N
N

N

HAL

open science

Mining Subclassing Directives to Improve Framework
Reuse

Marcel Bruch, Mira Mezini, Martin Monperrus

» To cite this version:

Marcel Bruch, Mira Mezini, Martin Monperrus. Mining Subclassing Directives to Improve Framework
Reuse. Proceedings of the 7th IEEE Working Conference on Mining Software Repositories, 2010, Cape

Town, South Africa. 10.1109/MSR.2010.5463347 . hal-01575347

HAL Id: hal-01575347
https://hal.science/hal-01575347

Submitted on 20 Sep 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-01575347
https://hal.archives-ouvertes.fr

Mining Subclassing Directives to Improve
Framework Reuse

Marcel Bruch

Mira Mezini

Martin Monperrus

Darmstadt University of Technology
{bruch,mezini,monperrus } @st.informatik.tu-darmstadt.de

Abstract—To help developers in using frameworks, good
documentation is crucial. However, it is a challenge to create
high quality documentation especially of hotspots in white-box
frameworks. This paper presents an approach to documentation
of object-oriented white-box frameworks which mines from client
code four different kinds of documentation items, which we call
subclassing directives. A case study on the Eclipse JFace user-
interface framework shows that the approach can improve the
state of API documentation w.r.t. subclassing directives.

I. INTRODUCTION

Object-oriented frameworks are a great vehicle in support-
ing code reuse [I1], [5]. White-box frameworks are those
frameworks that use inheritance, i.e. application-specific code
consists of subclasses of framework classes [18]. White-box
frameworks, while very flexible, are difficult to learn and use
[6], [15], [14]. For example, instantiating the JFace white-
box framework' to program a user interface requires that
the developer identifies the right classes to extend among
203 available public classes and that she correctly overrides
methods among 20 overridable methods per class in average.

To help developers in using frameworks good documenta-
tion is crucial. However, it is a challenge to create high quality
documentation for white-box frameworks [1], especially given
the complexity of today’s frameworks [8]. As a result, frame-
work users often miss the correct piece of documentation as
recently shown by Robillard [14].

The documentation of object-oriented frameworks may con-
tain different kinds of information [5]: high-level description
of the architecture (e.g., used design patterns and class dia-
grams), information about what the code does, code snippets,
directives stating how to use framework classes or methods,
etc. This paper focuses on directives stating how to use the
framework. More specifically, we use the term “subclassing
directive” to designate pieces of documentation related to how
to subclass a framework class or how to override a framework
method.

We present an approach to improve the quality of “sub-
classing directives” of white-box frameworks. The core idea
is that subclassing directives can be reverse-engineered from
application-specific code (called in this paper client code), i.e.
that how-to-use documentation of a particular software artifact
can be inferred from how it is actually used. Bloch [!] (Item

!JFace grounds the Eclipse IDE.
2For the source of these numbers see section IV.

17, pp. 87-92) urges developers of extensible classes to test
them by writing subclasses before delivering them, arguing
that it is the actual extensions of a base class that reveal the
relevant hotspots and not only those that are exposed and doc-
umented. This fits with our intuition that actual usages found
in existing clients are a good source for mining subclassing
directives.

These mined directives can be used by developers of new
clients as a complementary source of information in addition
to the API documentation delivered with the framework.
They can also be used by framework developers who can
peruse the list of inferred subclassing directives to eventually
identify incorrect or incomplete documentation, to update the
existing documentation, and improve the quality of framework
subclassing directives.

An directive may be incorrect if its formulation clashes
with actual usages. For instance, a method that is documented
as Subclasses may override whereas 100% of client code do
override it, is probably incorrect. Documentation is incomplete
when some directives are not documented at all: for instance
our approach finds directives of the form Subclasses may
override, but must call the super implementation (100% of
client code does so) which are not documented in the API
documentation.

More specifically, our contributions are as follows:

1) We propose four different kinds of subclassing directives
and present arguments for them. We show that they are
complementary and that having just one or the other is
not sufficient. We argue that when developers do not
have this information they lose time in understanding
how to use a framework or in solving a bug related to
a violation of an undocumented directive.

2) We present an approach to mine framework subclassing
directives from client code. We present one mining
technique per proposed subclassing directives. Three of
these techniques are based on metrics gathered from
client code, the fourth one is based on a machine
learning clustering algorithm.

3) We present a case-study to validate the proposed ap-
proach. The subject of the case study is the Eclipse
JFace framework, a powerful, open-source, and industry-
proven framework developed by IBM. This case study
shows that our approach improves both the correctness
and the completeness of subclassing directives present

In: Proceedings of the 7th IEEE Working Conference on Mining Software Repositories (MSR'2010)
This preprint is provided by the contributing authors to ensure timely dissemination of scholarly and technical work.

in API documentation.

4) We present a tool, called Core, that implements the
proposed approach. Core presents the mined subclassing
directives as an extension to the API documentation
in the Eclipse IDE for Java. It is publicly available at
http://www.stg.tu-darmstadt.de/research/core/.

