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Abstract

Fold assignments for proteins from theEscherichia coligenome are carried out using BASIC, a profile–profile
alignment algorithm, recently tested on fold recognition benchmarks and on theMycoplasma genitaliumgenome and
PSI BLAST, the newest generation of the de facto standard in homology search algorithms. The fold assignments are
followed by automated modeling and the resulting three-dimensional models are analyzed for possible function prediction.

Close to 30% of the proteins encoded in theE. coli genome can be recognized as homologous to a protein family with
known structure. Most of these homologies~23% of the entire genome! can be recognized both by PSI BLAST and
BASIC algorithms, but the latter recognizes an additional 260 homologies. Previous estimates suggested that only
10–15% of E. coli proteins can be characterized this way. This dramatic increase in the number of recognized
homologies betweenE. coli proteins and structurally characterized protein families is partly due to the rapid increase
of the database of known protein structures, but mostly it is due to the significant improvement in prediction algorithms.

Knowing protein structure adds a new dimension to our understanding of its function and the predictions presented
here can be used to predict function for uncharacterized proteins. Several examples, analyzed in more detail in this paper,
include the DPS protein protecting DNA from oxidative damage~predicted to be homologous to ferritin with iron ion
acting as a reducing agent! and the ahpC0tsa family of proteins, which provides resistance to various oxidating agents
~predicted to be homologous to glutathione peroxidase!.
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The most important tool in predicting structures and functions of
newly determined proteins is built on a simple observation that
homologous proteins have similar folds and strong similarities in
their functions. Therefore, establishing homology to an already
known and characterized protein group is usually the first step in
the analysis of a new protein. Once the homology is established, it
is possible to make various inferences about the structure, activity,
and function of the new protein.

For closely related proteins, the homology recognition is simple
because sequences retain a significant level of similarity. The struc-
tures of such proteins remain similar and the structure of one
protein can be used as a template to build a model of the second.
Most importantly, the function of close homologues rarely changes
and that means that function prediction is easy.

The situation is much more complicated for distantly related
proteins. Here, even the existence of the evolutionary relationship
is often disputable. This problem started receiving more attention
with the discovery of many protein groups with similar folds, but
without any apparent sequence similarity~Orengo et al., 1993!.

Recognition of such proteins before structure determination
could be viewed as a “limited protein structure prediction.” It
could not substitute for a general solution to a folding problem, but
it has a very significant practical application. Thus, a new class of
structure prediction methods, termed “inverse folding” or “thread-
ing,” has been specifically formulated to find such structural
similarities.

In an inverse folding approach, one “threads” the sequence of a
new, uncharacterized protein~prediction target! through different
template structures and attempts to find the most compatible struc-
ture. In the last few years, many algorithms have been developed
~Bowie et al., 1991; Godzik et al., 1992; Jones et al., 1992; Bryant
& Lawrence, 1993; Ouzounis et al., 1993; Matsuo & Nishikawa,
1994; Yi & Lander, 1994; Wilmanns & Eisenberg, 1995; Alexan-
drov et al., 1996; Russell et al., 1996; Jaroszewski et al., 1998!. In
our laboratory, we have developed a fold prediction hierarchy where
several sequence0sequence, sequence0structure, structure0structure
alignment algorithms and modeling tools are combined to create a
fully automated prediction protocol~Jaroszewski et al., 1998!. This
protocol starts with a sequence and, subject to a successful pre-
diction step, produces a full three-dimensional model of the pre-
diction target~Jaroszewski et al., 1998; Rychlewski et al., 1998!.
The model is subsequently analyzed, both for independent predic-
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tion verification, and for possible function prediction. Different
algorithms specifically search for different classes of structural
similarity—distant homology or random structural similarity. By
enhancing sequence information with position dependent similar-
ity scoring obtained from the analysis of multiple alignments of
closely related sequences, combined with information about the
structure or predicted structure, our prediction hierarchy achieves
a much higher recognition rate than standard sequence homology
analysis tools~Jaroszewski et al., 1998; Rychlewski et al., 1998!.
Despite all the differences, the classical paradigm of homology
modeling is followed with its three basic steps of identifying the
structural template, creating the alignment, and building the model.
Because of large evolutionary distances between targets and tem-
plates, it is impossible to strive for high, atomic level accuracy in
structure prediction. Instead, the models are analyzed for plausi-
bility ~whether or not they can be built at all! and for conservation
of features important for function. This is the first step in the
direction of detailed functional prediction.

