing
generate an outcome close to the rational expectations equilibrium of equation (2)? It is to this

central question that we turn next, by adding the momentum traders into the mix.

1>This is true even if we maintain the assumption that newswatchers rely on static strategies
that only involve predicting the terminal dividend Dy.
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3. B Adding Momentum Traders to the Model

Momentum traders also have CARA utility. Unlike the newswatchers, however, they
have finite horizons. In particular, at every time t, a new generation of momentum traders
enters the market. Every trader in this generation takes a position, and then holds this position
for j periods--that is, until time t+j. For modelling purposes, we will treat the momentum
traders’ horizon j as an exogenous parameter; later we will discuss how it might be endogenized.

The momentum traders transact with the newswatchers by means of market orders. In
other words, the momentum traders submit quantity orders, not knowing the price at which these
orders will be executed. The price is then determined by the competition among the
newswatchers, who double as market-makers in this set-up. Thus in deciding the size of their
orders, the momentum traders at time t must try to predict (P - P). To do so, they make
forecasts based on past price changes. We assume that these forecasts take an especially simple
form: the only conditioning variable is the cumulative price change over the past k periods, 1.e.,
(Pey - P

As it turns out, the exact value of k is not that important, so in much of what follows we
simplify things by setting k = 1, and using as the time-t forecasting variable (P, - P.,) = AP,
What is much more significant is that we are restricting the momentum traders to making
univariate forecasts based on past price changes. If, in contrast, we allowed them to make

forecasts using n lags of price changes, giving different weights to each of the n lags, we suspect

that for sufficiently large n, many of the results that we present below would go away. Again,
the motivation for restricting the momentum traders to univariate strategies is a crude notion of

bounded rationality: traders simply do not have the computational horsepower to run complicated
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multivariate regressions.

With k = 1, the order flow from generation-t momentum traders, F,, is of the form:

F, = A + ¢AP,, (3)

where the constant A and the elasticity parameter ¢ have to be determined from optimization on
the part of the momentum traders. This order flow must be absorbed by the newswatchers. We
assume that the newswatchers treat the order flow simply as an uninformative supply shock.
This is the only way to be consistent with our previous assumption that the newswatchers do not
condition on current or past prices. Given that the order flow is simply a linear function of past
price changes, if we allowed the newswatchers to extract information from it, we would be
indirectly allowing them to learn from prices.

To streamline things, the order flow from the newswatchers is the only source of supply
variation in the model. Given that there are j generations of momentum traders in the market

at any point in time, the aggregate supply S, absorbed by the newswatchers is given by:

S, =Q 'Zji=l Fini=Q-JA- Eji=1 $AP,; 4)

We continue to assume that, at any time t, the newswatchers act as if they will buy and

hold until the liquidating dividend at time T. This implies that prices are given exactly as in (1),

except that the fixed supply Q is replaced by the variable S,, yielding:
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Pt = Dt + {(Z'l)ful + (Z_z)fwz + o + EH-Z-I}/Z - Q + .]A + Zji=l (bAPt-i (5)

In most of the analysis, the constants Q and A play no role, so we will disregard them when it
is convenient to do so.

As noted previously, newswatchers’ behavior is, in general, time-inconsistent. Although
at time t they base their demands on the premise that they will never trade again, they violate
this premise to the extent that they are active in the market in later periods. We adopt this time-
inconsistent shortcut because it dramatically simplifies the analysis. Otherwise, we would face
a complex dynamic programming problem, with newswatcher demands at time t depending not
only on their forecasts of the liquidating dividend Dr, but also on their predictions for the entire
future path of prices.

Two points can be offered in defense of our time-inconsistent simplification. First, as
suggested above, it fits with the basic spirit of our approach, which is essentially to have
newswatchers act as a simple, boundedly rational "underreaction machine". Second, we have
no reason to believe that this shortcut colors any of our important qualitative conclusions.
Loosely speaking, what we are doing is shutting down a "frontrunning” effect, whereby
newswatchers buy more aggressively at time t in response to good news, since they know that
the good news will kick off a series of momentum trades and thereby drive prices up further
over the next several periods.”® As we discuss in detail in Section 4 below, frontrunning by
newswatchers may speed the response of prices to information, thereby mitigating the

underreaction phenomenon, but in our set-up it can never wholly eliminate either underreaction

13This sort of frontrunning effect is at the center of DeLong et al (1990D).
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or overreaction.

3.C The Nature of Equilibrium
With all of the assumptions in place, we are now ready to solve the model. The only
task is to calculate the equilibrium value of ¢. Disregarding constants, optimization on the part

of the momentum traders implies:

d)APt-l = 'YEM(PHj - P,_)/V&I'M(Pt,,_j - PL) (6)

where 1 is the aggregate risk tolerance of the momentum traders, and where Ey and var, denote
the conditional mean and variance given their information, which is just AP,. Equation (6) can

be rewritten as:

¢= ycov(P,,; - P, AP )/{var(AP)vary(P.,; - P)} Q)

The definition of equilibrium is a fixed point such that ¢ is given by (7), while at the
same time price dynamics satisfy (5). We will restrict ourselves to studying covariance-
stationary equilibria. In the appendix, we prove that a necessary condition for a conjectured
equilibrium process to be covariance stationary is that |¢| < 1. Such an equilibrium may not
exist for arbitrary parameter values, and we are also unable to generically rule out the possibility
of multiple equilibria. However, we prove in the appendix that existence is guaranteed so long

as the risk tolerance vy of the momentum traders is sufficiently small, since this in turn ensures
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that |¢| will be sufficiently small. Moreover, detailed experimentation suggests that a unique
covariance-stationary equilibrium does in fact exist for a large range of the parameter space."
In general, it is difficult to solve the model in closed form, and we will have to resort
to a computational algorithm to find the fixed point. For an arbitrary set of parameter values,
we always begin our numerical search for the fixed pointat j = 1. Given this restriction, we
can show that the condition |$¢| < 1 is both necessary and sufficient for covariance-stationarity.
We also start with a small value of risk tolerance and an initial guess for ¢ of zero. The
solutions in this region of the parameter space are well-behaved. Using these solutions, we then
move to other regions of the parameter space. This procedure ensures that if there were to be
multiple covariance-stationary equilibria, we would always pick the one with the smallest value
of ¢. We also have a number of sensible checks for when we have moved outside the
covariance-stationary region of the parameter space. These are described in the appendix.

Even without doing any computations, we can make several observations about the nature

of equilibrium. First, we have:

Lemma 1: In any covariance-stationary equilibrium, ¢ > 0. That is, momentum

traders must rationally behave as trend-chasers.

“Qur experiments suggest that we only run into existence problems when both the risk
tolerance ~ and the information-diffusion parameter z simultaneously become very large--even
an infinite value of i poses no problem so long as z is not too big. The intuition will become
clearer when we do the comparative statics, but loosely speaking, the problem is this: as z gets
large, momentum trading becomes more profitable. Combined with high risk tolerance, this can
make momentum traders behave so aggressively that our |¢| < 1 condition is violated.
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The lemma is proved in the appendix, but it is trivially easy to see why ¢ = 0 cannot
be an equilibrium. Suppose to the contrary it were. Then prices would be given as in the all-
newswatcher case in equation (1). And in this case, cov(P,; - P,, AP;) > 0, so that equation
(7) tells us that ¢ > 0, establishing a contradiction.

We are now in a position to make some qualitative statements about the dynamics of
prices. First, let us consider the impulse response of prices to news shocks. The thought
experiment here is as follows. At time t, there is a one-unit positive innovation ¢, that begins
to diffuse among newswatchers. There are no further news shocks from that point on. What
does the price path look like?

