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Abstract

We present a neural network based mett@iloroP for identifying chloroplast transit peptides and their cleavage sites.
Using cross-validation, 88% of the sequences in our homology reduced training set were correctly classified as transit
peptides or nontransit peptides. This performance level is well above that of the publicly available chloroplast local-
ization predictor PSORT. Cleavage sites are predicted using a scoring matrix derived by an automatic motif-finding
algorithm. Approximately 60% of the known cleavage sites in our sequence collection were predicted totgithin
residues from the cleavage sites given in SWISS-PROT. An analysis oAArd&idopsis thalianasequences from
SWISS-PROT suggests that the ChloroP method should be useful for the identification of putative transit peptides in
genome-wide sequence data. The ChloroP predictor is available as a web-server/ atttpebs.dtu.diKserviceg

ChloroB.
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The chloroplast is an organelle present in photosynthetic plants In this paper we present a neural network-based predictor
and algae. Even though chloroplasts have a genome of their owiiChloroP that has been trained to discriminate N-terminal cTPs
most chloroplast proteins are encoded in the nuclear genome, tranfsem other N-terminal sequences. Overall, ChloroP can discrimi-
lated in the cytosol, and post-translationally imported into the or-nate cTPs from non-cTPs with high sensitivity and specificity. We
ganelle. Most nuclearly encoded chloroplast proteins have alave also constructed a scoring matrix-based method for predic-
N-terminal presequence or transit peptid@P) that directs them tion of cleavage sites. Interestingly, our analysis indicates that a
to the chloroplast stroméSoll & Tien, 1998. During or shortly  majority of the cTP-containing proteins are cleaved first by the
after entry, the cTP is cleaved off by the stromal processing pepSPP, whereupon an additional 1-3 residues are removed from the
tidase(SPP (Robinson & Ellis, 1984 Proteins destined for the mature protein by some other stromal proteolytic activity. The SPP
lumen of the intra-chloroplastic thylakoid compartment generallycleavage site appears to be correctly predicted in about 60% of the
have a bi-partite targeting sequence composed of an N-terminaequences.
stroma-targeting cTP, followed by a thylakoid transfer domain that
shares important features with signal sequences required for pro-
tein secretion in bacterizon Heijne, 1990; Robinson etal., 1998 Results

cTPs from different proteins show a wide variation in length and
sequence. They tend to be rich in hydroxylated residues and hav@ollection of cTP sequences
a low content of acidic residuggon Heijne et al., 1989 A semi-
conserved motif(1/V)-X-(A/C)\)A, around the SPP cleavage
site (arrow) has also been identifie@avel & von Heijne, 1990

As described in Methods, cTP-containing proteins were extracted
from SWISS-PROT. The initial set was screened for thylakoid

. - _— .. transfer domains using the signal peptide predictor SigidiElsen
The only publicly available prediction method for automatic iden et al., 199, and homology reduction was carried out using the

tification of cTPs is incorporated in the PSORT servdakai & . . )
Kanehisa, 1992and is based mainly on discrimination according Hobohm algorithm ZHobohm et al., 1992 This left a collection
o{ 80 sequences.

to amino acid content in certain sequence regions. PSORT does not , . .
. . L q 9 A literature check of this set revealed 11 cTPs where the cleav-
provide a cleavage site prediction for cTPs. ) . . - .
age site was predicted by homology to proteins with experi-

mentally verified cleavage sites. For 10 of these entries, the
experimentally verified sequence was used instead, and for the