All algorithms from the fold prediction hierarchy were tested on
fold recognition benchmarks, where fold prediction of proteins
with no detectable sequence similarity is attempted, hoping to find
structurally similar protein in the database~see Methods!. In fold
recognition benchmark, such predictions are done afterward, when
the correct answer is known. Surprisingly, the super-sensitive se-
quence alignment algorithms, such as PSI BLAST~Altschul et al.,
1997! or BASIC ~Rychlewski et al., 1998!, can almost match the
fold recognition ratio of threading algorithms using structural data
~see Methods!, while being faster and easier to use. Therefore, both
methods were applied to do the fold assignments for proteins from
a genome of the simple pathogenic bacteriaMycoplasma geni-
talium ~Rychlewski et al., 1998!. About 38% of the proteins coded
by theM. genitaliumgenome could be assigned to a protein family
with an already characterized structure. This represents an over
twofold increase over previously published fold assignments for
this genome~Casari et al., 1996; Fischer & Eisenberg, 1997; Frish-
man & Mewes, 1997!, and about a 40% improvement over one
iteration of the position specific iterative BLAST~Altschul et al.,
1997!, the most recent generation of the widely used sequence
analysis program. Fifty new~as compared to PSI BLAST! struc-
ture predictions were made, suggesting a structural framework for
several proteins with known functions and predicting several new
biochemical mechanisms and activities inM. genitalium~Rych-
lewski et al., 1998!. In this paper, we continue this work by ap-
plying PSI BLAST and BASIC algorithms to the proteins from the
Escherichia coligenome.

E. coli is a Gram-negative bacterium that inhabits the lower gut
of animals, including humans. It is a favorite model organism for
biochemical, molecular biology, and genetic studies. This is mostly
because it is easy to work with, has simple nutritional needs, and
displays interesting behavior, including conjugation and growth of
many different viruses. It can grow on a minimal medium, and
unlike many of the organisms whose genomes were sequenced
earlier, it has a fairly complete set of metabolic pathways. Interest
in this organism was further enhanced by the emergence of several
virulent strains that were responsible for several well-publicized
outbreaks. For these various reasons, it is the most studied organ-
ism on earth and provides most of the insights we have about the
organization of life~Moxon & Higgins, 1997!. Elucidation of its
entire genome was one of the most anticipated events in modern
biology. Although it was not the first genome to be completed, its
analysis is a blueprint for analyses of other genomes and organisms.

The first part of Results describes statistics of fold predictions
using different methods. The second part of Results focuses on
function verification based on the analysis of alignments between
prediction targets and the templates identified in the first step of
the analysis, as well as on the analysis of the three-dimensional
models built on those alignments by an automatic modeling pro-
cedure. The third part of Results follows a few examples to a
deeper functional analysis level. The rest of the predictions are
available at cape6.scripps.edu. All techniques and algorithms used
in this manuscript are described in Methods.

Results

The set of 4,287 protein sequences from theE. coli genome was
downloaded from theE. coli genome web site at the University of
Wisconsin, Madison~www.genetics.wisc.edu!. Each of these se-
quences was compared to a superset of all public protein sequence
databases~see Methods! using the PSI BLAST algorithm~Altschul
et al., 1997!. Output from PSI BLAST is used to prepare the input
for subsequent stages of analysis, but it is also a powerful predic-
tion tool on its own. In the sequence database, all proteins with
known three-dimensional structures are identified with the Protein
Data Base~PDB! keyword. Therefore, a keyword search in the PSI
BLAST output reveals all PSI BLAST-recognized homologies to
the proteins with known structures. In the next step, theE. coli
sequences were compared to a smaller database containing a set of
proteins representing all currently known protein folds. The BASIC
program from the suite of fold prediction algorithms developed in
our laboratory was used~Jaroszewski et al., 1998; Rychlewski
et al., 1998! to identify the best templates for allE. coli proteins.
The alignments for all target-template pairs for which the score
was better than the predefined threshold were used for automated
modeling. The MODELLER program~Sali, 1994! was used in this
step of the analysis. Statistics of the fold assignments are discussed
in the following paragraph and presented in Table 1. Technical
details about the algorithms, databases, and protocols for fold as-
signments are discussed in Methods. The entire database of struc-
tural predictions and the resulting models is available at
cape6.scripps.edu. The remainder of the paper is devoted to the
analysis of these data. In particular, we concentrate on the analysis
of the most reliable predictions, those with E-values for predictions
with the BASIC algorithm below 0.05. The E-value~see Methods!
is a number of random similarities with the given score, expected
by chance. In tests on fold recognition benchmarks, no false pre-
dictions were found with the E-values above this threshold.

Table 1. The number of high significance structural predictions
for proteins from the E. coli genomea

Prediction method

Number of high
significance
predictions

BLAST version 1.3.2 497
PSI BLAST version 2.0.2 990
BASIC version 1.1 1,250

aSignificance of 0.1 E-value was used as a threshold for both versions
of the BLAST algorithm, and 0.05 E-value was used for the BASIC
algorithm.
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Predictions with lower significance are often correct; therefore,
additional predictions and models are also presented on
cape6.scripps.edu, but assignment of their accuracy is difficult. For
instance, the similarity between the lysR family of transcriptional
regulators and periplasmic binding proteins is recognized with the
E-value of 0.5. This similarity was confirmed by a recently solved
structure of cysB fromKlebsiella aerogens~Tyrrell et al., 1997!,
which was not incorporated into our structural database at the time

the calculations described here were made. The structure, predicted
by the procedure described in this paper, is compared in Figure 1
to the now available crystal structure. This case offers an interest-
ing example of function diversification in families of homologous
proteins. At the same time, it gives a natural “reality check” of
what can be predicted in the case of a successful prediction.

