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Abstract

We present a neural network based method~ChloroP! for identifying chloroplast transit peptides and their cleavage sites.
Using cross-validation, 88% of the sequences in our homology reduced training set were correctly classified as transit
peptides or nontransit peptides. This performance level is well above that of the publicly available chloroplast local-
ization predictor PSORT. Cleavage sites are predicted using a scoring matrix derived by an automatic motif-finding
algorithm. Approximately 60% of the known cleavage sites in our sequence collection were predicted to within62
residues from the cleavage sites given in SWISS-PROT. An analysis of 715Arabidopsis thalianasequences from
SWISS-PROT suggests that the ChloroP method should be useful for the identification of putative transit peptides in
genome-wide sequence data. The ChloroP predictor is available as a web-server at http:00www.cbs.dtu.dk0services0
ChloroP0.

Keywords: chloroplast; cleavage site; neural networks; protein sorting; transit peptide

The chloroplast is an organelle present in photosynthetic plants
and algae. Even though chloroplasts have a genome of their own,
most chloroplast proteins are encoded in the nuclear genome, trans-
lated in the cytosol, and post-translationally imported into the or-
ganelle. Most nuclearly encoded chloroplast proteins have an
N-terminal presequence or transit peptide~cTP! that directs them
to the chloroplast stroma~Soll & Tien, 1998!. During or shortly
after entry, the cTP is cleaved off by the stromal processing pep-
tidase~SPP! ~Robinson & Ellis, 1984!. Proteins destined for the
lumen of the intra-chloroplastic thylakoid compartment generally
have a bi-partite targeting sequence composed of an N-terminal
stroma-targeting cTP, followed by a thylakoid transfer domain that
shares important features with signal sequences required for pro-
tein secretion in bacteria~von Heijne, 1990; Robinson et al., 1998!.

cTPs from different proteins show a wide variation in length and
sequence. They tend to be rich in hydroxylated residues and have
a low content of acidic residues~von Heijne et al., 1989!. A semi-
conserved motif,~I0V !-X-~A 0C!f!A, around the SPP cleavage
site ~arrow! has also been identified~Gavel & von Heijne, 1990!.
The only publicly available prediction method for automatic iden-
tification of cTPs is incorporated in the PSORT server~Nakai &
Kanehisa, 1992! and is based mainly on discrimination according
to amino acid content in certain sequence regions. PSORT does not
provide a cleavage site prediction for cTPs.

In this paper we present a neural network-based predictor
~ChloroP! that has been trained to discriminate N-terminal cTPs
from other N-terminal sequences. Overall, ChloroP can discrimi-
nate cTPs from non-cTPs with high sensitivity and specificity. We
have also constructed a scoring matrix-based method for predic-
tion of cleavage sites. Interestingly, our analysis indicates that a
majority of the cTP-containing proteins are cleaved first by the
SPP, whereupon an additional 1–3 residues are removed from the
mature protein by some other stromal proteolytic activity. The SPP
cleavage site appears to be correctly predicted in about 60% of the
sequences.

Results

Collection of cTP sequences

As described in Methods, cTP-containing proteins were extracted
from SWISS-PROT. The initial set was screened for thylakoid
transfer domains using the signal peptide predictor SignalP~Nielsen
et al., 1997!, and homology reduction was carried out using the
Hobohm algorithm 2~Hobohm et al., 1992!. This left a collection
of 80 sequences.

A literature check of this set revealed 11 cTPs where the cleav-
age site was predicted by homology to proteins with experi-
mentally verified cleavage sites. For 10 of these entries, the
experimentally verified sequence was used instead, and for the
remaining case it turned out that the verified sequence was already
present in the data set, so this entry was removed instead of re-
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placed. The literature check also revealed that four proteins were
erroneously included in the data set, two being chloroplast en-
coded, one having a thylakoid transfer domain that had been missed
by SignalP, and the fourth being a chloroplast envelope protein.
Altogether, five entries were thus removed from the initial set.
Finally, for two proteins, the SWISS-PROT annotations of the
cleavage sites were inconsistent with the literature, and the cleav-
age site assignment was changed in accordance with the informa-
tion in the articles. The final set of positive examples thus included
75 sequences.

Analysis of total amino acid content of the homology reduced
cTP set shows that the fraction of acidic residues~Asp and Glu! is
very low and that Ser and Arg are over-represented in the cTPs,
when compared to the mature part of the proteins~data not shown!.
This is well in accordance with previously reported cTP features
~von Heijne et al., 1989!.