Reprint requests to: Department of Biochemistry, Stockholm University,/émaining case it turned out that the verified sequence was already
S-106 91 Stockholm, Sweden; e-mail: gunnar@biokemi.su.se. present in the data set, so this entry was removed instead of re-
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placed. The literature check also revealed that four proteins wersequence as either containing or lacking a cTP. A standard feed-
erroneously included in the data set, two being chloroplast enforward network architecture with one hidden layer was chosen in
coded, one having a thylakoid transfer domain that had been missdabth steps.
by SignalP, and the fourth being a chloroplast envelope protein. The final network chosen in the first step had a symmetric input
Altogether, five entries were thus removed from the initial set.window of 51 positions and 2 units in the hidden layer. Perfor-
Finally, for two proteins, the SWISS-PROT annotations of themance rose with the size of the input window, indicating that the
cleavage sites were inconsistent with the literature, and the clearetwork uses global information in its assignment. The number of
age site assignment was changed in accordance with the informaodes in the hidden layer played only a minor role, as long as there
tion in the articles. The final set of positive examples thus includedvere at least two hidden nodes. After 200 training cycles, the
75 sequences. performances, as measured by Mathews’ correlation coefficient
Analysis of total amino acid content of the homology reduced(Mathews, 197h on the five different test sets varied between
cTP set shows that the fraction of acidic resid(sp and Glu is 0.62 and 0.77 for classification of residues. The rather small size of
very low and that Ser and Arg are over-represented in the cTPghe homology reduced set could at least in part explain this vari-
when compared to the mature part of the protéitaa not shown ation, since the smaller a test set, the more variation in perfor-
This is well in accordance with previously reported cTP featuresmance would be expected. Figure 1 shows the network output for
(von Heijne et al., 1989 a well-behaved test example. It also illustrates the need for a
The negative set also contained 75 nonhomologous sequencescond step network, since the first network only gives a classifi-
and was constructed from four subsets: mitochondrial, secretongation for each residue in a sequence, and not for the entire sequence.
cytosolic, and nuclear proteins. The total data set of 150 sequences|In the second step, the chosen network architecture had 10 hid-
was divided into five subsets before network training, enablingden units and the input window size was 100 residues. The corre-
cross-validation. lation coefficient of the second step network for the five test sets
varied between 0.68 and 0.93 for classification of sequences, re-
N sulting in an overall correlation coefficient of 0.76. Ninety-three
Neural network training percent of the cTPs were found, with 84% of the predicted cTPs

To discriminate between sequences having and not having a cTPeing correct, i.e., sensitivity was 0.93 and specificity was 0.84.
we proceeded in two steps. First, a neural network was trained t&ighty-eight percent of the sequences was correctly classified as
classify individual residues as either belonging or not belonging td=TP or non-cTP. Note that these performances are based only on
a cTP. Second, the output from this first netw¢Big. 1) was used ~ test sequences; i.e., no sequence has been part of both training and

as input for a second network that was trained to C|assify eacﬁest set in the same network run. The classification results in terms
of the actual numbers of correctincorrectly predicted proteins

are presented in Table 1.
Two further tests of ChloroP performance were done. First,

10 among the 29 sequences that were initially removed from the
U IR I Attt et A training set because they were considered to represent bi-partite,
08y & ¢ :‘“ . . .
Rl p - stroma-thylakoid targeting sequences,(26%) were predicted as

e 0s4* having a cTP; this value is similar to the sensitivity obtained above

o - — — — - = = > . . .

2] ;%o with cross-validation.

2 oo oo Second, to get an idea of how well ChloroP will perform on

Q . . .

=02 N Ooo genome-wide data where only a minority of all sequences repre-
oo PP “‘&WW""W sent chloroplast proteins, we analyzed the 715 sequences from
01 & ¢ Arabidopsis thalianaincluded in SWISS-PROT release 36. As
02 ' ' T ' ' T ' ' T shown in Table 2, 91 out of 95 sequend@6% annotated as

cTP-containingland having an intact N-terminusvere correctly
identified, while only 66 out of 620 sequencdi%) annotated as
not having a cTP were falsely predicted to contain one. Plots of