The periplasmic binding proteins~PBP! can be found in the
space between the cytoplasmic~i.e., inner! membrane and the cell

Fig. 1. The comparison of~A! an experimental structure of cofactor binding fragment of cysB protein fromKlebsiella aerogenes~PDB
structure code 1al3! and~B! the model of itsE. coli homologue, prepared by an automated recognition0modeling procedure described
in this paper. For both the structure and the model, the enlarged active~binding! site is shown in an inset. The sequence similarity
between cysB fromK. aerogenesandE. coli is 92% identical residues.
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wall of Gram-negative bacteria such asE. coli. PBPs are the initial
receptors of the active transport systems for carbohydrates, amino
acids, and ions, or receptors in a chemotactic response~Quiocho &
Ledvina, 1996!. CysB belongs to a large family of cofactor-
binding repressor0operon domains, such aslacR and amiC. In
Figure 1, our automated prediction procedure resulted in a model
with many realistic features. Despite a relatively large difference
from the crystal structure~6.5 Å root-mean-square deviation
~RMSD! for all Ca atoms in the model!, this model correctly
identified all residues involved in substrate binding~inset, Fig. 1!.
This is not a small achievement because the binding site is the
most variable part of the sequence and the overall sequence sim-
ilarity between the closest PDB and cysR is 17% sequence identity.
At the same time, the binding site is severely distorted with an
RMSD of residues involved in binding between a model and a
crystal structure exceeding 3 Å. An error of this magnitude would
make docking simulations or detailed substrate0inhibitor design
impractical. On the other hand, the general features of a binding
site, such as its global charge and type of residues involved in
binding, are predicted correctly. Parenthetically, there is also an
enzyme, porphobilinogen deaminase, that has the same topology
~SCOP, 1995! and whose relation to the PBP family is recognized
by the BASIC algorithm.

For the 4,279 protein sequences, the PSI BLAST algorithm~see
Methods! detected 990 significant~E-value lower than 0.1! simi-
larities to proteins with known structures. This constitutes 23% of
the entire genome, a ratio close to but lower than the 27% obtained
with the identical procedure for theM. genitaliumgenome~Rych-
lewski et al., 1998!. Similar decreases are seen for predictions with
other prediction methods~see below!. The decrease is probably
due to the “minimal” character of theM. genitaliumgenome, con-
taining only the most fundamental and better-studied protein func-
tions.

The BASIC program from our fold-recognition suite detected
1,250 significant~E-value lower than 0.05! similarities to proteins
with known structures, an over 25% increase over the PSI BLAST
recognition rate. Again, the percentage of recognized proteins~29%!
is smaller than in the case ofM. genitaliumproteins where this
percentage was equal to 38%. Predictions with the BASIC algo-
rithm form a superset of BLAST predictions because all but four
above-threshold significance made by PSI BLAST are recognized
by the BASIC algorithm. All four cases can be traced to indepen-

dent recognition of separate domains in a multidomain protein.
The significance threshold of the E-value of 0.05 used for BASIC
predictions~see Methods! is rather conservative. For instance, there
are an additional 300 predictions, none of them recognized by PSI
BLAST above its significance threshold, with E-values lower than
0.1. On fold recognition benchmarks, where the BASIC algorithm
was tested, there were no false predictions with E-values lower
than 1.6, so there is a good chance that many predictions with a
lower significance level are actually accurate.

From the 1,250 structural predictions made by the BASIC pro-
gram, 190~124 of which are also recognized by PSI BLAST!
represent hypothetical proteins with unknown functions. There-
fore, for this group, the structural predictions represent a first step
toward function predictions.

Presentation of over 200 predictions is difficult and even a brief
discussion of all new predictions would greatly extend this paper.
Tables 1 and 2 present a sample of predictions for proteins with
known functions and for hypothetical proteins, respectively. Only
the group of predictions not recognized by the PSI BLAST algo-
rithm is represented in both tables, because in most cases they
represent novel and more interesting predictions.

Analysis of structural predictions

Verification of fold predictions, such as presented in Tables 1 and
2, is difficult because the structures are not known. These are
genuine predictions that are done with an automated prediction
server. However, the fold predictions done here are in fact based on
an assumption of the homology between the prediction target and
the structural template. Therefore, analysis of functional similari-
ties could be used to further validate the possible homology. Such
analysis depends on how much is known about the function of the
prediction target.