The reminder of this paper is structured as follows. Section
IT presents four kinds of subclassing directives. Section III
presents techniques to mine each of them from client code.
The case study evaluating the approach is presented in section
IV. Then, section V presents the integration of the approach
into the Eclipse IDE. Section VI discusses related work and
section VII concludes the paper.

II. FOUR KINDS OF SUBCLASSING DIRECTIVES

A subclassing directive is a piece of documentation stating
how to subclass a framework class. They can be of different
kinds. In this paper, we claim that the documentation of white-
box frameworks requires four types of subclassing directives.
In the following, we define them and give rationales for having
each of them by discussing possible consequences if they are
missing or if developers overlook them.

A. Method Overriding Directives

To instantiate a white-box framework, the developers need
to know which framework classes are designed to be sub-
classed and which methods therein are designed to be over-
ridden in an application-specific manner. A method overriding
directive is a piece of documentation stating whether a frame-
work method is designed to be overridden by client code. A
class is documented as designed for subclassing if it contains
at least one method overriding directive.

Method overriding directives are part of Johnson’s patterns
to document frameworks [6], as shown by the following
excerpt:

Each drawing element in a HotDraw application is
a subclass of Figure, and must implement displayOn,
origin, extent, and translateBy.

In certain programming languages, some method overriding
directives are enforced by the language itself. For instance, in
Java, the abstract modifier for methods forces subclasses to
override it, and the keyword final forces subclasses to use
the framework implementation of the method.

Method overriding directives can be found in the API
documentation of framework (an example is given in figure

1).
B. Method Extension Directives

A method extension directive is a piece of documentation
stating whether a method overriding a framework method
should call the super-implementation. If the client-specific
implementation of a framework method does not call the
super-implementation when required, it may violate internal
framework protocols resulting in runtime problems.

For instance, if a programmer does not call the super
implementation of the method Dialog.close of JFace when

* Creates the control for the

* tool bar manager.

* Subclasses may override this method
* to customize the tool bar manager.

*/

Fig. 1. API Documentation containing a method overriding directive
(ApplicationWindow.createToolBarControl of Eclipse
JFace)

overriding it, she gets a unclosable window which totally
hangs the application. Also, she does not get a stack trace
to localize the error. This shows the importance of having
documented method extension directives.

To homogenize these directives, the programmers of Eclipse
published a guideline to explain how to document them [4].
Programmers should use one of the following expressions:
subclasses may extend this method or subclasses may re-
implement this method. Extending means that subclasses have
to call the super-implementation. Re-implementing means that
subclasses must not call the super-implementation. Note that
both directives are not supported by Java modifiers hence they
have to be in the API documentation. Also, by default, a direc-
tive of the form “Subclasses may override this method” means
that subclasses may or may not call the super-implementation.

C. Method Call Directives

Although the hotspot overriding is fully application-specific,
frameworks may have expectations in terms of framework
methods that should be called by the overriding code. A
method call directive is associated to an overridable framework
method and states which methods should be called inside client
implementations of this framework method.

For illustration, consider an Eclipse JFace wizard page that
creates some visual components to display information. The
createContents () method is the place where to create
application-specific components. The framework expects the
developer to call wizardPage.setControl () somewhere
in the body of the overriding createContents () in order
to register the application-specific control. Omitting this call
leads to a cryptic runtime error (“Assertion failed”) and no
stack trace to localize the error.

Even if it’s not explicit in Johnson’s description of docu-
mentation patterns [0], there are such directives in the real
patterns he presents:

However, methods that change some attribute of a
figure must notify the objects that depend on it. This
is done by sending the willChange message to
itself before changing the attribute, and sending the
changed message to itself afterwards.

D. Class Extension Scenarii

The directives discussed so far concern individual methods.
However, just giving a novice user of a white-box framework
a "flat" set of methods that could be overridden leaves her

In: Proceedings of the 7th IEEE Working Conference on Mining Software Repositories (MSR'2010)
This preprint is provided by the contributing authors to ensure timely dissemination of scholarly and technical work.

http://www.stg.tu-darmstadt.de/research/core/

with many open questions. Which methods should she actually
override? The methods with a computed likelihood higher
than a threshold? Or, are there other togetherness criteria
determining "typical units of co-overridden methods"? The
criteria to choose subsets of methods to override together may
depend on the framework and on the class.

This is the rationale for defining a class extension scenario
as a set of typically co-overridden methods. Class extension
scenarii are ready-to-use. Developers who have never extended
a particular class, can rely on them to choose the set of
methods to override together. Without them, developers lose
time in answering the boundary problem aforementioned.

The Eclipse website has a section containing tutorial ar-
ticles. Some of them are about how to typically subclass
framework classes (e.g. the tutorial about PreferencePage®).

3

E. Importance Level

There is a concern which crosscuts the four aforementioned
directives: whether the directive is a strong requirement (e.g.
Subclass must call the super implementation) or a weak one
(e.g. This method may be overridden). We can identify two
ways of indicating importance levels.