MEME score

Table 1. ChloroP prediction results on the test set, showing the
actual numbers of correctincorrectly classified proteind
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True localization

residue Predicted
localization cTP mTP Signal Cytosol Nuclear
Fig. 1. First step network scor@, filled rhombg, “smoothed derivative”
score(A, open rhombs and MEME scoréB) for the first 100 residues of  cTp 70 8 3 0 2
SWISS-PROT entry P12372. The “smoothed derivative” score is calcungt.cTp 5 12 17 20 13

lated according to the formula in Methods. The horizontal, dashed arrow
(A) corresponds to the 40 residues large window used for cleavage site
motif searching. The SWISS-PROT annotated cleavage site is between #The positive set consists of chloroplast transit pepti&&P). The
residues 50 and 5farrow, A), while the cleavage site predicted by the negative set is divided into its four subsets representing different subcel-
MEME-based scoring matrix is between residues 48 and 49; the MEMHular locations: mitochondriainTP), secretory(signa), cytosolic, and nu-
score is defined so that the predicted cleavage site is directly N-terminal oflear. Note that mTPs are more often falsely predicted as cTPs than the
the highest scoring residy8). other negative categories.
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Table 2. ChloroP prediction results on 715 Arabidopsis and had a certainty factez0.200, since this turned out to give the
thaliana sequencés best results among the interpretations tested. If these two demands
were not fulfilled, the protein was considered to be predicted as a
Predicted True localization nonchloroplast protein. Using the same 150 sequence data set as
localization cTP mTP Signal Other Was used in the neural network training, but now including the full
amino acid sequences and interpreting the output as stated above,
cTP 91 11 4 51 PSORT yielded a correlation coefficient of 0.47, with a sensitivity
Not-cTP 4 9 49 496 of 0.69 and specificity of 0.75. Another way of interpreting the

PSORT output is to consider the first presented localization as the
aThe 715 sequences were retrieved from SWISS-PROT release 36. THssigned location. This approach yielded a correlation coefficient

“true localization” is based on the FT field of the SWISS-PROT entry, in of 0.43. Both ways of interpreting PSORT output are thus out-

the same manner as for the original training and test (sets Methods scored by the ChloroP predictor.

Both experimentally verified and otherwise annotated targeting peptides

(“PROBABLE,” “POTENTIAL,” “BY SIMILARITY” ) were included in

the respective classes.

Cleavage site predictions

Our initial attempts to train a neural network to recognize cTP
cleavage sites were unsuccessful. A recently published study of the

sensitivity, specificity, and Mathews’ correlation coefficient vs. the in Vitro cleavage specificity of SPP suggested a plausible expla-
cutoff for the cTPnon-cTP prediction from the second network are nation for this failure(Richter & Lamppa, 1998 While shown in
shown in Fig. 2. The best correlation coeffici¢at7g is obtained ~ Figure 3A, cTP cleavage sites listed in SWISS-PROT tend to have
for a cutoff= 0.52, close to the optimal cutof®.50 determined Arg in positions —2 and —3, five out of six precursor proteins
for the original test sets. For a cutoff of 0.52, the sensitivity is 0.93tested in the in vitro cleavage assay were processed betwe¢n Arg
and the specificity 0.72. As only 1A. thalianasequences were Lys and Ala. In at least one of these cases, the mature protein
included in the training sef2 chloroplast and 12 nonchloroplast isolated from chloroplasts lacks an additional residue from the
proteing and only 11 in the initial collection of 237 cTP sequences N-terminus, suggesting that an uncharacterized stromal protease
before homology reduction, this should be a realistic estimate ofan remove one or a few N-terminal residues after the initial cleav-
ChloroP performance on genome-wide data. age catalyzed by SPP. For this reason, most cleavage sites given in
SWISS-PROT probably do not accurately represent the initial SPP
cleavage site.
PSORT comparisons To circumvent this problem, we used the MEME motif-finding
The performance of the final cTP predictor was compared with@/90rithm(Bailey & Elkan, 1994 to automatically detect the most
PSORT(Nakai & Kanehisa, 1992 a knowledge-based predictor conserved motif in th_&zo_ to +_6 region of a curated set of 62
that calculates the probabilitpr “certainty factors) that a protein cTPs(the c_Ieavage site given in S\_N_ISS'PROT for 13 of_the 7‘_5
belongs to any of a wide array of subcellular locations, amongCTP,s used in the neural net\(vork training coqld not be conf!rmed in
them the chloroplast. The four most probable locations for eacti® literature and these entries were not ys8thce MEME aligns
protein are presented by PSORT. In our comparisons, we considt NPUt sequences, it is capable of finding the most conserved
ered that a protein was assigned as a chloroplast protein if thg10tlf in a set of unaligned sequences without prior knowledge of