The negative set also contained 75 nonhomologous sequences
and was constructed from four subsets: mitochondrial, secretory,
cytosolic, and nuclear proteins. The total data set of 150 sequences
was divided into five subsets before network training, enabling
cross-validation.

Neural network training

To discriminate between sequences having and not having a cTP,
we proceeded in two steps. First, a neural network was trained to
classify individual residues as either belonging or not belonging to
a cTP. Second, the output from this first network~Fig. 1! was used
as input for a second network that was trained to classify each

sequence as either containing or lacking a cTP. A standard feed-
forward network architecture with one hidden layer was chosen in
both steps.

The final network chosen in the first step had a symmetric input
window of 51 positions and 2 units in the hidden layer. Perfor-
mance rose with the size of the input window, indicating that the
network uses global information in its assignment. The number of
nodes in the hidden layer played only a minor role, as long as there
were at least two hidden nodes. After 200 training cycles, the
performances, as measured by Mathews’ correlation coefficient
~Mathews, 1975!, on the five different test sets varied between
0.62 and 0.77 for classification of residues. The rather small size of
the homology reduced set could at least in part explain this vari-
ation, since the smaller a test set, the more variation in perfor-
mance would be expected. Figure 1 shows the network output for
a well-behaved test example. It also illustrates the need for a
second step network, since the first network only gives a classifi-
cation for each residue in a sequence, and not for the entire sequence.

In the second step, the chosen network architecture had 10 hid-
den units and the input window size was 100 residues. The corre-
lation coefficient of the second step network for the five test sets
varied between 0.68 and 0.93 for classification of sequences, re-
sulting in an overall correlation coefficient of 0.76. Ninety-three
percent of the cTPs were found, with 84% of the predicted cTPs
being correct, i.e., sensitivity was 0.93 and specificity was 0.84.
Eighty-eight percent of the sequences was correctly classified as
cTP or non-cTP. Note that these performances are based only on
test sequences; i.e., no sequence has been part of both training and
test set in the same network run. The classification results in terms
of the actual numbers of correctly0incorrectly predicted proteins
are presented in Table 1.

Two further tests of ChloroP performance were done. First,
among the 29 sequences that were initially removed from the
training set because they were considered to represent bi-partite,
stroma-thylakoid targeting sequences, 26~90%! were predicted as
having a cTP; this value is similar to the sensitivity obtained above
with cross-validation.

Second, to get an idea of how well ChloroP will perform on
genome-wide data where only a minority of all sequences repre-
sent chloroplast proteins, we analyzed the 715 sequences from
Arabidopsis thalianaincluded in SWISS-PROT release 36. As
shown in Table 2, 91 out of 95 sequences~96%! annotated as
cTP-containing~and having an intact N-terminus! were correctly
identified, while only 66 out of 620 sequences~11%! annotated as
not having a cTP were falsely predicted to contain one. Plots of

A

B

Fig. 1. First step network score~A, filled rhombs!, “smoothed derivative”
score~A, open rhombs!, and MEME score~B! for the first 100 residues of
SWISS-PROT entry P12372. The “smoothed derivative” score is calcu-
lated according to the formula in Methods. The horizontal, dashed arrow
~A! corresponds to the 40 residues large window used for cleavage site
motif searching. The SWISS-PROT annotated cleavage site is between
residues 50 and 51~arrow, A!, while the cleavage site predicted by the
MEME-based scoring matrix is between residues 48 and 49; the MEME
score is defined so that the predicted cleavage site is directly N-terminal of
the highest scoring residue~B!.

Table 1. ChloroP prediction results on the test set, showing the
actual numbers of correctly0incorrectly classified proteinsa

True localization
Predicted
localization cTP mTP Signal Cytosol Nuclear

cTP 70 8 3 0 2
Not-cTP 5 12 17 20 13

aThe positive set consists of chloroplast transit peptides~cTP!. The
negative set is divided into its four subsets representing different subcel-
lular locations: mitochondrial~mTP!, secretory~signal!, cytosolic, and nu-
clear. Note that mTPs are more often falsely predicted as cTPs than the
other negative categories.
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sensitivity, specificity, and Mathews’ correlation coefficient vs. the
cutoff for the cTP0non-cTP prediction from the second network are
shown in Fig. 2. The best correlation coefficient~0.78! is obtained
for a cutoff5 0.52, close to the optimal cutoff~0.50! determined
for the original test sets. For a cutoff of 0.52, the sensitivity is 0.93
and the specificity 0.72. As only 14A. thalianasequences were
included in the training set~2 chloroplast and 12 nonchloroplast
proteins! and only 11 in the initial collection of 237 cTP sequences
before homology reduction, this should be a realistic estimate of
ChloroP performance on genome-wide data.