First, they can be expressed with modal verbs (e.g. may,
should, must, etc.). This approach fits well with natural lan-
guage and fuzzy expert knowledge. Johnson [6] uses them,
and the Eclipse guidelines for subclassing directives as well
[4]. Second, previous work about the mining of subclassing
directives [13], [22], [20] generally uses importance values
(e.g. probability).

FE. Recapitulation

We have presented four important subclassing directives (i.e.
kinds of documentation required to extend a framework). For
each of them, to attest their usefulness: a) we explained what
may happen if they are missing and b) we showed that real
world documentation already contains some of them.

III. TECHNIQUES TO MINE SUBCLASSING DIRECTIVES

We now define techniques to mine subclassing directives
from client code of white-box frameworks. Mined directives
can be used by framework developers to improve the quality of
the documentation and by framework users to find the pieces
of information they need to correctly use the framework,
thus complementing the documentation delivered with the
framework.

A. Mining Overriding Directives

To determine the likelihood that a method is designed for
being overridden, we define a metric called ovLikelihood,
which represents the importance of overriding a framework
method. A method overriding directive is created for each
method whose value of ovLikelihood is not null. In the follow-
ing, we give its definition and illustrate that it is meaningful

3In this paper, we will use the italian plural form, scenarii, of this italian
word.
“http://www.eclipse.org/articles/Article- Preferences/preferences.htm

FWClass

Framework Code

+<<abs>> k()
+1()
+n()

Client Code <<abs>>
A
+1()

Zi A

z times: X i

+ H —_—
L x times:

+k() +k()

Fig. 2. An Example to Assess the Correctness of the Metric ovLikelihood

by considering cases where we know the likelihood value. The
definition of ovLikelihood is as follows:
ovLikelihood(fwMeth) =

ZCZCL OUciCl, fwMeth
chcl OVciCl, fwMeth + chcl nOtchl,fw]Meth

Thereby, for any framework class fwCl, framework
method fwMeth, and non-abstract client subclass clCl:
ovect, fwMeth = 1, if c1cl overrides fwMeth directly or
inherits an overriding implementation from an intermediate
client superclass; notci, fwnmetn = 1, if c1Cl does not
override fwMethod at all.

To understand the properties of this metric, let us now
consider the class diagram depicted in figure 2. FWClass
is a framework class, A is a class in client code that overrides
FWClass and that it abstract. There is also z concrete classes
(Z1...7Z,) that override FWClass and x concrete classes
(X7 ...X,) that override A.

Method k is an abstract framework method that
must be overridden. Hence, its value has to be 100%
(ovLikelthood) = iiz = 100%) Method k also illustrates
the rationale of discarding abstract client classes from the
counting: if we do not discard them, then ovLikelihood; =
S225 < 100% which is incorrect.

Even if [is overridden in an intermediate abstract client
class A, it counts as actually overridden in all concrete
subclasses of A; hence the value of ovLikelihood; must
be 100% and this is indeed what our metric calculates (
ovLikelihood; = iij = 100%).

Method n is never overridden, hence the value of
ovLikelihood,, must be 0% (ovLikelihood, = O+g+z =
0%).

B. Mining Extension Directives

To mine extension directives, we propose a metric that
counts the number of methods that override a framework

In: Proceedings of the 7th IEEE Working Conference on Mining Software Repositories (MSR'2010)
This preprint is provided by the contributing authors to ensure timely dissemination of scholarly and technical work.

http://www.eclipse.org/articles/Article-Preferences/preferences.htm

Q) Q
(\,@QO\O 0\&9
@ &8 £ O
™0 9% O
PO e gt
K282 0° 40" KO
S G AR
Q7 407 (@ (@ 4@
class A extends Page{ Q@QQ@QQ@QQ@QQ@Q
@override
void createContentsQ{} 100 01 -
@override
void performOkQ{}
|-o 100 1 _
} -_— -_— -_— -_— -_— -_—
Fig. 3. Mapping Code to a Binary Space to Mine Extension Scenarii with

LCA

method and call the super-implementation (i.e., extend the
framework method):

ECZCZ SUPETciMeth,fwMeth

exLikelihood(fwMeth) = S
clCl clCl, fwMeth

where 0v¢ici, fwneth = 1, if c1C1 contains a method c1Meth
which overrides fwMeth; supercci, fwMeth = 1, if clCl
contains a method fwMeth which overrides fwMeth and call
the super implementation.

A method extension directive is created for each method
whose value of exLikelihood is not null.

C. Mining Call Directives

To mine a call directive for a framework method fwMeth,
we propose to collect all self-calls executed within the con-
trol flow starting from each method overriding fwMeth. The
following defines a metric which represents the importance of
calling a framework method fwMeth?2 in the control flow of
another framework method fwMethl

clLikelihood(fwMethl, fuMeth2) =
Y eicr Calleio, fwMethl, fuMeth2
chCl OVciCl,fwMeth

where oveci, fwmetnh = 1, if c1C1l contains a method
which overrides fwMeth; callci, fwethl, fwuMethz = 1, if
clCl contains a method which overrides fwMethl and calls
fwMeth2 in its control flow.

A call directive is created for each pair of framework
methods, whose value of clLikelihood is not null.