Specific function of the prediction target is known

For proteins whose function is known, usually from experiment,
the analysis of the models can provide verification of the structural
prediction. A small sample of predictions of this type is given in
Table 1, and examples are discussed below. Comparing the func-
tions of E. coli proteins to those of the structural superfamilies
identified in the prediction can make a first level of verification.
Analysis of the model, specifically checking the conservation of

Table 2. A sample from over 250 high significance predictions for proteins from the E. coli genomea

E-value PDB code of a template Target

0.05 1ofgA Oxidoreductase MHPF Acetaldehyde dehydrogenase
0.03 1ukz_ Uridylate kinase GNTV Thermosensitive gluconokinase
0.02 1bcfA Bacterioferritin DPS DNA protection protein
0.02 4xis_ Xylose isomerase SGAU Hexulose
2e24 1gp1A Peroxidase BCP BCP protein
2e24 1xvaA Methyltransferase FTSJ Cell division protein
2e24 1ukz_ Uridylate kinase AROK Shikimate kinase
1e24 2tys Tryptophan synthase RPE Ribulose-phosphate 3-epimerase
1e24 1xvaA Methyltransferase GIDB Cell division protein
1e24 1znbA Lactamase PHNP PHNP protein

aSwissProt codes and functional assignments for theE. coli proteins are given. None of the targets in this table had a PSI BLAST
hit to a protein with known structure with the E-value less than 10.0.
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residues responsible for biochemical activity, provides clues to the
function of the new protein. For instance, conservation of the
active site residues and changes in residues involved in substrate
binding is a good indication that the model is correct, especially if
both proteins are known to have the same function but different
specificity. Three examples below illustrate these situations:

1. Acetaldehyde dehydrogenase~MHPF! is predicted to have a
fold similar to that of glucose0fructose oxidoreductase~1ofg!;
the same structural family also containsE. coli glyceraldehyde
dehydrogenase. In addition to several known homologous pro-
teins, two additional proteins from theE. coli genome, hypo-
thetical protein YJHC and USG-1 protein, are predicted to have
the same fold. It is interesting to note that theE. coli enzyme
~MHPF! has a~predicted! different fold from eukariotic alde-
hyde dehydrogenase~reductase! despite a very similar activity.

2. Gluconokinase and shikimate kinases are predicted to have
the same fold as uridilate kinase. The similarity in the ATP
binding domain is much larger than in the catalytic domain.
This prediction is also made as a low significance PSI BLAST
prediction.

3. Hexulose-6-phosphate isomerase is predicted to be similar to
xylose isomerase.

In all these cases, there is significant analogy between prediction
targets and proposed template activities to support possible homol-
ogy between proteins in each pair. In each case, the active site
residues are conserved in the alignment, and their position on the
model supports the known activity of the target protein.

General, but not specific, function is known

Predictions for proteins whose function, but not activity, is known,
are particularly interesting. The examples below were chosen ran-
domly from the list of almost 300 novel predictions.

1. The DPS protein, which protects DNA from oxidative damage
during prolonged starvation, is predicted to be similar to bac-
terioferritin. This prediction was recently confirmed by exper-
iment where a protein fromListeria innucua, which is
homologous to theE. coli DPS protein, was shown to behave as
ferritin by being able to oxidize and sequester iron ions~Bozzi
et al., 1997!.

2. The PHNP protein, thought to be involved in alkylphosphonate
uptake and degradation, is predicted to have the fold of metallo-
b-lactamase.

3. One of the proteins from thefts gene, the ftsJ protein in-
volved in cell division, is predicted to be similar to glycine
n-methyltransferase.

4. A protein involved in antioxidant resistance and homologous to
a subunit of hydroperoxidate reductase~bacterioferritin comi-
gratory protein~BCP!! is predicted to be similar to glutathione
peroxidase. This prediction could be extended to an entire AHPC0
TSA family whose members provide resistance to various oxi-
dating agents, such as sulfur radicals, hydroperoxide, and
thiolperoxide.

In all these examples, structural prediction allows one to make
a prediction of specific activity that can be interpreted within the
context of known function. Thus, ferritin, containing iron ionic
clusters, is a very likely candidate to protect DNA from oxidation.
Hydrolase activity might be necessary in the phosphonate degra-
dation. Methylation is known to be important in synchronizing the
cell division process. The reduction of dangerous oxidating agents
may involve mechanisms similar to that of peroxide reduction. In
all such cases, analogies such as these could not be treated as proof
of a prediction. While they indirectly support the prediction, the
final verification must be done by experiment.

Predictions for hypothetical proteins

For hypothetical proteins, verification of the structural predic-
tions is even more difficult, because nothing is known about a
prediction target. On the other hand, if the analysis of the model
supports possible functional similarity between target and tem-
plate, a functional prediction might be attempted~Table 3!.

1. The structure of the hypothetical protein YJDC is predicted to
be similar to that of the tetracycline repressor 2tct. The structure
and function of this protein are unknown, but it is interesting to
note that this protein is predicted to be similar to a large family
of proteins, which includes some hypothetical operon repres-
sors ~ACRR, ENVR, and UIDR!, transcriptional regulators
~YCDC!, and several hypothetical proteins. All the proteins
from this family with known functions are involved in regulat-
ing resistance to antibiotics and toxic hydrophobic substances.