The answer can be seen by decomposing the price at any time into two components: that
attributable to newswatchers, and that attributable to momentum traders. Newswatchers’
aggregate estimate of Dy rises from time t to time t+z-1, by which time they have completely
incorporated the news shock into their forecasts. Thus by time t+z-1, the price would be just
right in the absence of any order flow from momentum traders. But with ¢ > 0, any positive
news shock must generate an initially positive impulse to momentum-trader order flow.
Moreover, the cumulative order flow must be increasing until at least time t+]), since none of
the momentum trades stimulated by the shock begin to be unwound until t+j+1. This sort of

reasoning leads to the following conclusions:

Proposition 1: In any covariance-stationary equilibrium, given a positive one-unit shock

€4, that first begins to diffuse among newswatchers at time t:

i) there is always overreaction, in the sense that the cumulative impulse response of
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prices peaks at a value that is strictly greater than one;
i) if j = z-1, the cumulative impulse response peaks at t+], and then begins to decline,

eventually converging to one;

iii) if j < z-1, the cumulative impulse response peaks no earlier than t+j, and eventually

converges to one.

In addition to the impulse response function, it is also interesting to consider the
autocovariances of prices at various horizons. We can develop some rough intuition about these
autocovariances by considering the limiting case where the risk tolerance of the momentum
traders + goes to infinity. In this case, equation (7) implies that the equilibrium must have the

property that cov(P,,; - P, AP,;) = 0. Expanding this expression, we can write:

cov(AP,,,, AP, ) + cov(AP,,,, AP,) +....... cov(AP,;, AP,)) =0 (8)

Equation (8) allows us to state the following:

Proposition 2: In any covariance-stationary equilibrium, if prices changes are positively
correlated at short horizons (e.g., if cov(AP,,,, AP,) > 0), then with risk-neutral momentum
traders they are negatively correlated at a horizon no longer than j+1--i.e., it must be that

cov(AP,,,, AP.) < O for somei < j.

It is useful to explore the differences between Propositions 1 and 2 in some detail, since
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at first glance, it might appear that they are somewhat contradictory. On the one hand,
Proposition 1 says that in response to good news, there is continued upward momentum in prices
for at least j periods, and possibly more (if j < z-1). On the other hand, Proposition 2 suggests
that price changes begin to be reversed within j+1 periods, and quite possibly sooner than that.

The two propositions can be reconciled by noting that the former is a conditional
statement--i.e., it talks about the path of prices from time t onward, conditional on there having
been a news shock at time t. Thus Proposition 1 implies that if a trader somehow knew for sure
that there had been a news shock at time t, he could make a strictly positive expected profit by
buying at this time and holding until time t+j. One might term such a strategy "buying early
in the momentum cycle"--i.e., buying immediately on the heels of news arrival. But of course,
such a strategy is not available to the momentum traders in our model, since they cannot
condition directly on the €’s.

In contrast, Proposition 2 is an unconditional statement about the autocovariance of
prices. It flows from the requirement that if a trader buys at time t in response to an
unconditional price increase at time t-1, and then holds until t+j, he makes zero profits on
average. This zero-profit requirement in turn must hold when momentum traders are risk-
neutral, because the unconditional strategy is available to them.

There is a simple reason why an unconditional strategy of buying following any price
increase does not work as well as the conditional strategy of buying only following directly
observed good news: not all price increases are news-driven. In particular, a trader who buys
based on a price increase observed at time t runs the following risk. It may be "late” in the

momentum cycle, in the sense that there has not been any good news for the last several periods.
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Say the last good news hit at t-i. If this is the case, the price increase at time t is just due to
a late round of momentum buying. And those earlier momentum purchases kicked off by the
news at t-i will begin to be unwound in the very near future (specifically, at t-1+j+1) causing
the trader to experience losses well before the end of his trading horizon.

This discussion highlights the key spillover effect that drives our resuits. A momentum
trader who is fortunate enough to buy shortly after the arrival of good news imposes a negative
externality on those that follow him. He does so by creating a further price increase that the
next generation partially misinterprets as more good news. This causes the next generation to
buy, and so on. At some point, the buying has gone too far, and the price overshoots the level
warranted by the original news. Given the inability of momentum traders to condition directly
on the €’s, everybody in the chain is behaving as rationally as possible, but the externality

creates an apparently irrational outcome in the market as a whole.

3.D Winners and I osers

A natural question in this context is whether the bounded rationality of either the
newswatchers or the momentum traders causes them to systematically lose money. In general,
both groups can earn positive expected returns--and hence plausibly survive in the long run--as
long as the net supply Q of the asset is positive.

Consider first the case where Q = 0. In this case, it is straightforward to show that the
momentum traders earn positive returns, as long as their risk aversion is non-zero. Because with
Q = 0, this is a zero-sum game, it must therefore be that the newswatchers generally lose

money. The one exception is when momentum traders are risk-neutral, and both groups break
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even. '’

When Q > 0, the game becomes positive-sum, as there is a return to risk-sharing that
can be divided between the two groups. Thus even though the newswatchers may effectively
lose some money on a trading basis to the momentum traders, this can be more than offset by
their returns from risk-sharing, and they can make a net profit. Again, in the limit where the
momentum traders become risk-neutral, both groups break even. The logic is similar to that
with Q = 0, because risk-neutrality on the part of momentum traders dissipates all the risk-

sharing profits, restoring the zero-sum nature of the game.

3.E Numerical Comparative Statics

In order to develop a more detailed feeling for the properties of the model, we now
perform a variety of numerical comparative statics exercises.® We begin in Table 1 by
investigating the effects of changing the momentum traders’ horizon j. We hold the information-
diffusion parameter z fixed at 12 months, and set the standard deviation of the fundamental e
shocks equal to .5 per month. Finally, we assume that the aggregate risk tolerance of the

momentum traders, v, equals 1/3."7 We then experiment with values of j ranging from 3 to

15This result is related to the fact that newswatchers have time-inconsistent strategies, so that
in formulating their demands they ignore the fact that they will be transacting with momentum
traders who will be trying to take advantage of them. Thus in some sense, the newswatchers
are more irrational than the momentum traders in this model.

%The appendix briefly discusses our computational methods.

"Campbell, Grossman and Wang (1993) suggest that this value of risk tolerance is about
right for the market as a whole. Of course, for individual stocks, arbitrageurs may be more
risk-tolerant, since they may not have to bear systematic risk. As we demonstrate below, our
results on overreaction tend to become more pronounced when risk tolerance is increased.
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18 months. For each set of parameter values, we display the following five types of numbers:
i) the equilibrium value of ¢; ii) the unconditional standard deviation of monthly returns AP;
iii) the standard deviation of the pricing error relative to a rational expectations benchmark,
(P, - P*); iv) the cumulative impulse response (up to 35 months) of prices to a one-unit e shock;
and v) the autocorrelations of returns (up to a horizon of 25 months).

As a baseline, let us focus first on the case where j = 12 months. Consistent with
Proposition 1, the impulse response function peaks 12 months after an e shock, reaching a value
of 1.342. In other words, at the peak, prices overshoot the change in long-run fundamentals by
34.2%. After the peak, prices eventually converge back to 1.00, although not in a monotonic
fashion--rather, there are a series of damped oscillations as the momentum-trading effects
gradually wring themselves out. Consistent with the intuition from Proposition 2, the
autocorrelations begin to turn negative somewhat before the 12-month mark; in this case, the
first negative autocorrelation occurs at a lag of 10 months.