D. Mining Class Extension Scenarii

We propose to use a clustering algorithm on client code
to mine the set of methods commonly overridden together.
For each framework class fwC1, one selects the client classes
that subclass fwCl and clusters the methods that are often
overridden together. As with other subclassing directives,
mining existing clients enables to discover extension scenarii
that have not been covered by tutorials.

For each framework class fwC1 a binary matrix is build.
Each row of the matrix represents a subclass of fwC1; each
column represents an overridable method of fwC1. Whenever a
subclass i overrides a framework method 7 the position (i, j)

of the binary matrix is 1, it is 0 otherwise. For illustration,
figure 3 shows the binary matrix of a class Page and elaborates
on the row for a subclass 2, whose code is shown on the left-
hand side.

Since the data grounding the clustering algorithm is binary,
we use a data mining algorithm called Latent Class Analysis
(LCA) appropriate to such binary data [10]. For each frame-
work class, the algorithm outputs zero or more class extension
scenarii. We define a default extension scenario as a scenario
which covers at least 5 percent of the data, a heuristic which
gives satisfying results according to our experience. If several
scenarii satisfy these constraints, the default scenario is simply
the one that has the greatest probability (as given by LCA).

E. Defining Importance Levels

As discussed in II-E, the importance level of each directive
can be represented by modal verbs or importance values. We
propose to give the programmers both, for instance, Subclass
may override this method (32%). Our rationales are 1) modal
verbs are intuitive and accessible to novice users and 2)
importance values are useful for users who know how to
interpret them.

We propose the following heuristics to map importance
values to modal: 100%—MUST; 80%-100%— SHOULD,
20%-80%— MAY; 1%-20%— RARELY. It seems satisfactory
according to our own experience and according to the users
of the tool. Validating them by a controlled user study is left
out of the scope of this paper and one of the areas for future
work.

F. Implementation

We have implemented a static analysis for each technique
described above. The analyses target Java bytecode and use the
Wala bytecode toolkit’. The implementations of ovLikelihood
and exLikelihood are simple countings on a direct representa-
tion of the code. The implementation of clLikelihood is based
on call graphs. To cluster the co-overridden methods (the class
extension scenarii), we have reused an implementation of LCA
provided by NASA: Autoclass®.

IV. CASE-STUDY: IMPROVING THE DOCUMENTATION
QUALITY OF A MATURE FRAMEWORK

In this section, we evaluate whether our system is able to
improve the quality of the API documentation of a real-world
framework with respect to subclassing directives.

A. Set Up and Overview of the Results

The subject of the study is JFace, a white-box framework
dedicated to user interfaces. It is a representative of heavily
used frameworks: it grounds the Eclipse IDE, it is more than
6 years old, and it is used daily by hundreds of developers.
So, one can expect its documentation to be already improved
several time and hence of good quality. We postulate that if
our approach is able to produce directives that complement

Shttp://wala.sf.net
6see http://ti.arc.nasa.gov/project/autoclass/.

In: Proceedings of the 7th IEEE Working Conference on Mining Software Repositories (MSR'2010)
This preprint is provided by the contributing authors to ensure timely dissemination of scholarly and technical work.

http://wala.sf.net
http://ti.arc.nasa.gov/project/autoclass/

JFace’s documentation or to produce directives that are more
precise, it can do so for documentation of less quality as well.

For the study, we compared the subclassing directives in
the API documentation of JFace with directives that were
automatically extracted by applying our system to client code
of JFace. The client code used for the study consisted of 600
MB of mature available Eclipse plugins’. Since our codebase
is composed of mature code only, we can consider that the
extracted directives are correct by construction. Also, note that
our implementation was thoroughly tested.

To obtain the list of subclassing directives that are already
present in the documentation of JFace, we analyzed the
documentation of JFace by performing the following process.

1) We wrote a trivial static analysis which counts the
number of public classes and their respective overridable
methods (i.e., public/protected and not final methods).
We found a total of 203 public classes which have in
average 20 overridable methods.

2) We analyzed the collected client code and listed those
framework classes that are extended at least ten times.
Altogether there were 45 such classes (i.e. approx. one
fourth of public classes).

3) We read the Javadoc documentation of each framework
method of the collected classes as well as the Javadoc
documentation of the containing class and reported
the overriding directives, whenever available. Altogether
632 methods were analyzed. We found a total of 237
documented directives.

Since step 3 is manual and error-prone, we performed them
twice by two of the authors of this paper and consolidated the
results.

Table I presents an overview of the results of comparing
subclassing directives of the JFace API documentation with
subclassing directives automatically mined by our system.
The first part gives an overview of the documentation (of
the 45 classes manually analyzed). The second part reports
on agreeing documented and mined directives. The third part
concerns disagreeing documented and mined directives. The
fourth part is dedicated to documented directives that have no
correspondence in the mined directives. Finally, the last row
in the table concerns mined directives for which we could not
find corresponding directives in the documentation.

One finding that is not reported in Table I but which we
find interesting to emphasize is that only 30% of overridable
methods are actually overridden. This is an empirical proof
that the visibility modifiers alone are not sufficient as sub-
classing directives.