Table 3. A sample from about 66 high significance predictions for hypothetical proteins from the E. coli genomea

E-value PDB code and name of a template Target BLAST prediction

0.05 1fbaA Aldolase YIHT .10
0.05 2tct_ Tetracycline repressor YJDC .10
0.03 1ukz_ Uridylate kinase YACE .10
0.01 1din_ Dienelactone hydrolase YIEL 2lip 4.6 Y
9e–3 1occA Cytochromec oxidase YICE .10
6e–3 1ctt_ Cytidine deaminase YFHC .10
5e–3 1din_ Dienelactone hydrolase YEIG 2lip 0.3 Y
5e–3 2pia_ Dioxygenase reductase f254 .10
4e–3 1sxl_ Sex-lethal protein YJAI .10
1e–4 2tysA Tryptophan synthase YJCU 1qap 0.2 N

aSwissProt codes for hypothetical proteins are given if available.
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2. The hypothetical protein YIHT is predicted to have a structure
similar to fructose-1,6-biphosphate aldolase. YIHT is closely
homologous to tagatose aldolase, and PSI BLAST finds a mar-
ginal hit ~E-value 0.60! to a fructose aldolase fromOnchocerca
vulvulus~filarial worm!.

3. Hypothetical protein YACE is predicted to be similar to uridi-
late kinase. This prediction is supported by a weak similarity
~E-value of 0.1! to shikimate kinase from blue-green algae
recognized by PSI BLAST. In this example, as in the suggested
homology between gluconokinase, shikimate kinases, and uri-
dilate kinases discussed earlier, the similarity is much stronger
in the ATP binding domain than it is in the catalytic domain. All
residues involved in the ATP binding are conserved in all mod-
els. At the same time, no active site residues can be identified
in the alignments and, thus, in the model. A model of YACE
protein is shown in Figure 2. Conserved residues in the ATP
binding domain, forming a classical mononucleotide binding
motif with the strongly conserved G-X-X-G-X-G-K sequence
~Schulz, 1992!, are shown in atomic detail. On the other hand,
five hydrophobic residues replace the five positively charged
residues involved in the NMP binding site in uridilate kinase.
Note that the model of the catalytic domain displays a large
unstructured loop, characteristic of a very low quality model.
The quality of this part of the model, as measured by threading,
is also very low.

4. Hypothetical protein YHFC is predicted to be similar to cyti-
dine deaminase. This prediction is supported by a strong ho-
mology between YHFC and two other families of deaminases:
riboflavin specific and cytosine deaminases. Here, the target
protein is shorter than the template and aligns to only one
domain of the template. A model of YACE protein is shown in
Figure 3. Residues involved in zinc binding are conserved and
are shown in atomic detail on the model.

5. Hypothetical protein YJAI is predicted to be similar to the sex
lethal protein. This prediction is supported by a weak homology
~E-value of 0.02! to nucleolin, another RNA binding protein,
containing an RNP motif, characteristic of DNA0RNA binding
proteins, and present in the sex lethal protein. However, the
YJAI itself does not have the RNP motif.

A detailed analysis of the models of the hypothetical proteins
discussed above supports the hypothesis that some of the elements
of the new proteins and their functions might be related to those of
their homologous counterparts.

Insights from structural predictions

In many cases, the recognition of very distant homology enables us
to realize that different protein families and their activities, which
were thought to be unrelated, are actually homologous. In many

Fig. 2. A: A model of the hypothetical protein YACE fromE. coli, built on
the uridilate kinase template~PDB code 1ukz!. ATP binding residues are
shown in atomic detail.B: The alignment obtained from the BASIC algo-
rithm, with ATP binding residues highlighted both in the template and in
the model sequence. The same alignment was used to build the model
shown inA.

B

Fold assignment, function prediction, structure prediction 619



cases, the importance of these findings extends beyond a simple
structure prediction of a single protein. In addition to making a
structural prediction, they point to undiscovered pathways or make
connections between apparently unrelated functions.

For instance, several hypothetical proteins from theE. coli ge-
nome show very strong similarity to the structural family contain-
ing bromoperoxidase~1bro! and lipase~1tah!. At the same time,
these proteins show sequence similarity to proteins from other
bacteria known to be involved in polyhydroxybutyrate metabolism.

Polyhydroxybutyrate~PHB! is a polymer produced by several
bacteria as energy storage material. Its physical properties, which
are similar to that of polyethylene, coupled with the easy biode-
gradability of PHB, make it an attractive target for industrial ap-
plication ~Anderson & Dawes, 1990!. To study the feasibility of
the commercial biosynthesis production of PHB, polyhydroxyal-
kanoate synthesis genes fromAlcaligenes eutrophuswere intro-
duced into theE. coli genome~Wang & Lee, 1997!. Wild-type
E. coli does not use PHB as energy storage; therefore, it was
argued, it does not contain PHB synthesis and degradation appa-

ratus. This hypothesis was strengthened by the observation that no
homologues of PHB related proteins were identified in theE. coli
genome. Recently, however, the low molecular weight PHB ana-
logue was found inE. coli in small amounts under growth limiting
or induced genetic competence conditions~Huang & Reusch, 1996!.
At the same time, PHB and0or its analogues were identified to be
much more ubiquitous than previously thought. Low molecular
weight complexes of PHB were discovered to form membrane span-
ning channels, conducting DNA, ions, and other substances. There-
fore, E. coli and other organisms must have enzymes involved in
PHB metabolism, even though they were not identified as yet.