Now lets us ask what happens as j is varied. As can be seen from the table, (see also
Figure 2 for a graphical illustration) the effects on the impulse response function are non-
monotonic. For example, with j = 6, the impulse response peaks at 1.265, while with j = 18,
the peak reaches 1.252, neither as high as in the case where j = 12. This non-monotonicity
arises because of two competing effects. On the one hand, an increase in j means that there will
be more generations of momentum traders active in the market at any one time; hence their
cumulative effect should be stronger, all else equal. On the other hand, the momentum traders
rationally recognize the dangers of having a longer horizon--there is a greater risk that they will

be caught trading late in the momentum cycle. As a result, they trade less aggressively, so that
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¢ is decreasing in j.

A more clear-cut comparative statics result appears to emerge when we consider the
effect of j on the pattern of autocorrelations. The smaller is j, the faster the autocorrelations
begin to turn negative. For example, with j = 6, the first negative autocorrelation occurs at a
lag of 6 months, while with j = 18, the first negative autocorrelation occurs at a lag of 12
months. Again, this suggests that the rough intuition from Proposition 2 carries over to the case
of non-zero risk aversion.

In Table 2, we examine the effect of changing momentum traders’ risk tolerance. We
set j = z = 12 months, and allow v to vary from 1/13 to 1/3. The effects here are for the most
part intuitive. As risk tolerance increases, momentum traders respond more aggressively to past
price changes--i.e., ¢ increases. This causes the impulse response function to reach higher peak
values. (See Figure 2.) Also, the unconditional volatility of monthly returns rises monotonically.
Note, however, that the effect of risk tolerance on the pricing error (P, - P") is U-shaped: the
pricing error first falls, and then rises, as risk tolerance is increased. On the one hand, more
aggressive momentum trading accelerates the reaction of prices to information, which reduces
underreaction and thereby decreases the average pricing error. On the other hand, as we have
just seen, more aggressive momentum trading also exacerbates the overreaction problem, which

tends to increase the average pricing error. Evidently, these two effects interact in such a way

as to produce a non-monotonic pattern.'®

This fact--that more aggressive momentum trading can increase both the volatility of
returns and the magnitude of pricing errors--serves as another counterexample to Friedman’s
(1953) famous contention that an increase in profitable speculation must necessarily stabilize
prices. See also Hart and Kreps (1986), Stein (1987), and DeLong et al (1990b).
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Finally, in Table 3, we allow the information-diffusion parameter z to vary. Increasing
z has a monotonic effect on the intensity ¢ of momentum trade. This makes sense: the slower
are newswatchers to figure things out, the greater are the profit opportunities for momentum
traders, because returns are more strongly autocorrelated at short horizons. In the range of the
parameter space where j = z-1, the induced increase in ¢ in turn has a monotonic effect on the
peak impulse response--more aggressive momentum trade leads to more pronounced
overshooting, and correspondingly, to negative autocorrelations that are generally larger in

absolute value during the reversal phase."’

4. Extensions of the Basic Model

4.A Momentum Forecasts Based on k-Period Past Price Changes

As noted above, our basic results do not hinge on the specific assumption that momentum
traders use a one-period lagged price change to make their forecasts. What matters more is that
these forecasts be based on univariate regressions. To illustrate this point, in Table 4 we
experiment with some variations on the basic model where the momentum traders make forecasts
at any time t based on the cumulative price change over the past k periods, (P, - Piy).

It turns out that increases in k work very much like reductions in the risk tolerance
parameter +: as k goes up, momentum traders behave less aggressively (¢ falls), the impuise
response peaks at a lower value, the standard deviation of returns falls, and the pricing error

follows a U-shaped pattern. Simply put, longer lags of past price changes have less predictive

When j < z-1, there is no longer a monotonic link between ¢ and the degree of
overshooting. This is because the biggest momentum trades are already being unwound before
newswatchers have fully incorporated a news shock into their forecasts.
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content for future returns, and so are less helpful to momentum traders.”® By the time k
reaches about 9 months (given that z = 12 months) the momentum traders are essentially

completely on the sidelines, and the model is reduced to one with just newswatchers.

4.B Other Trading Styles: Contrarianism

We have emphasized repeatedly that our results are ultimately attributable to the bounded-
rationality notion that momentum traders can only make “"simple” forecasts--i.e., they are
effectively only able to run univariate regressions. But even if one accepts this univariate-

regression-restriction at face value, it begs the following question: why do all traders have to

use the same single forecasting variable? Why not allow for some heterogeneity in trading
styles, with different groups focusing on different predictive variables?

Given the existence of the newswatchers and the underreaction that they create, it is
certainly natural to begin an examination of simple arbitrage strategies with the sort of
momentum-trading style that we have considered thus far. However, once it is understood that
the momentum traders must--if they are the only arbitrageurs active in the market--ultimately
cause prices to overreact, we then ought to think about the effects of second-round "contrarian”
strategies that might be designed to exploit this overreaction.

To incorporate such contrarian strategies into our model in a tractable fashion, we
proceed as follows. As before, we assume that there is a total risk tolerance of y available to

engage in arbitrage activity. We also continue to assume that all arbitrageurs have horizons of

2This suggests that if we expanded the model to let momentum traders choose a value of
k, they would likely opt for k = 1, which is the case we have been emphasizing throughout.
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j periods. But there are now two arbitrage styles. A fraction w of the arbitrageurs are
momentum traders, who use AP, to forecast (P,,, - P). The remaining (1-w) are contrarians,
who use AP, to forecast (P,,; - P). If we choose the lag length ¢ properly, the contrarians
will in equilibrium put negative weight on AP, in making these forecasts.

Suppose provisionally that one takes the fraction w as fixed. Then the equilibrium is a

natural generalization of that seen above. In particular, prices will be given by:

P =D + {(Z'l)ful + (Z-2)er + .onnt + EH-z-l}/Z + Zji=1 (d’MAPm + ¢CAP1.C.L) )

where ¢™ and € now denote the trading elasticities of the momentum traders and the contrarians

respectively. These elasticities in turn satisfy:

oM = wycov(P,,; - P, AP.))/{var(AP)vary(P.,; - P)} (10)

¢¢ = (1-w)ycov(P,,; - P, AP, )/{var(aP)varc(P,,; - PY} 1D

Equilibrium now involves finding a two-dimensional fixed point in (oM, ¢°) such that
price dynamics are given by (9), while at the same time (10) and (11) are satisfied. Although
this is a more complicated problem than before, it is still straightforward to implement
numerically. Of course, this is no longer the end of the story, since we still need to endogenize
w. This can be done by imposing an indifference condition: in an interior solution where

0 < w < 1, it must be that the utilities of the momentum traders and contrarians are equalized,
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so nobody wants to switch styles.
It turns out that the equal-utility condition can be simply rewritten in terms of either

conditional variances or covariances of prices. (See the appendix for a proof.) This gives us:

Proposition 3: In an interior solution with 0 < w < 1, it must be that:
i) var(P,,; - P, | AP,)) = var(P; - P, | AP, ,.); or equivalently

ii) |cov((P.y; - P, AP, )| = |cov((P,; - P, AP, ) |; or equivalently
iii) cov(AP,,,, AP,,) + cov(AP.,, AP,) +....... cov(AP,,, AP,) =

-cov(AP,,,, AP, ;) -COV(AP,,,, AP ) -....... cov(AP,,;, AP ).

The essence of the proposition is that in order for contrarians to be active in equilibrium
(i.e., to have w < 1) there must be as much profit opportunity in the contrarian strategy as in
the momentum strategy. Loosely speaking, this amounts to saying that the negative
autocorrelations in the reversal phase must cumulatively be as large in absolute magnitude as the
positive autocorrelations in the initial underreaction phase. Thus adding the option of a
contrarian strategy to the model cannot overturn the basic result that if there is underreaction in
the short run, there must eventually be overreaction at some later point.