In the following subsections, we first elaborate on the
findings reported in parts three, four, and five of Table I.
Subsequently, we evaluate the mined extension scenarii. We
conclude this section by presenting and discussing the view-
point of Boris Bokowski, leader of the JFace development
team at IBM Canada, further called the expert, who kindly

"For sake of replicability, the complete list of plugin ids and versions is
available upon request.

Directive #
Documented 237
Overriding Directive 153
Extension Directive 69
Call Directive 15
Agreeing Documented and Mined 181
Overriding Directive 138
Extension Directive 32
Call Directive 11
Disagreeing Documented and Mined 45
Overriding Directive 8
Extension Directive 37
Call Directive 0
Documented and Not Mined 11
Overriding Directive 7
Extension Directive 0
Call Directive 4
Not documented and Important in Actual Usages | 129
(importance > 80%)
Overriding Directive 4
Extension Directive 67
Call Directive 58
TABLE I

IMPROVING THE SUBCLASSING DIRECTIVES OF THE JFACE FRAMEWORK

agreed to comment a sample of directives mined by our system
that we sent to him.

B. Disagreeing Documented and Mined Directives

In this section, we elaborate on the set of documented
directives with corresponding mined directives, but with mis-
matching importance levels. This set breaks down as follows:

e There are 3 methods that are documented as Subclasses
must override or Subclasses should override whereas
the overriding frequency in client code is less than
40%. Along the same line, we found 2 Subclasses must
override, while client code does not always follow them
(importance values: 93% and 94%), this indicates a
possible change from must override to should override.

o We found 3 methods that are documented as Subclasses
may override, while their overriding importance in client
code is greater than 80%. Those methods should be
documented as Subclasses should override. Furthermore,
two of them have an importance value of 100% (all client
classes overridden them) which would literally mean
a Subclasses must override. Since we could not state
whether it is really a “must” contract or a particularity of
our code base, we prefer generating a Subclasses should
override.

o For extension directives, there are 9 directives of the form
Subclasses must extend or Subclasses should extend in
the documentation, while the actual extension frequency
in the codebase is less than 80%.

o Further, there are 28 directives of the form Subclasses
may extend in the documentation, while their mined
importance is higher than 80%.

The discussion above reveals non-negligible discrepancy
between the importance level of documented directives and
importance levels deduced from existing clients. Given that

In: Proceedings of the 7th IEEE Working Conference on Mining Software Repositories (MSR'2010)
This preprint is provided by the contributing authors to ensure timely dissemination of scholarly and technical work.

the codebase that we use consists of production-level client
code, the mined directives reflect information that was actually
needed at a point in time by the developers of the codebase.
Hence, we consider the disagreeing documented directives
misleading: Developers probably lose some of their valuable
time in investigating and finding out that the misleading
directives in the documentation are not useful for them. Hence,
we conclude that the results reported in this sub-section show
that our system is able to improve the correctness of the API
documentation w.r.t. subclassing directives.

C. Documented and Not Mined Directives

There are documented subclassing directives of JFace which
are never followed in client code. In the following, we present
them and some possible explanations.

o There are 7 methods documented as Subclasses may
override, which are never overridden in client code.
It seems that JFace designers thought that it could be
useful to make these methods overridable, but the reality
somehow invalidated their assumptions. As emphasized
by Bloch [1], it is really difficult to know a priori which
hotspots to provide in a base class.

e There are no unused extension directives.

e There are 4 call directives which are never followed in
client code.

— One directive is expressed as “Use removeAll for
clean up references”. We assume that the scope of
this directive is not subclasses but external users of
this class.

— Two directives are expressed as “Subclasses should
call this method at appropriate times”. The vague-
ness of the directive indicates that its author did not
have a precise contract in mind.

— One directive is expressed as “This method is really
only useful for subclasses to call in their construc-
tor”. As for overriding directives, this may be an
incorrect guess of the method usages at design time
of the framework.

D. Not Documented Important Directives

In this subsection, we discuss in more detail the mined
directives with a high importance level that are missing in the
API documentation. For each of them, we looked in the corre-
sponding API documentation whether it is documented or not
(in both the method-level and the class-level documentation).
The results of this study are as follows:

e There are 4 overriding directives extracted from client
code with an importance of greater than 80% which are
missing in the documentation.

o The system extracts 50 must extension directives that
are not documented (and 17 undocumented Subclasses
should call the super-implementation). We assume that
this kind of contracts is widely yet implicitly used by
framework designers while not being integrated as a
documentation best practice. Developers probably lose
some of their valuable time in finding out that they

are expected to call the super-implementation for these
particular methods.

e There are 58 mined call directives with clLikelihood
> 80% which are not documented. This clearly indicates
that framework designers often use implicit call contracts
while they (or framework documenters) often do not
document them, or are not aware of their importance for
the client code.

The observations just reported show that our system is able

to improve the completeness of the API documentation w.r.t.
subclassing directives.