chloroplast localization was among the four presented locationd1® €xact position of the motif in each sequence. MEME also
generates a log-odds scoring matrix for the motif, and this scoring

matrix was used as a cleavage site predictor. The MEME scoring
matrix generated for two different values of the MEME parameter

10 . “motif window length” (“short” and “8”) yielded approximately
the same prediction results. For the final prediction, we chose the

predicted cleavage site be withirn20 residues of the maximum of
the smoothed derivativerig. 1). The position in this region with
the maximum score calculated with the MEME log-odds scoring
matrix was then taken as the predicted cleavage site.

As seen in Figure 4, only 3 of the 62 sequences had a predicted
cleavage site located downstream of the cleavage site given in
Fig. 2. Sensitivity(solid line), specificity (dotted ling, and Mathews' cor- ~ SWISS-PROT, 5 had a predicted cleavage site that coincided with
relation coefficient(dashed-dotted lineas a function of the cutoff in the  the one given in SWISS-PROT, whereas one-kalf sequences
22;‘;2‘;C”:Stwlf’étvfeorgncgﬁznc'3;‘?&%?&?;\”f:'sznrfef’srt;‘gﬁ?“;;%?ég2:'1a23itabl had a predicted cleavage site located one or two residues upstream
in a search for all possible cTP-candidates in genome-wide da’ta, whilg)f the SWISS_'PROT site. Assummg' that. all pred|ct|ons that are at
raising the cutoff could be useful when priority is on minimizing the MOSt two residues away from the site given in SWISS-PROT are
number of false positives in database annotation. the correct SPP sites, the simple combination of the neural network

0.2

E 0.9

§ 08 value “8”; the consensus of the corresponding motif found by
5 074 MEME was VRLAAAVxx, where the SPP cleavage site suggested
§ 0'6_ by the in vitro results is denoted by an arrow.

% 0’54 The output from the first neural network was used to approxi-
g ’ mately locate the cTP cleavage site by calculating a “smoothed
:ﬁ 0'4j derivative” of the network output curve and then requiring that the
S 03
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A

Fig. 3. Sequence logos constructed from the 62 sequences used in the cleavage site predictor devéfopiitensequences are

aligned around their SWISS-PROT annotated cleavage sitéBnaround the predicted cleavage site. The context of the predicted
cleavage sites shows a higher degree of conservation than the annotated cleavage sites. Residue numbering is relative to the cleavage
sites. Positively and negatively charged residues are shown in blue and red, uncharged, polar residues are shown in green, and
hydrophobic residues in black.

smoothed derivative to approximately locate the cleavage site, anigins are a small minority715 A. thaliana sequences ChloroP