As it turns out, for a large range of parameter values, we can make a much stronger
statement: the contrarian strategy is not used at all, for any choice of c. Rather, we get a corner
solution of w = 1, in which all arbitrageurs endogenously opt to use a momentum strategy.
This is in fact the outcome for every set of parameters that appears in Tables 1-4. Thus our

previous numerical solutions are wholly unaffected by adding contrarians to the mix.
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In order to get contrarian strategies to be adopted in equilibrium, we have to crank up
the aggregate risk tolerance v to a very high value. Beginning from a situation where everybody
is 2 momentum trader, this does two things: first, it drives down the expected profits to the
momentum strategy; and second, it causes the degree of overreaction to increase. Both of these
effects raise the relative appeal of being a contrarian to the point that some arbitrageurs will
eventually switch over from the momentum strategy. Table 5 illustrates. The table considers
a situation where z = 3, j = 1, and where the contrarians trade at a lag that is ¢ = 2 periods
greater than the momentum traders. We experiment with three relatively extreme values of the
risk tolerance parameter vy: 1/.5; 1/.3; and 1/.1. In each case, there are two columns. One
corresponds to an all-momentum-trader equilibrium (i.e., we have forced w = 1 as in our
previous analysis); the other corresponds to the interior solution concept where we allow w to
be such that the conditions of Proposition 3 are satisfied.

As can be seen, in the least risk-tolerant of the three cases, very few traders--only about
9% of the total--opt to become contrarians. The remaining 91% remain as momentum traders.
Consequently, the contrarians have little impact on the nature of prices. For example, the
impulse response function peaks at 1.174 when there are only momentum traders, and this is
figure declines only slightly, to 1.156, when we allow for contrarian strategies. Indeed, if we
reduce the risk tolerance just a bit below that in this example, we hit a corner where, as in all
the previous tables, the contrarian strategy endogenously disappears.

By pushing the risk tolerance still higher, we can make contrarianism more attractive.
In the most risk-tolerant case considered in the table, roughly one-third of all traders become

contrarians. Nevertheless, in equilibrium, price dynamics are still remarkably similar to what
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we have seen throughout. Even in this case, the impulse response function peaks at 1.134, not
all that much different than before. The return autocorrelations also look quite simila- cross
the three cases. This underscores our key point: across a wide range of parameter ues,

allowing for contrarian strategies does not alter the important qualitative features of & nodel.

4.C Other trading styles: frontrunning

In our set-up, newswatchers are restricted to using the information about fundamentals
that they observe to predict the terminal dividend Dy. An alternative trading strategy, which we
call "frontrunning”, would be to use these privately observed ¢'s to forecast short-run price
changes. However, as long as frontrunners are somewhat risk-averse, and (like newswatchers)
do not extract information from prices, our basic results are not altered.

Qualitatively, adding frontrunning to the model has an impact similar to reducing the
information-diffusion parameter z. Frontrunners speed the incorporation of e-shocks into prices,
but as long as they are risk-averse, they never completely eliminate underreaction. Thus the
existence of frontrunning reduces--but does not eliminate--the appeal of momentum trading,
leading to lower equilibrium values of ¢. This is the same basic effect analyzed in Table 3

above, where we considered the comparative statics of the model with respect to changes in 2.2

5. Empirical Implications

We will not belabor the fact that our model delivers the right first-order predictions for

2The one noteworthy distinction is that with frontrunning, we should no longer have the
unnatural feature that prices adjust linearly to e-shocks in the absence of momentum trade.
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asset returns: positive correlations at short horizons, and negative correlations at longer horizons.
After all, it was designed to do just that. More interesting are the auxiliary implications of the
model, which in principle should allow it to be tested against other candidate theories of

underreaction and overreaction.

S.A Trading Horizons and the Pattern of Return Autocorrelations

One interesting and novel feature of our model is that we draw an explicit link between
momentum traders’ horizons and the time pattern of return autocorrelations. This link is loosely
suggested by Proposition 2, and it emerges clearly in the comparative statics results of Table 1:
the longer is the horizon j, the longer it should take for the autocorrelations to switch from
positive to negative.

The first thing to note in this regard is that our model seems to get the average
magnitudes about right. For example, Jegadeesh and Titman (1993) find that autocorrelations
for stock portfolios are positive for roughly 12 months, and then turn systematically negative.
According to Table 1, this is what one should expect if j is on the order of 12-18 months, which
sounds like a very plausible value for the horizon of a trading strategy.”

A second observation is that we can make cross-sectional predictions, to the extent that
we can identify exogenous factors that influence the trading horizon j. One natural candidate
for such a factor is trading costs. It seems plausible to conjecture that as trading costs increase,

momentum traders will choose to hold their positions for longer. If so, we would expect stocks

2As a benchmark, turnover on the NYSE has been in the range of 50-60 percent in recent
years, implying an average holding period of 20-24 months. Of course, momentum traders may
have shorter horizons than the average investor.
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with relatively high bid-ask spreads to have autocorrelations that stay positive for longer periods
of time before turning negative. Or going across assets classes, we would expect the same thing
for assets such as houses, and collectibles, where trading costs are no doubt significantly higher.
Some evidence on this latter point is provided by Cutler, Poterba and Summers (1991). They
find that, in contrast to equities, the autocorrelations for house and farm prices are positive at

lags of up to 3 years, and for collectibles, at lags of up to 2 years.

5.B The Speed of Information Diffusion and the Magnitude of Overreaction

In Table 3 we saw that more gradual information diffusion makes stocks more attractive
to momentum traders, and thus for a wide range of parameter values leads to more pronounced
overshooting and stronger reversals. One possible crude proxy for the speed of information
diffusion would be something like analyst coverage. If one accepts this proxy, then our cross-
sectional prediction is that stocks with scantier coverage--presumably smaller-cap stocks--should
be expected to manifest greater long-run overreaction-type predictability. This is consistent with
recent work which finds that much of the long-horizon predictability that has been documented

in the stock market is attributable to smaller-cap companies.”

5.C Differential Dynamics in Response to Public vs. Private News Shocks?

As stressed above, the most natural interpretation of the €'s in our model is that they

represent information that is initially private, and that gradually diffuses across the population

Bgee Fama (1997). Fama argues--and we agree--that this sort of evidence is problematic
for other existing behavioral models, as they do not clearly predict that overreaction should be
concentrated in smaller stocks.
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of investors. Thus our primary contribution has been to shown that the equilibrium impulse
response to such private information must be hump-shaped, with underreaction in the short run
giving way to eventual overreaction. But what about news that is simultaneously observed by
all investors, such as earnings announcements? What does the impulse response look like in this
case?

It is easy to embellish our model so that it generates short-run underreaction to public
news, much the same as it generates short-run underreaction to private information. Essentially,
all one has to do is to add an additional behavioral assumption about the newswatchers, to the
effect that they only gradually update their priors based on public news.” On the one hand,
this sort of patch adds an element of descriptive realism, given the large body of empirical
evidence on post-event drift. But of course, such realism cannot be thought of as much of a
victory for the model, since we will have just built it in by assumption.

The much more interesting and subtle question is this: if we just brute-force assume in
some underreaction to public news, what then does the model have to say about whether or not
there will be overreaction in the longer run to this same news? In other words, will the impulse
response function look hump-shaped as before, or will prices just drift gradually to the correct
level without going too far?

Unlike with private news, the answer now is, it depends. The key point is that the
inference problem for momentum traders is potentially simplified. Recall from above that with

private news, a momentum trader never knows whether he is buying early or late in the

2This can be justified based on the "conservatism” bias identified by Edwards (1968). See
Barberis, Shleifer and Vishny (1997) for a recent discussion.