E. Relevance of Class Extension Scenarii

We used internet tutorials about JFace to evaluate the
relevance of class extension scenarii mined by our sys-
tem. We carefully read the available tutorials (both text
and code snippets) to extract what are the recommended
methods to override, which together form a reference ex-
tension scenario. We then compared the reference sce-
narii with the mined ones. For instance, the official
Eclipse tutorial “Preferences in the Eclipse Workbench UI"*
explains how to subclass PreferencePage by overrid-
ing three methods (createContents, performDefaults,
performOk). This reference scenario perfectly matches the
mined one for PreferencePage.

In all we analyzed 31 different tutorials from the IBM
developer website”, the Eclipse website ' and Javaworld
', We found 14 tutorials that contain 25 different reference
extension scenarii for JFace.

Table II presents the results of this evaluation. Each row in
the table is about a different JFace class. The first column
shows the name of the class and the tutorials that were
used for finding reference scenarii for that class. The second
column shows the mined extension scenarii in italics (there
could be several mined and reference scenarii per framework
classes) followed by different reference scenarii. The third
column indicates whether the reference scenarii match the
mined scenarii.

A quantitative summary of the data in the table II is as
follows: a) 18 mined scenarii perfectly match the reference.
a) 5 mined scenarii partly match the reference counterparts
(they are either superset or subset of overridden methods); b)
2 reference scenarii do not have a mined counterpart;

We further made the following qualitative observations:

o We expected to find more informal tutorials from tech-
nology guru’s blogs or community-based sites. We were
surprised to find so many reference scenarii in the
Eclipse and IBM websites. This indicates that author-
itative sources (Eclipse and IBM) consider extension
scenarii as an important documentation artifact.

o However, these authoritative tutorials cover only 10
classes of JFace. There are many more of importance

8http://www.eclipse.org/articles/Article- Preferences/preferences.htm
%http://www.ibm.com/developerworks

Ohttp://www.eclipse.org/articles/

provides “Solutions for Java developers”, see http://www.javaworld.com

In: Proceedings of the 7th IEEE Working Conference on Mining Software Repositories (MSR'2010)
This preprint is provided by the contributing authors to ensure timely dissemination of scholarly and technical work.

http://www.eclipse.org/articles/Article-Preferences/preferences.htm
http://www.ibm.com/developerworks
http://www.eclipse.org/articles/
http://www.javaworld.com

Context, Tutorial Title and Source Mined (in italic) & Reference Sce- | Evaluation
nario

Class Wizard addPages, performFinish

Extending the Generic Workbench (IBM developerWorks) addPages,performFinish OK

Creating JFace Wizards (Eclipse) addPages, performFinish, canFin- | OK
ish (opt),

Class WizardPage createControl

Extending the Generic Workbench (IBM developerWorks) createControl OK

Customizing Eclipse RCP applications (IBM developer- | createControl OK

Works)

Creating JFace Wizards (Eclipse) createControl, canFlipToNextPage, | x
getNextPage (opt)

Class LabelProvider getlmage, getText

Using Images in the Eclipse UI (Eclipse) getText, dispose X

Using the Jface Image Registry (IBM developerWorks) getlmage, getText OK

Using the Eclipse GUI outside the Eclipse Workbench, Part | getText X

1: Using JFace and SWT in stand-alone mode (IBM devel-

operWorks)

Class ViewerSorter patternl: category; pattern2: com-
pare

Using the Jface Image Registry (IBM developerWorks) category OK

How to use the JFace Tree Viewer (Eclipse) category OK

How to use the JFace Tree Viewer (Eclipse) compare OK

Building and delivering a table editor with SWT/JFace | compare OK

(Eclipse)

Class ViewerFilter select

Using the Jface Image Registry (IBM developerWorks) select OK

Customizing Eclipse RCP applications (IBM developer- | select OK

Works)

How to use the JFace Tree Viewer (Eclipse) select OK

Class Action run

Rich clients with the SWT and JFace (JavaWorld) run OK

Creating an Eclipse View (Eclipse) run OK

Class DialogCellEditor -

Take Control of Your Properties (Eclipse) openDialogBox not enough subclasses to mine a

pattern

Extending The Visual Editor: Enabling support for a custom | openDialogBox, doSetValue, up- | not enough subclasses to mine a

widget (Eclipse) dateContents pattern

Class PreferencePage createContents, performOk, perfor-
mDefaults

Preferences in the Eclipse Workbench UI createContents, performDefaults, | OK
performOk

Simplifying Preference Pages with Field Editors (Eclipse) createContents, performOk, perfor- | OK
mDefaults

Class FieldEditorPreferencePage createFieldEditors

Simplifying Preference Pages with Field Editors (Eclipse) createFieldEditors OK

Mutatis mutandis - Using Preference Pages as Property Pages | addField, performOK, createCon- | x

(Eclipse) tent

Mutatis mutandis - Using Preference Pages as Property Pages | createFieldEditors OK

(Eclipse)

Class TitleAreaDialog createDialogArea, okPressed,
configureShell, createButtonsFor-
Button, createContents

Extending The Visual Editor: Enabling support for a custom | createContents, createDialogArea X

widget (Eclipse)

TABLE I

REFERENCE EXTENSION SCENARII TO EVALUATE THE VALIDITY OF MINED ONES (IN ITALIC)

which are not documented by an extension scenario. This
is exactly where our approach makes its contribution, by
providing default extension scenarii when no others are
available.