PSORT comparisons

The performance of the final cTP predictor was compared with
PSORT~Nakai & Kanehisa, 1992!, a knowledge-based predictor
that calculates the probability~or “certainty factors”! that a protein
belongs to any of a wide array of subcellular locations, among
them the chloroplast. The four most probable locations for each
protein are presented by PSORT. In our comparisons, we consid-
ered that a protein was assigned as a chloroplast protein if the
chloroplast localization was among the four presented locations

and had a certainty factor$0.200, since this turned out to give the
best results among the interpretations tested. If these two demands
were not fulfilled, the protein was considered to be predicted as a
nonchloroplast protein. Using the same 150 sequence data set as
was used in the neural network training, but now including the full
amino acid sequences and interpreting the output as stated above,
PSORT yielded a correlation coefficient of 0.47, with a sensitivity
of 0.69 and specificity of 0.75. Another way of interpreting the
PSORT output is to consider the first presented localization as the
assigned location. This approach yielded a correlation coefficient
of 0.43. Both ways of interpreting PSORT output are thus out-
scored by the ChloroP predictor.

Cleavage site predictions

Our initial attempts to train a neural network to recognize cTP
cleavage sites were unsuccessful. A recently published study of the
in vitro cleavage specificity of SPP suggested a plausible expla-
nation for this failure~Richter & Lamppa, 1998!. While shown in
Figure 3A, cTP cleavage sites listed in SWISS-PROT tend to have
Arg in positions22 and23, five out of six precursor proteins
tested in the in vitro cleavage assay were processed between Arg0
Lys and Ala. In at least one of these cases, the mature protein
isolated from chloroplasts lacks an additional residue from the
N-terminus, suggesting that an uncharacterized stromal protease
can remove one or a few N-terminal residues after the initial cleav-
age catalyzed by SPP. For this reason, most cleavage sites given in
SWISS-PROT probably do not accurately represent the initial SPP
cleavage site.

To circumvent this problem, we used the MEME motif-finding
algorithm~Bailey & Elkan, 1994! to automatically detect the most
conserved motif in the220 to 16 region of a curated set of 62
cTPs ~the cleavage site given in SWISS-PROT for 13 of the 75
cTPs used in the neural network training could not be confirmed in
the literature and these entries were not used!. Since MEME aligns
its input sequences, it is capable of finding the most conserved
motif in a set of unaligned sequences without prior knowledge of
the exact position of the motif in each sequence. MEME also
generates a log-odds scoring matrix for the motif, and this scoring
matrix was used as a cleavage site predictor. The MEME scoring
matrix generated for two different values of the MEME parameter
“motif window length” ~“short” and “8”! yielded approximately
the same prediction results. For the final prediction, we chose the
value “8”; the consensus of the corresponding motif found by
MEME was VRfAAAVxx, where the SPP cleavage site suggested
by the in vitro results is denoted by an arrow.

The output from the first neural network was used to approxi-
mately locate the cTP cleavage site by calculating a “smoothed
derivative” of the network output curve and then requiring that the
predicted cleavage site be within620 residues of the maximum of
the smoothed derivative~Fig. 1!. The position in this region with
the maximum score calculated with the MEME log-odds scoring
matrix was then taken as the predicted cleavage site.

As seen in Figure 4, only 3 of the 62 sequences had a predicted
cleavage site located downstream of the cleavage site given in
SWISS-PROT, 5 had a predicted cleavage site that coincided with
the one given in SWISS-PROT, whereas one-half~31 sequences!
had a predicted cleavage site located one or two residues upstream
of the SWISS-PROT site. Assuming that all predictions that are at
most two residues away from the site given in SWISS-PROT are
the correct SPP sites, the simple combination of the neural network

Table 2. ChloroP prediction results on 715 Arabidopsis
thaliana sequencesa

True localization
Predicted
localization cTP mTP Signal Other

cTP 91 11 4 51
Not-cTP 4 9 49 496

aThe 715 sequences were retrieved from SWISS-PROT release 36. The
“true localization” is based on the FT field of the SWISS-PROT entry, in
the same manner as for the original training and test sets~see Methods!.
Both experimentally verified and otherwise annotated targeting peptides
~“PROBABLE,” “POTENTIAL,” “BY SIMILARITY” ! were included in
the respective classes.