Analysis of the known PHB polymerases and depolymerases
sequence yielded some interesting regularity. All PHB depoly-
merases contain a characteristic GxSxG pattern, which is a part of
the active site. At the same time, all polymerases have a GxCxG
pattern in analogous position. Using two criteria, structural simi-
larity as predicted by BASIC and conservation of the characteristic
active site pattern, it was possible to identify 12 potential PHB
depolymerases and three potential PHB polymerases. With the

Fig. 3. A: A model of the hypothetical protein YHFC fromE. coli, built on
the cysteine deaminase template~PDB code 1ctt!. The active site residues
are shown in atomic detail.B: The alignment obtained from the BASIC
algorithm, with the active site residues highlighted both in the template and
in the model sequence. The same alignment was used to build the model
shown inA. Note that only one domain of 1ctt was used for modeling.

B
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exception of one protein, all of the 15 identified proteins had no
identified function. It is likely that at least some of these unchar-
acterized proteins take part in the PHB metabolic pathway. The
complete list of predictions in both groups is given in Table 4. One
of the most interesting proteins in this group is protein coded by
gene f136~Fig. 4!. Despite its marginal significance as a potential
polymerase~E-value of 0.6!, its model has a complete active site
with a C-H-D triad, typical for PHB polymerases. At the same
time, this protein is very small and the putative active site is on the
protein surface. One can speculate that this unusual position of the
active site might be connected to the PHB role as a tightly wound
transmembrane channel.

Discussion

Fold assignments for the entireE. coli genome were carried out
using the position specific iterative BLAST algorithm~Altschul
et al., 1997! and a new BASIC algorithm~Rychlewski et al., 1998!.
For almost 30% of allE. coli proteins, there is a very high prob-
ability that their structure is similar to that seen in one of the
already characterized protein superfamilies. For an additional
30% of E. coli proteins, predictions could be made with lower
significance and more incorrect predictions are expected to be in
this group. The database of prediction results is available at
cape6.scripps.edu. Fold prediction by recognition of distant ho-
mologies is part of a general problem annotating newly sequenced
proteins by comparing them to already known and characterized
proteins. Methods described here, as well as methods developed in
other groups, change the perspective on analysis of newly se-
quenced proteins, such as those methods from genome projects. A

Table 4.

E-valuea Zscoreb 1 3 2c E. colid Gene Descriptionf

Potential depolymerases

0.0 45.6 S H D o309 1786545 MHPC_ECOLI 2-HYDROXY-6-KETNONA-2,4-DIENEDIOIC ACID HYDROLASE
0.0 43.3 S H S f254 1786902
0.0 40.7 S H D bioH 1789817 BIOH_ECOLI BIOH PROTEIN
0.0 37.2 S H D yfbB 1788598 YFBB_ECOLI HYPOTHETICAL 26.7 KD PROTEIN IN MEND-MENB
0.0 30.5 S H D yheT 1789752 YHET_ECOLI HYPOTHETICAL 38.5 KD PROTEIN IN KIFB-PRKB
0.0 29.8 S H D yjfP 1790634 YJFP_ECOLI HYPOTHETICAL 27.6 KD PROTEIN IN AIDB-RPSF
6.2E207 22.7 S H D o293 1788884
1.1E206 22.0 S H D yeiG 1788477 YEIG_ECOLI HYPOTHETICAL 31.3 KD PROTEIN IN FOLE-CIRA
1.2E206 22.1 S H D f277 1786551 YAIM_ECOLI HYPOTHETICAL 31.4 KD PROTEIN IN MHPT-ADHC
1.5E205 19.5 S H D yieL 1790156 YIEL_ECOLI HYPOTHETICAL 44.1 KD PROTEIN IN TNAB-BGLB
0.156 10.2 S H D f240 1788817 YPFH_ECOLI HYPOTHETICAL 25.7 KD PROTEIN IN DAPE-PURC
0.276 9.6 S H D ybaC 1786682 YBAC_ECOLI HYPOTHETICAL 36.0 KD PROTEIN IN HEMH-GSK

Potential polymerases

4.1E20.5 18.5 C H A f310 1787587
9.8E203 13.0 C H A f332 2367305
4.65 6.8 C H D f136 1789373

aE-Value is the number of random hits that could be obtained with this Z-score.
bZscore is the Z-score of the highest similarity to any of the proteins from the PHB-metabolizing group.
c1 3 2 are residues aligned to active site residues~S-H-D! or ~C-H-D!.
dE. coli is a general description.
eGen is the general number.
f Description is the SwissProt description of theE. coli protein.

Fig. 4. A model for a hypothetical protein f136~GenBank accession num-
ber 1789373!, built on the lipase template. Note that only one domain of
the template was used in modeling. The active site residues are shown in
atomic detail.
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large percentage of proteins coded by genomes could be assigned
a three-dimensional fold, allowing to use detailed understanding of
function, which comes from knowing the protein structure, to an-
alyze and study these proteins.