F. The Expert Viewpoint

To get an unbiased view on the observed differences
between mined and documented directives, we asked Boris
Bokowski, leader of the JFace development team at IBM
Canada, to comment on a sample of mined directives, which

we formulated as suggestions of change to the API documen-
tation. The size of the sample (9 items) was chosen so that the
questionnaire can be answered in less than 20 minutes. The
directives we included in the sample were selected according
to the following characteristics: 1) they are related to an
important and known class of JFace so as to be sure that
the expert is fluent with this class 2) they have a very high
importance value so as to reflect the added value of using our
approach to find important incorrect or missing directives. In

In: Proceedings of the 7th IEEE Working Conference on Mining Software Repositories (MSR'2010)
This preprint is provided by the contributing authors to ensure timely dissemination of scholarly and technical work.

http://www.ibm.com/developerworks/edu/os-dw-os-rcp2.html
http://www.eclipse.org/articles/article.php?file=Article-JFaceWizards/index.html
http://www.ibm.com/developerworks/edu/os-dw-os-rcp2.html
http://www.ibm.com/developerworks/edu/os-dw-os-eclipse-rcp1.html
http://www.ibm.com/developerworks/edu/os-dw-os-eclipse-rcp1.html
http://www.eclipse.org/articles/article.php?file=Article-JFaceWizards/index.html
http://www.eclipse.org/articles/ArticleUsing%20Images%20In%20Eclipse/Using%20Images%20In%20Eclipse.html
http://www.ibm.com/developerworks/library/os-ecgui2/
http://www.ibm.com/developerworks/opensource/library/os-ecgui1/
http://www.ibm.com/developerworks/opensource/library/os-ecgui1/
http://www.ibm.com/developerworks/opensource/library/os-ecgui1/
http://www.ibm.com/developerworks/library/os-ecgui2/
http://www.eclipse.org/articles/Article-TreeViewer/TreeViewerArticle.htm
http://www.eclipse.org/articles/Article-TreeViewer/TreeViewerArticle.htm
http://www.eclipse.org/articles/Article-Table-viewer/table_viewer.html
http://www.eclipse.org/articles/Article-Table-viewer/table_viewer.html
http://www.ibm.com/developerworks/library/os-ecgui2/
http://www.ibm.com/developerworks/edu/os-dw-os-eclipse-rcp1.html
http://www.ibm.com/developerworks/edu/os-dw-os-eclipse-rcp1.html
http://www.eclipse.org/articles/Article-TreeViewer/TreeViewerArticle.htm
http://www.javaworld.com/javaworld/jw-04-2004/jw-0426-swtjface.html?page=5
http://www.eclipse.org/articles/viewArticle/ViewArticle2.html
http://www.eclipse.org/articles/Article-Properties-View/properties-view.html
http://www.eclipse.org/articles/Article-VE-Custom-Widget/customwidget.html
http://www.eclipse.org/articles/Article-VE-Custom-Widget/customwidget.html
http://www.eclipse.org/articles/Article-Preferences/preferences.htm
http://www.eclipse.org/articles/Article-Properties-View/properties-view.html
http://www.eclipse.org/articles/Article-Properties-View/properties-view.html
http://www.eclipse.org/articles/Article-Mutatis-mutandis/overlay-pages.html
http://www.eclipse.org/articles/Article-Mutatis-mutandis/overlay-pages.html
http://www.eclipse.org/articles/Article-Mutatis-mutandis/overlay-pages.html
http://www.eclipse.org/articles/Article-Mutatis-mutandis/overlay-pages.html
http://www.eclipse.org/articles/Article-VE-Custom-Widget/customwidget.html
http://www.eclipse.org/articles/Article-VE-Custom-Widget/customwidget.html

Subclasser Javadoc Viewer 27 <=:=> = f; =8
(& org.edlipse.jface.preference.PreferencePage

Original APT Documeniation:

Abstract base implementation for all preference page implementations.

Subdasses mustimplement the createControl framework method to
supply the page's main control.

Subdasses should extend the doComputesize framework method to
compute the size of the page's control.

Subdasses may override the performOk, performipply,
performDefaults, performCancel, and performHelp framewark
methods to react to the standard button events,

Subdasses may call the neDe faul tindippl yButton framework method
before the page's control has been created to suppress the standard Apply
and Defaults buttons,

Generated API Documentation:

Subdasses frequently override these methods:

& must override cresteContents - (100%%)
* should override performOk - (34%:)
® may override performbDefzults - (65%%)
¢ may override createControl - 24%)
® may override dispose -(23%)

Subdasses called the following methods to configure this instance:

o must cal <init> - (99%:)
¢« may cal pecformbDefaults -(57%)
® may cal getControl - 51%)
¢ may cal performok - (40%6)
¢« may cal dispose - 37%)
® may cal crezteContrel - (34%)
o may call setPreferencestore (32%%)
¢« may cal setDescription (31%:)
¢ may cal getPreferenceStore (30%%)
o may call noebefaul tindipplyBut - (26%)
¢ may cal getsShell (25%:)
« may call setValid { 24%%)