Fig. 2. Sensitivity~solid line!, specificity~dotted line!, and Mathews’ cor-
relation coefficient~dashed-dotted line! as a function of the cutoff in the
second network for cTP0non-cTP determination for a set of 715A. thaliana
sequences. Lowering the cutoff yields a less restrictive prediction, suitable
in a search for all possible cTP-candidates in genome-wide data, while
raising the cutoff could be useful when priority is on minimizing the
number of false positives in database annotation.
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smoothed derivative to approximately locate the cleavage site, and
the MEME log-odds matrix thus gives around 60% correct pre-
dictions. Finally, it is worth noting that the alignment patterns, as
shown in Figure 3, differ clearly between the SWISS-PROT an-
notated cleavage site~Fig. 3A! and the predicted cleavage site
~Fig. 3B!, showing that the context of the predicted cleavage sites
is considerably more conserved than that of the annotated sites.

Discussion

Using a neural network approach, we have developed a predictor,
ChloroP, that can discriminate between cTPs and non-cTPs with a
sensitivity of 0.93 and a specificity of 0.84 on a homology-reduced
test set. On a more demanding test set in which chloroplast pro-

teins are a small minority~715 A. thalianasequences!, ChloroP
yields a sensitivity of around 0.9 and a specificity of 0.6~Table 2!.
Depending on the application, sensitivity0specificity may be bal-
anced against each other by changing the threshold for the cTP0
non-cTP discrimination~Fig. 2!. Furthermore, by adding a simple
scoring matrix, derived automatically from a set of approximately
known SPP cleavage sites, on top of the neural network predictor,
the correct SPP cleavage site can be predicted in approximately
60% of the cases. These performance levels are significantly better
than those achieved prior to the PSORT predictor~Nakai & Kane-
hisa, 1992!, and indicate that the ChloroP method should be useful
for screening large sequence sets for putative chloroplast proteins.

A remaining problem is that the ChloroP predictor cannot dis-
criminate very efficiently between cTPs and mitochondrial target-

Fig. 3. Sequence logos constructed from the 62 sequences used in the cleavage site predictor development.~A! The sequences are
aligned around their SWISS-PROT annotated cleavage site and~B! around the predicted cleavage site. The context of the predicted
cleavage sites shows a higher degree of conservation than the annotated cleavage sites. Residue numbering is relative to the cleavage
sites. Positively and negatively charged residues are shown in blue and red, uncharged, polar residues are shown in green, and
hydrophobic residues in black.
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ing sequences~mTPs! ~see Tables 1, 2!. In fact, these two kinds of
sorting signals are sufficiently similar that a few exceptional cases
are known, where one and the same sorting signal can route a
passenger protein to both chloroplasts and mitochondria with sim-
ilar efficiencies~Creissen et al., 1995; Chow et al., 1997; Akashi
et al., 1998; Menand et al., 1998!. Such dual targeting events are
probably quite rare, however, and it may be possible to improve
the discrimination between cTPs and mTPs by the simultaneous
use of a cTP-specific and an mTP-specific neural network; such
studies are underway.

It is striking that only 3 out of 62 sequences were predicted to
have a longer cTP than what is stated in their SWISS-PROT en-
tries, while 54 were assigned a shorter cTP and only 5 were “cor-
rectly” predicted~Fig. 4!. The tendency to predict the cTPs as
being shorter than their SWISS-PROT annotations does not seem
to be an artifact of the asymmetric220 to 16 window used to
train MEME, since it was reproduced in MEME trainings using
symmetric windows of610 or620 residues around the annotated
cleavage site. The prediction performance was, however, slightly
worse for the610 window and significantly worse for the620
window ~data not shown!. Given the recent experimental observa-
tion that cTPs are cleaved between Arg0Lys and Ala by purified
SPP in vitro~Richter & Lamppa, 1998! and the fact that many cTP
cleavage sites given in SWISS-PROT have Arg in positions22 or
23 ~Fig. 3A!, it seems likely that most imported chloroplast pro-
teins undergo additional N-terminal proteolysis after the initial
SPP-catalyzed cleavage of the cTP. This unfortunately makes it
impossible to accurately predict the final N-terminus of the mature
protein, but our results nevertheless suggest that the ChloroP pre-
diction will not be off by more than two residues from the mature
N-terminus in approximately 60% of the cases.