the MEME log-odds matrix thus gives around 60% correct pre-yields a sensitivity of around 0.9 and a specificity of OTéble 2.
dictions. Finally, it is worth noting that the alignment patterns, asDepending on the application, sensitivispecificity may be bal-
shown in Figure 3, differ clearly between the SWISS-PROT an-anced against each other by changing the threshold for thé cTP
notated cleavage sitéFig. 3A) and the predicted cleavage site non-cTP discriminatioriFig. 2). Furthermore, by adding a simple
(Fig. 3B), showing that the context of the predicted cleavage sitescoring matrix, derived automatically from a set of approximately
is considerably more conserved than that of the annotated sitesknown SPP cleavage sites, on top of the neural network predictor,
the correct SPP cleavage site can be predicted in approximately
60% of the cases. These performance levels are significantly better
than those achieved prior to the PSORT predi¢itakai & Kane-
Using a neural network approach, we have developed a predictonisa, 1992, and indicate that the ChloroP method should be useful
ChloroP, that can discriminate between cTPs and non-cTPs with for screening large sequence sets for putative chloroplast proteins.
sensitivity of 0.93 and a specificity of 0.84 on a homology-reduced A remaining problem is that the ChloroP predictor cannot dis-
test set. On a more demanding test set in which chloroplast preeriminate very efficiently between cTPs and mitochondrial target-

Discussion
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25 showed any sign of ambiguity regarding the existence or length of
the cTP(“PROBABLE,” “POTENTIAL,” “BY SIMILARITY” )
207 were excluded, leaving 266 sequences. The collected sequences
8 were then analyzed with the signal sequence predictor SignalP
g 157 (using the prokaryotic, gram-negative netwprielsen et al.,
g 1997), and those that were assigned a cleavage site wittbn
"f;’_ 104 residues from the SWISS-PROT annotated cleavage site were ex-
< cluded, since they most likely represent bi-partite stroma-thylakoid
5 targeting sequences. The cTP set was thus reduced to 237 sequences.
The cTP partgaccording to the SWISS-PROT annotajiaf
0- the remaining sequences were pairwise aligned using the Smith—
30 -45 -40 -35 -30 25 20 1510 5 0 5 10 15 20 25 30 35 40 Waterman algorithm and PAM250 scoring matrix; homology re-
predicted vs. annotated cleavage site position duction was done using Hobohm algorithm(Bobohm et al.,

) ) o ) ] - 1992. The cutoff in the Hobohm algorithm was based on the
Fig. 4. Cleavage site prediction results using the MEME scoring matrix extreme value distributiorfKarlin & Altschul, 1990; Altschul

compared to SWISS-PROT annotations—54 out of 62 examined proteins . S
are predicted to have shorter cTPs than what is annotated in SWISS—PR(ﬁI al., 1994, and chosen as the score at which the actual distribu-

(negative values 5 are correctly predicted, and only 3 predicted to be tion of pairwise alignment scores deviates from the theoretical
longer (positive values distribution of scores for pairwise alignments of randomly gener-
ated sequencg®edersen & Nielsen, 1997The total number of
CTPs left after this procedure was 80, with an average cTP length
of 50 amino acids. Careful sequence homology reduction is of
ing sequenceénTPY (see Tables 1,)2In fact, these two kinds of  great importance when the sequences are to be used for training a
sorting signals are sufficiently similar that a few exceptional caseseural network, since too strong a similarity between sequences in
are known, where one and the same sorting signal can route e training and test sets could lead to an overestimation of pre-
passenger protein to both chloroplasts and mitochondria with simgdiction performance. Furthermore, the existence of too similar
ilar efficiencies(Creissen et al., 1995; Chow et al., 1997; Akashi sequences in the training set may lead to a biased network, being
et al., 1998; Menand et al., 1998uch dual targeting events are better at recognizing cTPs of the over-represented type, but worse
probably quite rare, however, and it may be possible to improveat recognizing all other types.
the discrimination between cTPs and mTPs by the simultaneous After a literature check of the 80 sequences, 5 were removed,
use of a cTP-specific and an mTP-specific neural network; sucland another 12 were replaced or corrected due to annotation in-
studies are underway. consistencies or errorsee Results for discussion of these pro-