33



momentum cycle--i.e. he cannot tell if a price increase is the result of recent news or of past
rounds of momentum trade. This uncertainty is central to our overreaction results. But if
momentum traders are able to condition on the fact that there was a public news announcement
at some given date t, they can refine their strategies. In particular, they can make their
strategies time-dependent, so that they only trend-chase aggressively in the periods right after
public news, and lay low at other times. If they do this, there need be no overreaction to public
news in equilibrium; rather, the impulse response function may be everywhere increasing.

Of course, it is conceivable that momentum traders will not be so sophisticated, and will
continue to use strategies that do not depend on how recently public news was released. If so,
our previous results will apply exactly, and the impulse response to public news will also be
hump-shaped. But the important point is this: the logic of our model admits (even strongly
suggests) the possibility that the impulse response to public news will look different than that

to private information. This is clearly a testable proposition.

5.D Anecdotal Evidence on Momentum Strategies

In our model, momentum traders have two key characteristics: 1) aside from their
inability to run multiple regressions, they are rational maximizers who make money on average;
and 2) they impose a negative externality on others. The latter feature arises because someone
entering the market at any time t does not know how heavily invested momentum traders are in
the aggregate at this time, and hence cannot predict whether or not there will be large-scale
unwinding of momentum positions in the near future.

Anecdotal evidence supports both of these premises. With regard to the almost-
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rationality of momentum strategies, it should be noted that a number of large and presumably
sophisticated money managers use what are commonly described as momentum approaches, that
"emphasize accelerating sales, earnings, or even stock prices...and focus less on traditional
valuation measures such as price-to-earnings ratios..."? This contrasts with the more
pejorative view of positive-feedback trading that prevails in the previous academic literature.?

With regard to the negative externalities, it seems that other professional investors do in
fact worry a lot about the dangers of momentum traders unwinding their positions. The
following quotes from money managers illustrate these concerns: "Before I look at a stock, I
take a look at the (SEC) filings to see who the major shareholders are. If you see a large
amount of momentum money in there, you have to accept that there’s a high risk..."; "If
you’re in with managers who are very momentum oriented....you have to be aware that’s a risk
going in. They come barreling out of those stocks, and they’re not patient about it."?

In addition to these two premises, anecdotal evidence is also consistent with one of the
key predictions of our model: that momentum traders will tend to be more active in small stocks,
where analyst coverage is thinner and information diffuses more slowly. According to a leading
pension fund consultant: "Most of the momentum players play in the small and mid-cap stocks."

And a well-known momentum investor says that he typically focuses on small companies because

»The quote is from Ip (1997). Among the large investors who are commonly labeled
momentum players are Nicholas-Applegate Capital Management, Pilgrim Baxter & Associates,
and Friess Associates. Also noteworthy is Richard Driehaus, who manages more than $1 billion
as president of Driehaus Capital Management, and who was ranked first among 1,200 managers
of all styles for the five years ended December 1995 by Performance Analytics, a pension
advisory firm. See Rehfeld (1996).

®For example, DeLong et al (1990b), which we discuss below.
7See Ip (1997).
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"the market is inefficient for smaller companies."?

6. Comparison to Related Work

As noted in the Introduction, this paper shares the same goal as recent work by Barberis,
Shleifer and Vishny (1997) and Daniel, Hirshleifer and Subrahmanyam (1997)--i.e., to construct
a plausible model that delivers a unified account of asset-price underreaction and overreaction.
However, the approach taken here is quite different. Both BSV and DHS use representative
agent models, while our results are driven by the externalities that arise when heterogeneous
traders interact with one another.?® Consequently, many of the auxiliary empirical implications
of our model are distinct.

First and most obviously, it is impossible for any representative agent model to make
predictions linking trading horizons to the temporal pattern of autocorrelations, as we do in
Section 5.A above. Second, neither the BSV nor the DHS model would seem to be able to
easily generate our prediction that overreaction is more likely to occur in stocks with thinner
analyst coverage (Section 5.B). A further difference with BSV is that our model allows for a
differential impulse response to public and private shocks (Section 5.C), while theirs only

considers public news. Finally, in the regime-switching model of BSV, it appears that

%The consultant is Robert Moseson of Performance Analytics, quoted in Jereski and Lohse
(1996). The momentum investor is Richard Driehaus, quoted in Rehfeld (1996).

»¥BSV develop a regime-switching learning model, where investors wind up oscillating
between two states: one where they think that earnings shocks are excessively transitory; and
one where they think that earnings shocks are excessively persistent. DHS emphasize the idea
that investors are likely to be overconfident in the precision of their private information, and that
this overconfidence will vary over time as they learn about the accuracy of their past predictions.
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overreaction can only occur if there is a series of shocks all of the same sign--i.e., an extended
run of either good or bad news. In contrast, in our model, the impulse response of prices to any
single private news shock involves both underreaction and overreaction.

In terms of its focus on the interaction of different types of traders--including those who
behave in a trend-chasing fashion--this paper is closer in spirit to earlier models of positive-
feedback trading by DeLong et al (1990b) and Cutler, Poterba and Summers (1990). However,
there are significant differences with this work as well. For example, in the framework of
DeLong et al, positive-feedback trading is extremely irrational, and the positive-feedback traders
get badly exploited by a group of rational frontrunners.*® In contrast, in our model, the
momentum traders are very nearly rational, and actually manage to take advantage of the other
group of traders, the newswatchers. This distinction is closely related to the fact that in the
model of DeLong et al, there is never any underreaction. There is short-run positive correlation
of returns, but this reflects an initial overreaction, followed by even more overreaction.”

At a more general level, this paper revisits several themes that have been prominent in
previous theoretical work. The notion that one group of optimizing traders might create a

negative informational externality, and thereby destabilize prices even while they are making

*In Cutler, Poterba and Summers, positive-feedback traders can in some cases make a
profit, since there is an underlying gradual adjustment of prices to fundamentals, much as in our
model. However, because they--like DeLong et al--do not derive positive-feedback trading as
arising from the optimization of any sort of objective function, one cannot use their model to
generate the sort of distinctive empirical implications that we discuss in Section 5.

Also, it should be noted that the model of DeLong et al does not really endogenously
deliver long-run reversals. Rather, prices are just forced back to fundamentals on a terminal
date when all information is revealed. In contrast, in our model, the reversal phase is more
endogenous, corresponding to the unwinding of momentum traders’ positions. It also involves
more complex dynamics, with the sort of damped oscillations seen in the figures.
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profits, also shows up in Stein (1987). Stretching a bit further, there is an interesting analogy
here with the ideas of Banerjee (1992) and Bikhchandani, Hirshleifer and Welch 71992) on
informational cascades. In these models, agents move sequentially. In equilib..um, each
rationally bases his decision on the actions of the agent before him, even though ** ; inflicts a
negative informational externality on those that follow. Very much the same thir could be said

of the generations of momentum traders in this model.

7. Conclusions

At the outset, we argued that any new "behavioral" theory of asset pricing should be
judged according to three criteria: 1) it should rest on assumptions about investor behavior that
are either a priori plausible or consistent with casual observation; 2) it should explain the
existing evidence in a parsimonious and unified way; and 3) it should make a number of further
predictions which can be subject to testing and which are ultimately validated.

How well have we done on these three scores? With respect to the first, we believe that
our particular rendition of bounded rationality--as the ability to process a small subset of the
available information in an unbiased way--is both plausible and intuitively appealing. Moreover,
in our framework, this sort of bounded rationality implies a widespread reliance by arbitrageurs
on simple momentum strategies. As we have discussed, this implication appears to be strongly
consistent with what is observed in the real world.

In terms of the parsimony/unity criterion, it should be emphasized that everything in our
model is driven by just one primitive type of shock: news about future fundamentals. There are

no other exogenous sources of investor sentiment, and no liquidity disturbances. Our main
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conceptual contribution has been to show that if there is ever any short-run underreaction to
these news shocks on the part of one set of traders, then (given the simple nature of arbitrage
strategies) there must eventually be overreaction in the longer run as well.