Methods

Creation of training and test sets

Sequence data were obtained from SWISS-PROT release 35~Bai-
roch & Apweiler, 1998!. The positive~cTP! data set was extracted
by collecting all entries containing an FT line with key name
“TRANSIT” and description “CHLOROPLAST.” Entries that

showed any sign of ambiguity regarding the existence or length of
the cTP~“PROBABLE,” “POTENTIAL,” “BY SIMILARITY” !
were excluded, leaving 266 sequences. The collected sequences
were then analyzed with the signal sequence predictor SignalP
~using the prokaryotic, gram-negative network! ~Nielsen et al.,
1997!, and those that were assigned a cleavage site within65
residues from the SWISS-PROT annotated cleavage site were ex-
cluded, since they most likely represent bi-partite stroma-thylakoid
targeting sequences. The cTP set was thus reduced to 237 sequences.

The cTP parts~according to the SWISS-PROT annotation! of
the remaining sequences were pairwise aligned using the Smith–
Waterman algorithm and PAM250 scoring matrix; homology re-
duction was done using Hobohm algorithm 2~Hobohm et al.,
1992!. The cutoff in the Hobohm algorithm was based on the
extreme value distribution~Karlin & Altschul, 1990; Altschul
et al., 1994!, and chosen as the score at which the actual distribu-
tion of pairwise alignment scores deviates from the theoretical
distribution of scores for pairwise alignments of randomly gener-
ated sequences~Pedersen & Nielsen, 1997!. The total number of
cTPs left after this procedure was 80, with an average cTP length
of 50 amino acids. Careful sequence homology reduction is of
great importance when the sequences are to be used for training a
neural network, since too strong a similarity between sequences in
the training and test sets could lead to an overestimation of pre-
diction performance. Furthermore, the existence of too similar
sequences in the training set may lead to a biased network, being
better at recognizing cTPs of the over-represented type, but worse
at recognizing all other types.

After a literature check of the 80 sequences, 5 were removed,
and another 12 were replaced or corrected due to annotation in-
consistencies or errors~see Results for discussion of these pro-
teins!. In addition to the cTP, 50 residues from the N-terminus of
the mature protein were retained for each entry, yielding an aver-
age entry length of 100 amino acids. The final cTP collection of 75
proteins can be downloaded from the ChloroP web site.

The negative set was constructed in a similar way. Four homology-
reduced subsets containing cytosolic, secretory, mitochondrial, and
nuclear proteins, respectively, were collected and from each of
them 20 sequences~15 from the nuclear subset! were included in
the negative set so that the final positive and negative sets were of
the same size. All proteins were taken from plants~as indicated by
the node “PLANTA” in the OC line!, except for the mitochondrial
sequences, which were from all kinds of organisms since the ho-
mology reduced mitochondrial subset would otherwise have been
too small. Such a nonrestrictive choice of mitochondrial sequences
is justified by an earlier study showing that mitochondrial targeting
peptides do not differ in any major way between organisms
~Schneider et al., 1998!. One hundred N-terminal residues were
retained for each entry, equaling the average length in the positive
set.

Before network training, the full dataset~150 sequences! was
divided into five equally sized parts for cross-validation. Every
network run was carried out with one part as test set and the
remaining four as training sets, and this was repeated so that all
five parts were used both for testing and training, but not both in
the same run.

Neural network training

To construct the prediction method, two neural networks were used
sequentially. Both were of the feed-forward type with sigmoidal

Fig. 4. Cleavage site prediction results using the MEME scoring matrix
compared to SWISS-PROT annotations—54 out of 62 examined proteins
are predicted to have shorter cTPs than what is annotated in SWISS-PROT
~negative values!, 5 are correctly predicted, and only 3 predicted to be
longer ~positive values!.
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neurons~Minsky & Papert, 1968! and zero or one layer of hidden
units, trained using error backpropagation~Rumelhart et al., 1986!,
but with different error functions.

The first neural network was based on the HOW package~S.
Brunak, pers. comm.!, used earlier~Brunak et al., 1991!. It uses
a logarithmic error function in the backpropagation algorithm
and sparsely encoded sliding windows for encoding the input
sequence data~Qian & Sejnowski, 1988; Brunak et al., 1991!.
Each position in the input sequence window occupies 20 input
nodes~1 for each of the 20 amino acids!. The node correspond-
ing to the amino acid present at that position is switched on
while the other 19 remain off. The network has one output unit
that is trained to predict the state~cTP or non-cTP! of the cen-
tral residue of the input window. The most N-terminal window
has the most N-terminal residue in its central position. The input
nodes belonging to the positions in the window thus not covered
by the amino acid sequence remain off. The window is slid along
the sequence, enabling the network to be trained on one residue
and its environment at a time. Networks with window sizes from
7 to 51 positions and 0 to 8 nodes in the hidden layer were tested.
The learning rate was set to 0.001, based on pilot studies~data not
shown!. The output of this first network is one score per amino
acid in a sequence~Fig. 1!.