It is striking that only 3 out of 62 sequences were predicted toteing. In addition to the cTP, 50 residues from the N-terminus of
have a longer cTP than what is stated in their SWISS-PROT enthe mature protein were retained for each entry, yielding an aver-
tries, while 54 were assigned a shorter cTP and only 5 were “corage entry length of 100 amino acids. The final cTP collection of 75
rectly” predicted(Fig. 4. The tendency to predict the cTPs as proteins can be downloaded from the ChloroP web site.
being shorter than their SWISS-PROT annotations does not seem The negative set was constructed in a similar way. Four homology-
to be an artifact of the asymmetrie20 to +6 window used to  reduced subsets containing cytosolic, secretory, mitochondrial, and
train MEME, since it was reproduced in MEME trainings using nuclear proteins, respectively, were collected and from each of
symmetric windows ot 10 or =20 residues around the annotated them 20 sequencd45 from the nuclear subewere included in
cleavage site. The prediction performance was, however, slightlyhe negative set so that the final positive and negative sets were of
worse for thex10 window and significantly worse for th&20 the same size. All proteins were taken from plaaisindicated by
window (data not shown Given the recent experimental observa- the node “PLANTA” in the OC ling except for the mitochondrial
tion that cTPs are cleaved between Ags and Ala by purified  sequences, which were from all kinds of organisms since the ho-
SPP in vitro(Richter & Lamppa, 1998and the fact that many cTP  mology reduced mitochondrial subset would otherwise have been
cleavage sites given in SWISS-PROT have Arg in positie@sor  too small. Such a nonrestrictive choice of mitochondrial sequences
—3 (Fig. 3A), it seems likely that most imported chloroplast pro- is justified by an earlier study showing that mitochondrial targeting
teins undergo additional N-terminal proteolysis after the initial peptides do not differ in any major way between organisms
SPP-catalyzed cleavage of the cTP. This unfortunately makes {ISchneider et al., 19980ne hundred N-terminal residues were
impossible to accurately predict the final N-terminus of the matureretained for each entry, equaling the average length in the positive
protein, but our results nevertheless suggest that the ChloroP preet.
diction will not be off by more than two residues from the mature  Before network training, the full datasét50 sequencésvas
N-terminus in approximately 60% of the cases. divided into five equally sized parts for cross-validation. Every
network run was carried out with one part as test set and the
remaining four as training sets, and this was repeated so that all
five parts were used both for testing and training, but not both in
the same run.

Methods

Creation of training and test sets

Sequence data were obtained from SWISS-PROT relea¢Ba885
roch & Apweiler, 1998. The positive(cTP) data set was extracted
by collecting all entries containing an FT line with key name To construct the prediction method, two neural networks were used
“TRANSIT” and description “CHLOROPLAST.” Entries that sequentially. Both were of the feed-forward type with sigmoidal

Neural network training
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neurong Minsky & Papert, 1968and zero or one layer of hidden Test set performances were measured using Mathews’ correla-

units, trained using error backpropagati@®umelhart etal., 1986  tion coefficient(Mathews, 197h The final network architectures

but with different error functions. were in both steps chosen as the best performing one, but with the
The first neural network was based on the HOW packégle complexity of the network taken into account, i.e., if two trained

Brunak, pers. comm. used earliefBrunak et al., 1991 It uses  networks performed equally well, the least complex network ar-

a logarithmic error function in the backpropagation algorithm chitecture was chosen. Since there were five different training sets,

and sparsely encoded sliding windows for encoding the inpufive different networks were produced in both steps. In the final,

sequence datéQian & Sejnowski, 1988; Brunak et al., 1991 web-accessible ChloroP predictor, a query sequence is processed

Each position in the input sequence window occupies 20 inputhrough all five networks of the first step, and the resulting output

nodes(1 for each of the 20 amino acidsThe node correspond- values are averaged before they are presented as input to the five

ing to the amino acid present at that position is switched onnetworks of the second step. The outputs from these five networks

while the other 19 remain off. The network has one output unitare also averaged, yielding a final score on which the/o®R-cTP

that is trained to predict the stateTP or non-cTP of the cen-  assignment is based. Both the actual prediction and the final net-

tral residue of the input window. The most N-terminal window work output score are presented to the user.