Finally, our model does deliver a number of testable auxiliary implications. Among the
most noteworthy of these predictions are the following: 1) there should be a relationship between
momentum traders’ horizons and the time pattern of return autocorrelations; 2) long-run
reversals should be more pronounced in those (smaller-cap?) stocks where there is thinner
analyst coverage and where, as a consequence, information diffuses more gradually in the short
run; and 3) there may (though there need not be) more long-run overreaction to information

which is initially private than to public news announcements. We hope to explore some of these

hypotheses in future work.
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A. Appendix
A.1 ARMA Representation of the Return Process

Let us begin by recalling Equation (5) from the text (suppressing constants):

o (z-D 1
P=D + ; em+....+-z—€m_l+ - bAP . (4.1)

It follows that

Yie

AP,=—%+¢AP,_, -pAP, . (4.2)

Assuming that ¢ satisfies proper conditions to be specified, AP is a covariance stationary process.

Let

akEE[AP[AP[_k]

(i.e. the unconditional autocovariance lagged k periods). When k=0, we have the unconditional

variance. The autocovariances of this process satisfy the following Yule-Walker equations:

-1 €
o, :E[Z;zol TAP,] +d>a1 —d)aj,l. (4.3)

And for k > 0, we have



€
z-1 -t
ak:E[ZI =0 .;_APt‘k] +d)ak—l _Cbak—(,-n' (4.4)

It is not hard to verify that for k > z-1,

-1 €
E[Y [, AP, ]=0. (4.5)
Z
And for k < z-1, we have
z - e{+ -k 7= el‘l z - etﬂ
E[Y : AP,-k]=(z 2) + GE[Y TAP,_(,M)] - GE[Y 1y —AP, ) (4.6)
V4 z

Solving the Yule-Walker equations reduces to solving a system of j+2 linear equations. Next, the

optimal strategies of the momentum traders are given by

g - YE[P”] -P[|APH]

= , 4.7
Var[P“] _P,|AP,_J
where
P, ~P=AP +..+AP .
In equilibrium,
8,=¢AP .. (4.8)
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Finally, it follows that

Cov(APlgl,P“j—Pt)=OL/‘ T 0L,

and

Var(P,, =P )=jot, +2( -1 +.... +2G (= 1)e, .

Using these formulas, the problem is reduced to finding a fixed point in ¢ that satisfies the
equilibrium condition (A.8). Given the equilibrium ¢, we then need to verify that the resulting
equilibrium ARMA process is in fact covariance stationary (since all of our formulas depended
crucially on this assumption).

A.2 Stationarity

We next provide a characterization for the covariance stationarity of a conjectured return

process. This condition is just that the roots of

1-¢gx+dx’/ ' =0 (4.9)

lie outside the unit circle (see, e.g., Hamilton (1994)).
Lemma A.1 The return process specified in (A.2) is a covariance stationary process only
if |[¢] < 1.
Proof. Proof is by induction on j. For j=1, the return process follows an ARMA(2,z). So,
the conditions for covariance stationarity is (1) -2 & < 1l and (2) -1 < ¢ < 1, (see, e.g.
Hamilton (1994)). The stated result follows for j=1. Apply the inductive hypothesis and assume
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the result holds for j=k. From (A.9), it follows that the roots x of

1-¢x+dx*'=0

must lie outside the unit circle (e.g. {x| > 1). It follows that
1 - x| =[x,

Hence, as k increases, it follows that | ¢ | decreases. The stated resuit follows for arbitrary j.

QED
We use this result to characterize a number of properties of a conjectured covariance stationary
equilibrium.

Proof of Lemma 1. We prove that ¢ > O in a covariance stationary equilibrium by

contradiction. Suppose not, so that ¢ < 0. It is easy to verify from (A.4) and from Lemma A.1

that

,20 Yk - oc2+a3+....+ocm>0,

implying that ¢ > O, leading to a contradiction. QED
A.3 Existence and Numerical Computation
An equilibrium ¢ satisfying the covariance stationary condition in Lemma A.1 does not

exist for arbitrary parameter values. It is easy to verify however that a covariance stationary

equilibrium does exist for sufficiently small .
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Lemma A.2 For v sufficiently small, there exists a covariance stationary equilibrium.

Proof. It is easy to show that for v sufficiently smail, we can apply Brouwer’s fixed point

theorem. QED

In general, the equilibrium needs to be solved numerically. For the case of j=1, we can
always verify that the resulting ¢ leads to covariance stationarity. For arbitrary j, we only have
a necessary condition although the calculations for the autocovariances would likely explode for
a ¢ which does not lead to a covariance stationary process. So, we always begin our calculations
for j =1 and y small and use the resulting solutions to bootstrap our way to other regions in the
parameter space. The solutions are gotten easily. When we move outside the covariance stationary
region of the parameter space, autocovariances take on non-sensible values such as negative values

for the unconditional variance or autocovariances that do not satisfy the standard property that

o < lal k>0

We have not had much problems finding fixed points for wide parameter regions around those

exhibited in the text.

A.4_Proof of Proposition 4

The equilibrium condition to determine w is for the utilities from the two strategies to be
equal. Given our assumptions on the preferences of the momentum and contrarian investors and
the distributions of the €'s, it follows from Grossman and Stiglitz (1980) that this is equivalent
to the conditional variance of the j-period returns being equal across the two strategies. Given all
investors have j-period horizons, it follows that this is equivalent to the conditional covariance of
the j-period returns being equal across the two strategies. QED
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Momentum Trader's Horzon

é

Standard Deviation of { P, - P, )
Standard Deviation of ( P, - P, ) w/ ¢=0
Standard Deviation of ( P, - Py )

Cumulative Impuise Response at Lag

Retum Autocorrelations at Lag

* All cases are for z=12, 6=.5, y=1/3, k=1.
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Table 1: Comparative Static w.r.t. Momentum Trader's Honzon )*

0.5550
0.2229
0.9373
0.8011

0.0833
02129
0.3682
0.5377

0.7530
0.7969
0.8105
0.8287
0.8753
0.9602
1.0830
1.1412
1.1475
1.1040
1.0116
0.9281
08782
0.8747
0.9240
0.9977

1.1063
1.1012
1.0574
0.9951
0.9382

0.9180
0.9572
1.0105
1.0560
1.0766
1.0663
1.0309
0.9861

(0.1076)
(0.2477)
(0.2817)
(0.2046)

=6
0.4455
0232
0.9373

0.8438

0.2632
0.2532
0.2108
0.1318
0.0331
(0.0608)
(0.1329)
(0.1765)
(0.1914)

0.9458
0.8415
0.7048
0.5561
0.4031
0.2482

(0.0522)
(0.1883)
{0.3027)
(0.3708)
(0.3955)
(0.3589)
(0.2985)
(0.2289)
(0.1560)
(0.0823)
(0.0098)
0.0582
0.1177
0.1594
0.1810
0.1762
0.1548
0.1252

j=12
0.2605
0.2028
0.9373
0.8365

0.0833
0.1884
0.2991
04113
0.5238
0.6365
0.7492
0.8618
0.9745
1.0872
1.1999
1.3126
1.3420
13279
1.2969
1.2600
1.2211
1.1817
1.1420
1.1024
1.0627
1.0230
0.9833
0.9436
0.9038
0.8859
0.8848
0.8926
0.9043
09175
09312
0.9451

0.9524

0.0833
0.1855
0.2920
0.39%4
0.5071
06147
07225
0.8302
0.9379
1.0456
1.1633
1.2610
1.2854
1.2909
1.2821
1.2924
1.2736
1.2462
12160
1.1848
11534
1.1219