The final step in the fold prediction, building the full three-
dimensional models of all predicted structures by automated mod-
eling, could be used for prediction verification. It is important to
note that models built by automated modeling do not represent the
best possible models that could be built from the given template.
Models prepared by a human expert and undergoing several iter-
ations of improvements would be much closer to the real structure
than the models prepared for this analysis. However, such model-
ing requires a substantial investment of time and expertise that is
appropriate only in detailed studies of specific systems. On the
other hand, automated modeling makes it possible to introduce full
atom models for genome-scale studies. Model quality in automated
modeling is worse than in studies done by human experts, but as
illustrated earlier on the example of cysR, it is sufficient to rep-
resent a useful first approximation, particularly appropriate for first
attempts at the functional prediction.

Only a small, randomly chosen group of predictions were ana-
lyzed in depth in this paper. These and all other predictions are
made public with an invitation to verify or refute them by exper-
iment or with other prediction algorithms. The evaluation of bone
fide predictions is difficult at the time they are made. For a large
number of theE. coli proteins, their function is known and can be
checked for compatibility with the structural prediction. The mu-
tual position of catalytic residues, agreement between known func-
tional features, and the predicted structure and functional analogies
between the structural superfamily and its new predicted member
can be used to argue for or against the prediction being correct.
Recently, an automated procedure for analysis of active site resi-
dues was implemented and applied for an automatic search for
proteins with glutaredoxin0thioredoxin activity~Fetrow & Skolnick,
1998!. Such automated function verification is a perfect tool for a
genome scale protein function prediction and the results of such an
analysis on the protein structural predictions from theE. coli ge-
nome are presented in Fetrow et al.~1998!.

Structure prediction is only a prelude to a much more interesting
and important prediction of function. In recent years, there has
been a growing consensus that most proteins with similar struc-
tures and apparently dissimilar sequences are actually homolo-
gous. This increases the importance of structure prediction, because
it is not just the structure that is being predicted, but actually a
relationship between an uncharacterized protein and an already
well-studied family. Similar structure is only one of the many
features that could be shared between various members of the
family. Zhang et al.~1999! present tools for automated evaluation
of function conservation in homologous families, bringing us a
step closer to automated function prediction.

Several detailed examples presented here illustrate benefits of
having a fold prediction. A most interesting situation arises when
a general function of a protein is known, but a specific activity is
not. In such cases, structural prediction, if accompanied by con-
servation of active site residues, can provide a specific prediction
of how a general function is carried out. For instance, in the case
of the DPS protein, the general function of protecting DNA from
starvation induced oxidation was known from genomic experi-
ments. Prediction of its homology to ferrodoxin provided a de-
tailed prediction about its mechanism.

Methods

PSI BLAST and the sequence database

The position specific iterative BLAST algorithm~Altschul et al.,
1997! is the newest version of the de facto standard of database
protein similarity searching algorithms. This algorithm addresses
the principal shortcoming of the previous BLAST algorithm: its
inability to introduce gaps in the alignment. In addition, the PSI
BLAST algorithm allows the iterative building of a sequence pro-
file from the multiple alignment of sequences of homologous pro-
tein identified in the first pass of the algorithm. The PSI BLAST
program was downloaded from the NIH web site and used follow-
ing the guidelines in the manual. Specifically, in the application
described here, the gapped BLAST step was followed by one
iteration of PSI BLAST based on the profile created from proteins
identified in the first run with E-values better that 0.1. On tests
with the fold recognition benchmark, we have found that this
strategy produces the best recognition ratio.

The sequence database used by the PSI BLAST algorithm con-
tains a nonredundant compilation of sequences available from SWIS-
SPROT and PIR databases, as well as translated DNA sequences
from EMBL and NCBI nucleotide sequence databases and se-
quences of all proteins deposited in the Brookhaven PDB. This
database was used to prepare sequence profiles for all targets and
templates and is a complete superset of the database used by the
BASIC method. The version used in this work was compiled in
November 1997.

Profile sequence preparation

The method described in this paper is based on an evaluation of the
similarity between two sequence profiles. A sequence profile is a
position specific probability distribution, which for every position
along the sequence gives a probability that one of the 20 amino
acids would occupy this position~Gribskov et al., 1987; Bork &
Gibson, 1996!. Profiles were generated automatically using the
multiple alignment of homologous sequences as generated by the
PSI BLAST algorithm. Exactly the same procedure is followed for
the target proteins as for all proteins contained in the databases
being searched.

Databases of sequence profiles

The database of 1,151 representative protein structures was pre-
pared on the basis of a nonredundant set of protein structures
included in the FSSP database as available from the DALI server
at EBI ~DALI, 1995!. A version of the DALI sets from January
1998 was used. The exact list used for this work is available at
cape6.scripps.edu. To avoid possible differences between data-
bases used by BLAST and BASIC algorithms, sequences of all
proteins from the DALI set were added again to the large sequence
database and identified with the PDB keyword and their PDB code
name.