The output from the first network was used as input to a second
network that was based on the HOWLIN program~S. Brunak,
pers. comm.!. It uses real values as input and the standard error
function in the backpropagation. The input was fixed to the output
values from the first network corresponding to the N-terminal 100
positions in a sequence, a number chosen to be large enough to
span the entire cTP for all entries in the cTP set used in this study.
The network has one output unit that is trained to predict the
presence or absence of a cTP in a sequence. The number of nodes
in the hidden layer was varied between 0 and 20 and three different
learning rates~0.001, 0.01, and 0.05! were tested; 0.001 was chosen
for the final training. The output from the second network consists
of one score per protein and the actual chloroplast0nonchloroplast
localization assignment of the protein is based on whether this
score is above or below a cutoff5 0.50, a value that yields the
optimal Mathews’ correlation coefficient over the test sets.

A common problem when using neural networks is to avoid
overtraining, i.e., a decline in generalization ability, which often
occurs after a certain point during training. In several neural
network applications, this has been handled by monitoring test
set performance during training and picking the network where
performance on the test set was optimal~Qian & Sejnowski,
1988; Brunak et al., 1991; Nielsen et al., 1997!. This approach
has been criticized because it involves the test set for optimiza-
tion of training length, so the performance might not reflect a
true generalization ability. Although practical experience in a
bioinformatics application has shown the performance on a new,
independent test set to be as good as that found on the data set
used to stop the training~Brunak et al., 1991!, we have chosen
to avoid optimization on the individual test sets by using a con-
stant training length for all training sets in the cross-validation.
A training length of 200 cycles was chosen for both types of
network, based on a series of initial trial runs where the training
and test sets performances were monitored to find a value where
overtraining rarely occurred although near optimal test perfor-
mance was reached. With the low learning rate we used, fluctu-
ations in performances during training were small, and the exact
choice of training length was not critical.

Test set performances were measured using Mathews’ correla-
tion coefficient~Mathews, 1975!. The final network architectures
were in both steps chosen as the best performing one, but with the
complexity of the network taken into account, i.e., if two trained
networks performed equally well, the least complex network ar-
chitecture was chosen. Since there were five different training sets,
five different networks were produced in both steps. In the final,
web-accessible ChloroP predictor, a query sequence is processed
through all five networks of the first step, and the resulting output
values are averaged before they are presented as input to the five
networks of the second step. The outputs from these five networks
are also averaged, yielding a final score on which the cTP0non-cTP
assignment is based. Both the actual prediction and the final net-
work output score are presented to the user.

Cleavage site prediction

A scoring matrix based approach was used for cleavage site pre-
diction. Since, as discussed in Results, the cleavage sites given in
SWISS-PROT may not correspond exactly to the initial SPP cleav-
age sites, we used MEME~Bailey & Elkan, 1994!, a web acces-
sible tool for motif discovery, to identify the most conserved motif
in a segment encompassing residues220 to 16 relative to the
SWISS-PROT cleavage sites and to generate a log-odds scoring
matrix for the motif found. Only 62 sequences from the cTP set
were used since the cleavage site given in SWISS-PROT could not
be confirmed in the literature for 13 sequences, i.e., the mature part
of these proteins was not N-terminally sequenced. Several runs
were undertaken, varying the MEME “motif window length” pa-
rameter. Cleavage sites were predicted by first constructing a
“smoothed derivative,”DS, of the output profile from the first
network and then searching for the maximum log-odds score in a
window of620 residues surrounding the position of the maximum
in DS ~Fig. 1!. DS for position i was calculated according to the
following formula, whereS is the network output score:

DSi 5
1

5S(
j51

5

Si2j 2 (
j50

5

Si1jD. ~1!

Logos

Sequence logos~Schneider & Stephens, 1990! were constructed
for alignments of the 62 proteins around their annotated and
predicted cleavage sites, respectively~Fig. 3!. For each position in
an alignment the frequencies of the amino acids present at that
position are calculated, and the information content, as measured
by the difference between maximum and actual Shannon entropy
~Shannon, 1948!, is represented by the height of the bars in the
plot. The height of the letters within each bar represents the rela-
tive frequency of the corresponding amino acid at that position.
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