1.0589
1.0274
0.9959

0.9329
0.9202
0.9161
0.9149
0.9146
0.9187
0.9259
0.9344
0.9433

0.9465
0.8673
07813
0.6907
0.5870
0.4774
0.3658
0.2537
0.1415
0.0300

(0.0784)

(0.1741)

(0.2162)

(0.2452)

(0.2697)

(0.2873)

(0.2792)

(0.2595)

(0.2355)

(0.2096)

(0.1803)

(0.1488)

(0.1165)

(0.0838)

(0.0510)

0.9604

0.0833
0.1835
0.2870
0.3912
0.4955
0.5999
0.7042

0.9129
1.0173
1.1217
1.2260
1.2471
1.2513
1.2522
12523
1.2524
1.2524
1.2524
1.2356
1.2120
1.1864
1.1603
1.1340
11076
10813
1.0550
1.0286
1.0023
0.9759
0.8496
0.8401
0.9373
0.9365

0.9363

0.9436

0.7782
0.6920
06054
0.5182
0.4285
0.3270
0.2208
0.1137
0.0087
(0.0846)
(0.1215)
(0.1465)
(0.1630)
(0.1909)
(0.2125)
(0.2330)
(0.2485)
(0.2402)
(0.2224)
(0.2016)
(0.1801)
(0.1583)
(0.1363)



Risk Tolerance

¢

Standard Deviation of { Py- P,4)
Standard Deviation of { P, - P, ) wi =0
Standard Deviation of ( P, - P,')

Cumutative Impuise Response at Lag

Retumn Autocorrelations at Lag

* All cases are for 2=12, j=12, g=.5, k=1.
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Table 2: Comparative Static w.r.t. Risk Tolerance®

r=1/13
0.1316
0.1662
0.9373
0.9070

0.0833
0.1776

1.0251
1.010S

0.9815
09779
09786
0.9805
0.9827
0.9849
0.9871
0.9893
0.9915
0.9937
0.9959
09981

09337
0.8410
0.7437
0.6456
0.5474
0.4492
0.3510
0.2527
0.1645
0.0565
(0.0403)
(0.1281)
(0.1484)
(0.1424)
(0.1294)
(0.1149)
(0.1000)
{0.0852)
(0.0703)
(0.0654)
(0.0405)
(0.0257)
(0.0108)
0.0039
0.0174

r=111
0.1453
0.1691
0.9373
0.8998

0.0833
0.1788
0.2760
0.3734
0.4709
0.5684
0.6659
0.7634
0.8609
0.9584
1.0558
1.1534
1.1676
1.1575
1.1422
1.1269
1.1093
1.0928
1.0762
1.0596
1.0430
1.0265
1.0099
0.9933
09767
09723
0.9731
0.9754
0.9781

0.3429
0.2429
0.1428
0.0430

(0.0554)

(0.1439)

(0.1662)

(0.1600)

{0.1456)

(0.1291)

©.1122)

(0.0952)

(0.0782)

(0.0612)

(0.0442)

(0.0272)

{0.0102)
0.0066
0.0219

r=1/9
0.1625
0.1731
0.9373
0.8999

0.0833
0.1802
0.2793
0.3787
0.4782
0.5777
06772
0.7767
0.8762
0.9757
1.0752
1.1747
1.1909
1.1800
1.1625
1.1435
1.1243
1.1050
1.0857
1.0664
1.0471
1.0278
1.0085
0.9892
0.9698
0.9641
0.9649
0.9679
09715
0.9752
09789
0.9827
0.9864
0.9901
0.9939
0.9976

0.9370
0.8430
0.7422
0.6401
05376
0.4351
0.3326
0.2301
0.1276
0.0255

(0.0749)

(0.1644)

(0.1882)

(0.1830)

(0.1667)

(0.1477)

(0.1280)

(0.1082)

(0.0883)

(0.0684)

(0.0485)

(0.0286)

(0.0088)
0.0107
0.0285

=117
0.1848
0.1786
09373
0.9021

0.0833
0.1821

1.0518
1.0286
1.0055
09823
0.9591
0.9514
0.9521
0.9560

0.9661
0.9713
0.9766
0.9818
0.9871
0.9923
0.9976

(0.1013)
(0.1923)
(0.2203)
(0.2143)
(0.1956)
(0.1731)
(0.1495)
(0.1256)
(0.1016)
(0.0776)
(0.0537)
(0.0297)
(0.0058)
00177
0.0388

y=1/5
02152
0.1872
0.9373

0.9102

0.0833
0.1846
0.2897
0.3957
0.5018

0.7142
0.8203

1.0327
1.1389
1.2451
1.2679
1.2548
12303
1.2024
1.1736

=173
0.2605
0.2028
0.9373
0.9365

0.0833
0.1884
0.2991
0.4113
0.5238
0.6365
0.7492
0.8618
0.9745
1.0872
1.1999
1.3126
1.3420
1.327¢9
1.2969
1.2600
1.2211
1.1817
1.1420
1.1024
1.0627
1.0230
0.9833
0.9436
0.9038
0.8859
0.8848
0.8926
0.9043
09175
0.9312
0.9451
0.95%0
09730
0.9870
1.0010



Iinformation Diffusion Parameter

4

Standard Deviation of ( P~ Py )
Standard Deviation of { P, - P, ) w/ ¢=0
Standard Deviation of ( P, - Py}

Cumulative impuise Response at Lag

Return Autocomrelations at Lag

* All cases are for j=12, 0=.5, y=1/3, k=1.
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Table 3: Comparative Static w.r.t. Information Diffusion Parameter z*

=6
0.1293

0.2317
06180
086317

Q.1667
0.3549
0.5459
07373
0.9287
1.1201
1.1449
1.1481
1.1485
1.1486
1.1486
1.1486
1.1486
11270
1.0999
1.0717
1.0433
1.0148
0.9864
0.9795
0.9782
0.9780
09779
09779
0.9779
0.9779
0.9807
0.9846
0.9887
0.9929
0.9972
1.0014
1.0028
1.0032
10033
10033

0.8661
0.6970
0.5233
0.3493
01775
0.0230

{0.0230)
(0.0481)
(0.0739)
(0.0997)
(0.1249)
(0.1455)
{0.1309)
(0.1071)
(0.0815)
(0.0857)
(0.0302)
(0.0069}
(0.0009)
0.0029

0.0104
0.0142
0.0180

z=9
0.2023

0.2106
0.7935
0.8087

0.1
0.2447

0.5219
0.6611

0.9397
1.07%0
1.2183
1.2465
1.2622
1.2533
1.2536
1.2311

0.8239
0.8155
0.6995
0.5787
0.4416
0.2981
0.1532
00112

(0.1148)

(0.1647)

(0.1983)

(0.2270)

(0.2482)

(0.2371)

{0.2130)

(0.1846)

(0.1544)

(0.1206)

(0.0847)

(0.0481)

(0.0120)

0.0375
0.0477
0.0556

z=12
0.2605
0.2028
0.9373
0.9365
0.0833

0.2991
0.4113
0.5238
0.6365
0.7492
0.8618
0.9745
1.0872
1.1999
1.3126
1.3420
1.3279
1.2969
1.2600
1.2211
1.1817
1.1420
1.1024
1.0627
1.0230
0.9833

0.9038
0.8858
0.8848
0.8926
0.9043
09175
09312
0.9451
09590
0.9730
0.9870
1.0010

0.9466
0.8504
0.7388
0.6220
0.5036
0.3846
0.2654
0.1454
0.0276

(0.0838)

(0.2027)

(0.2994)

(0.3385)

(0.3348)

(0.3088)

(0.2729)

{0.2332)

(0.1919)