The BASIC profile-to-profile alignment algorithm

Two sequence profiles are compared in the same way as two
sequences. A local-local version of a Smith–Waterman dynamic
programming algorithm is used~Waterman, 1995!. The similarity
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score between positions in two sequences is calculated with the
mutation matrix, such as the Gonnett similarity matrix~Gonet
et al., 1992!. For two profiles, this value is calculated as an average
of scores between all amino acid pairs, averaged according to the
probability distribution in each profile. Three parameters, gap in-
troduction penalty, gap extension penalty, and a constant added to
each element of the mutation matrix are optimized for a fold rec-
ognition benchmark~Rychlewski et al., 1998!.

Optimization and verification of the BASIC algorithm

The BASIC algorithm was optimized to recognize the maximum
number of structurally similar proteins on benchmarks customized
for fold prediction algorithms. A particular benchmark available
from the web server at University of California, Los Angeles
~UCLA! was used during the development of a BASIC algorithm.
This benchmark consists of 68 target proteins for which the correct
template~structural similar protein! has to be found in a database
of about 300 examples. The results~Table 5! show that a sequence-
only fold recognition method can closely match the prediction
accuracy of the best threading algorithms.

Prediction significance

Scores of individual profile–profile comparisons are corrected for
the size of proteins being compared~Karlin & Altschul, 1990;
Waterman, 1995! and used to calculate the distribution of scores
for a given prediction target. The empirical distribution was fitted
to an extreme value distribution. The parameters of this fit were
used to calculate the E-value, i.e., the expected number of proteins
with a given score in a given database.

The estimation of the reliability of the prediction was based on
the E-value statistic. The cutoff of the 0.05 E-value used here is
much larger than the scores of the false positive answers of the
procedure observed during the development. The biggest E-value
for a false positive in the UCLA benchmark~Rychlewski et al.,
1998! was equal to 1.6. However, it is not known how different the
distribution of scores on the training set is from the distribution on
the larger set used in the actual predictions. For this reason, we use
a very conservative significance threshold.

Automatic model building and evaluation

Alignments between each target and the best scoring template were
prepared by the BASIC algorithm. These alignments were refor-
matted and used as input to the MODELLER program~Sali &
Overington, 1994!. This program builds full three-dimensional mod-
els of target proteins using the method of “satisfaction of spatial
restraints” ~Sali & Overington, 1994!. A standard MODELLER
routine “model” was applied.

It is important to note that in this application only a small subset
of MODELLER potential was used. Automatic modeling is infe-
rior to that done by human experts, but in genome scale structural
predictions it is difficult to relay on human expertise.

The alignments and resulting models were analyzed for quality.
At first, the alignments were analyzed in conjunction with the
template structure. Long insertions or deletions in the core of the
protein, which would be difficult to accommodate without large
global rearrangements, could be identified before the actual mod-
eling step. Models with excessive problems of this type were un-
likely to be correct. The second step involved an analysis of the
quality of the complete model. Steric overlaps and wrong bond
geometries were checked with ProCheck and the overall model
quality with threading energy. Unfortunately, in such an analysis it
is almost impossible to distinguish between template errors~i.e.,
wrong fold prediction! and alignment errors~i.e., correct global
fold but wrong local details!. Therefore, a continuous, well-
packed, and low energy model is a strong indication of a correct
prediction, but an obviously wrong, low quality model does not
necessarily indicate a wrong fold prediction.

Function prediction and its evaluation

Recognition of a possible homology could be automatically inter-
preted as a function prediction. In its simplest form, the prediction
is that the function of a new protein is the same as its putative
homologue. This prediction can be checked by analysis of the
conservation of residues involved in the biochemical activity of a
protein with a known structure. Two public databases containing
information about such residues, PDBsum~Laskowski et al., 1997!
and PROSITE~Bairoch, 1994!, were used to define “function sig-
natures.” PDBsum is the database of summaries of information
about structure from PDB, available from the UCLA web site
~Laskowski et al., 1997!. PROSITE is a dictionary of protein sites
and patterns, developed at the University of Geneva~Bairoch,
1994!. At this step, residues mentioned in either of the two data-
bases as important for function were identified and their conser-
vation checked in the alignment.

Program and prediction database availability

A version of the BASIC program is available at cape6.scripps.edu.
It offers the possibility of similarity predictions in the database of
structural families. The user can supply the sequence of the target
protein and a fold assignment and a full structural model is returned.

Note added in proof

The cape6.scripps.edu server is now being moved to bioinformetics.
burnham-inst.org.

Table 5. Results achieved on the UCLA threading benchmark
containing 68 target-template pairs and a database
of 300 templatesa

Rank5 1 Rank# 5 Rank# 10

Simple BLAST 27 — —
PSI-BLAST 32 — —
Basic THREADING 22 30 34
Global sequence alignment 40 50 52
Hybrid THREADING 54 58 60
BASIC 52 57 60

aThe values present the number of pairs, where the template obtained a
rank given above. For BLAST predictions, it is difficult to estimate lower
significance predictions because they sometimes are not listed, due to a
large number of homologous proteins.
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