has the most N-terminal residue in its central position. The input

nodes belonging to the positions in the window thus not covered

by the amino acid sequence remain off. The window is slid alongCleavage site prediction

the sequence, enabling the network to be trained on one residyg soring matrix based approach was used for cleavage site pre-
and its environment at a time. Networks with window sizes from giction . Since, as discussed in Results, the cleavage sites given in

70 51 positions and 0 to 8 nodes in the hidden layer were testeds\y|ss-pROT may not correspond exactly to the initial SPP cleav-
The learning rate was set to 0.001, based on pilot stydis not age sites, we used MEM@Bailey & Elkan, 1994, a web acces-
shown). The output of this first network is one score per amino gje tool for motif discovery, to identify the most conserved motif
acid in a sequenceFig. _1)' ) in a segment encompassing residue®0 to +6 relative to the

The output from the first network was used as input to a second\yss-pPROT cleavage sites and to generate a log-odds scoring
network that was based on the HOWLIN progra Brunak,  marix for the motif found. Only 62 sequences from the cTP set
pers. comm). It uses real values as input and the standard errofere ysed since the cleavage site given in SWISS-PROT could not
function in the backpropagation. The input was fixed to the outputyg ¢onfirmed in the literature for 13 sequences, i.e., the mature part
values from the first network corresponding to the N-terminal 100t {nege proteins was not N-terminally sequenced. Several runs
positions in a sequence, a number chosen to be large enough {0 e undertaken, varying the MEME “motif window length” pa-
span the entire cTP for all entries in the cTP set used in this study, ater. Cleavage sites were predicted by first constructing a

The network has one output ynit that is trained to predict the‘smoothed derivative,"AS, of the output profile from the first
presence or absence of a cTP in a sequence. The number of Nod&svork and then searching for the maximum log-odds score in a

in the hidden layer was varied between 0 and 20 and three differenf;, o,y of + 20 residues surrounding the position of the maximum
learning rate¢0.001, 0.01, and 0.05vere tested; 0.001 was chosen i, x5 (Fig. 1). AS for positioni was calculated according to the

for the final training. The output from the second network ConSiStSfoIIowing formula, whereS is the network output score:
of one score per protein and the actual chloropglashchloroplast '

localization assignment of the protein is based on whether this
score is above or below a cutoff 0.50, a value that yields the AS = }(25: S - 25: S ) (1)
optimal Mathews’ correlation coefficient over the test sets. s\ a7 &)
A common problem when using neural networks is to avoid
overtraining, i.e., a decline in generalization ability, which often
occurs after a certain point during training. In several neurall0gos

network applications, this has been handled by monitoring teséequence logo&Schneider & Stephens, 199@ere constructed

set performance during training and picking the network whereq, 5jignments of the 62 proteins around their annotated and
performance on the test set was optint@lian & Sejnowski,  peqicted cleavage sites, respectivfjg. 3. For each position in
1988; Brunak et al.,, 1991; Nielsen et al., 199This approach a5 glignment the frequencies of the amino acids present at that
has been criticized because it involves the test set for optimizaggsition are calculated, and the information content, as measured
tion of training length, so the performance might not reflect apy the difference between maximum and actual Shannon entropy
tryg generglization. apility. Although practical experience in a(Shannon, 1948 is represented by the height of the bars in the
bioinformatics application has shown the performance on a new, o The height of the letters within each bar represents the rela-

independent test set to be as good as that found on the data Sgfe frequency of the corresponding amino acid at that position.
used to stop the trainingBrunak et al., 1991, we have chosen

to avoid optimization on the individual test sets by using a con-
stant training length for all training sets in the cross-validation.Acknowledgments
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