(0.1502)

(0.1083)

(0.0663)

(0.0245)
0.0170
0.0573
0.0929

z=15
0.3214

Q.1977
1.0620
1.0331

0.0687
0.1548
0.2497
0.3469

0.1983
0.0818
(0.0335)
(0.1455)
(0.2483)
(0.3352)
(0.3873)
(0.4071)
(0.3802)
{0.3356)
(0.2842)
{0.2302)
(0.1753)
(0.1201)
(0.0649)
(0.0101)
0.0435
0.0938

z=18
0.3785
0.1907
1.1736
1.0992

0.0556
0.1321
0.2167
0.3042
0.3929
0.4821
0.5713
0.6607
0.7501
0.8395
0.9288
10182
1.1076
1.1760
1.2284
1.2718
1.3107
1.3474
1.3275
1.2862

1.1842
1.1305
1.0763
1.0220
0.9676
0.9211

0.8531
0.8268
0.8030
0.8015
08165
0.8409
0.8701
0.8014

0.9666
0.9010
0.8178
0.7216
06116

0.3547
0.2234
0.0979
(0.0202)
(0.1304)
(0.2311)
{0.3159)
(0.3692)
(0.3980)
(0.4097)
(0.4070)
(0.3855)
(0.3299)
(0.2591)
(0.1826)
(0.1062)
(0.0326)
0.0370
0.1018



Window of Past Price Changes Used

®

Standard Deviation of { P- Py, )
Standard Deviation of { P, - P, ) w/ =0
Standard Deviation of ( P, P,')

Cumutative Impulse Response at Lag

Return Autocarrefations at Lag

* All cases are for z=12, j=12, 0=.5, y=113.
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Tabie 4: Comparative Static w.r.t. k*

k=1

0.2605

0.2028

0.9372

0.9365

k=4
0.1869
0.1693

09373

0.9328
0.8655
0.7983
0.7311
0.6281
0.5251
0.4222
0.3192
0.2202
0.1211
0.0221

(0.0770)

(0.1081)

(0.1391)

(0.1702)

(0.2013)

(0.1946)

(0.1878)

(0.1810)

(0.1743)

(0.1538)

(0.1333)

(0.1128)

(0.0922)

{0.0699)

k=7
0.0969
0.1515
0.9373
0.9086

0.0833
0.1667
0.2500
0.3333
0.4167

0.5833
0.6747
0.7661
0.8575
0.9480

1.0484
1.0565
1.0853
1.0742
1.0831
1.0918

0.9221
0.8442
0.7671
0.6900
06128

0.4740
0.3818
0.2897
0.1976
0.1055
0.0135
(0.0000)
(0.0135)
(0.0298)
(0.0462)
(0.0626)
(0.0791)
(0.0855)
(0.0893)
(0.0831)
(0.0772)
{0.0713)
(0.0654)
(0.0603)

09170
0.8340
0.7519
0.6699
Q.5878
0.5058
0.4237
0.3417
0.2597
Q.1776
0.0927
0.0077

0.0039
0.0019

(0.0019)
(0.0039)
(0.0058)
(0.0077)
(0.0097)
(0.0116)
(0.0107)
(0.0097)
(0.0088)

0.0000

0.1443

0.9373

k=16

0.0000

0.1443

0.9373

0.9167



Risk Tolerance

Equilibrium (w)/ All Momentum
QM

¢c

Cumulative Impulse Response at Lag

Return Autocorrelations at Lag

* All cases are for z=3, j=1, o=1, k=1, c=2.
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Table 5: Comparative Static of Equilibrium (w) w.r.t. Risk Tolerance *

0.6703
0.3078
(0.1514)

0.3333
0.7693
1.1342
1.0619
0.9117
0.8985
1.0069
1.0561
1.0171
0.9716
0.9785
1.0080
1.0160
1.0014
0.9911
0.9956
1.0036
1.0040
0.9994
0.9974
0.9993
1.0013
1.0009
0.9996

0.6123
0.0221
(0.2404)
(0.0221)
0.1565
0.0947
(0.0521)
(0.0722)
0.0032
0.0454
0.0161
{0.0204)
(0.0176)
0.0053
0.0126
0.0018
(0.0068)
(0.0038)
0.0026
0.0032
(0.0003)
(0.0020)
(0.0007)
0.0010
0.0008

y=1/.1

1
0.4668
0.0000

0.3333
0.8223
1.2282
1.1895
0.9819
0.9031
0.9632
1.0281
1.0303
1.0010
0.9864
0.9931
1.0032
1.0047
1.0007
0.9981
0.9988
1.0003
1.0007
1.0002
0.9998
0.9998
1.0000
1.0001

0.6433
0.0268
(0.2878)
(0.1468)
0.0658
0.0892
0.0156
(0.0390)
(0.0255)
0.0063
0.0149
0.0040
(0.0051)
(0.0042)
0.0004
0.0022
0.0008
(0.0006)
(0.0007)
0.0000
0.0003
0.0002
(0.0001)
(0.0001)
0.0000

0.786
0.3291
(0.0896)

0.3333
0.7764
1.1458
1.0917
0.9425
0.9178
0.9967
1.0393
1.0162
0.9853
0.9860
1.0023
1.0081
1.0019
0.9965
0.9977
1.0010
1.0016
1.0001
0.9992
0.8997
1.0003
1.0003
1.0000

0.6346
0.0600
(0.2218)
(0.0600)
0.1047
0.0794
(0.0228)
(0.0484)
(0.0062)
0.0231
0.0119
(0.0075)
(0.0090)
0.0005
0.0049
0.0016
(0.0019)
(0.0015)
0.0004
0.0010
0.0001
(0.0004)
(0.0002)
0.0001
0.0002

y=1/3
1
0.4167
0.0000

0.3333
0.8056
1.1968
1.1630
0.9859
0.9262
0.9751
1.0204
1.0189
0.9994
0.9919
0.9969
1.0021
1.0022
1.0000
0.9991
0.9996
1.0002
1.0002
1.0000
0.9999
1.0000
1.0000
1.0000

0.6530
0.0657
(0.2447)
(0.1294)
0.0481
0.0740
0.0108
(0.0263)
(0.0155)
0.0045
0.0083
0.0016
(0.0028)
(0.0018)
0.0004
0.0009
0.0002
(0.0003)
(0.0002)
0.0000
0.0001
0.0000
0.0000
0.0000
0.0000

0.9079
0.3466
(0.0351)

0.3333
0.7822
1.1556
1.1177
0.9711
0.9361
0.9892
1.0236
1.0131
0.9945
0.9923
0.9996
1.0032
1.0013
0.9991
0.9991
1.0001
1.0004
1.0001
0.9999
0.9999
1.0000
1.0001
1.0000

0.6524
0.0910
(0.2068)
(0.0910)
0.0599
0.0627
(0.0031)
{0.0281)
(0.0088)
0.0090
0.0070
(0.0014)
(0.0035)
(0.0007)
0.0013
0.0008
(0.0003)
(0.0004)
0.0000
0.0002
0.0001
0.0000
(0.0001)
0.0000
0.0000

r=1/5

1
0.3794
0.0000

0.3333
0.7931
1.1744
1.1447
0.9887
0.9408
0.9818
1.0156
1.0128
0.9990
0.9947
0.9984
1.0014
1.0011
0.9999
0.9995
0.9999
1.0001
1.0001
1.0000
1.0000
1.0000
1.0000
1.0000

0.6595
0.0937
(0.2147)
(0.1170)
0.0371
0.0584
0.0081
(0.0191)
(0.0103)
0.0033
0.0052
0.0007
(0.0017)
{0.0009)
0.0003
0.0005
0.0001
(0.0002)
(0.0001)
0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
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