Th

m

following freguent extensions patterns exist:

® Pattern 1 (covers 4% of all observed extensions)

must override performOk - (100%)

a
o
o must override erezteContents -(98%%)
0 should override performbefaultcs -(89%:)
O may override createControl - 24%:)
o may override dispose - 29%:)
* Pattern 2 (covers 14% of all observed extensions)
o should override createContents -(93%)
o may override setVisikle - 26%:)

Fig. 4. Class-level API Documentation Extended with Automatically Mined
Subclassing Directives.

the following, we summarize the feedback that we got from
the expert.

The expert agreed on two suggestions to change two "Sub-
classes may override" directives in the API documentation
to "Subclasses should override" directives, as mined by our
system. He asked us to fill respective entries in the bug
repository of Eclipse, which we did'>. For illustration, we
elaborate on one of these changes. The API documentation
states for PreferencePage.performOK that Subclasses may
override. However, since our algorithm found out that the
method was actually overridden in 84% of the client sub-
classes, we suggested to change the directive to Subclasses
should override.

We sent the expert three suggestions for changes concerning

12¢f. bugs # 288461 and # 288462, https://bugs.eclipse.org/bugs/show_bug.
cgi?id=288461

Subclasser Javadoc Yiewer 3 <'}=={> o Og = O
@ void demo.MyWizardPage.createControl{Composite parent)

Origina! APT Documeniafion:

Creates the top level control for this dialog page under the given parent
composite.

Implementors are responsible for ensuring that the created control can be
accessed via getControl

Parameters:
parent the parent compaosite

Generated APT Documentafion:

Subclaszzes must override this method (100%), When overriding,
subclasses should not call the super implementation (0%6).

Within this method, subdasses:

o must cal secConcrel - (99%:)
o« may calinitizlizeDialogUnit - (36%:)
« may cal setlegeComplete - (38%)
may cal setErrorMessage -(29%)
« may cal getWizard -(27%%)
may cal getContral -(22%)

Fig. 5. Method-level API Documentation Extended with Automatically
Mined Subclassing Directives.

three different "Subclasses may extend" directives found in
the documentation. According to the Eclipse guidelines this
actually means "may override, should extend". Our system
mined three different directives: (1) “may override, must
extend”, (2) "should override, may extend", and (3) "may
override, should extend” for the respective three methods.
The expert basically agreed that the first two suggestions were
meaningful. Yet, he argued for not performing the first change
we suggested as "it would render existing code incompatible
with the specification". He disagreed on the third suggestion
arguing that our suggestion was merely making explicit the
actual meaning of "Subclasses may extend" according to the
Eclipse guidelines. While this is somehow a matter of taste, we
still find that dissociating overriding and extension directives
makes the directives more clear. The fact that we mined
three different interpretations of the "Subclasses may extend"”
directive, which the expert principally agreed on, indicates that
simply stating "Subclasses may extend" is very misleading.

The expert reviewed an extension directive with a very high
importance (i.e. Subclasses should call super), for which he
answers “I don’t see why we would require subclasses to call
the super implementation”. We analyzed the client classes that
support this mined directive. It turned out that 1) the support of
this directive is low (11) and 2) the clients override this method
just to add some application-specific logic, which makes sense
to be called at this point in the framework control-flow, but
which is not related to the initial intent of this method. This
motivated us to set up a higher filter on the support of each
directive in newer versions of the tool.

The expert reviewed 2 mined method call directives. Unfor-
tunately, due to the specific directives selected for review and
some unclarity in the expert’s comments, we can not derive
any generalizable conclusions.

The expert reviewed 1 mined default extension scenario.

In: Proceedings of the 7th IEEE Working Conference on Mining Software Repositories (MSR'2010)
This preprint is provided by the contributing authors to ensure timely dissemination of scholarly and technical work.

https://bugs.eclipse.org/bugs/show_bug.cgi?id=288461
https://bugs.eclipse.org/bugs/show_bug.cgi?id=288461

It is about extending the class TrayDialog which extends
Dialog. While the documentation of Dialog related to sub-
classing is quite comprehensive, the subclassing documen-
tation of TrayDialog is really scarce. The mined default
extension scenario for TrayDialog consists of 11 methods to
override. The expert answered that “"documentation items like
this are useful. In addition, he noted that they are "probably
better suited for a tutorial rather than the API specification.”.

The second part of the expert comment raises questions
about where to put subclassing directives. In API documen-
tation? In tutorials? Should we duplicate documentation at
the class level documentation and at the method level? How
to handle documentation that targets different kinds of users
(novice versus experts), etc.? A thorough investigation of these
questions is out of scope of this paper. For now, our answer to
these questions is that subclassing directives should be integral
part of the API documentation in a way that we elaborate on in
the next section. Further investigations involving user studies
are out of the scope of this paper.

V. INTEGRATING SUBCLASSING DIRECTIVES IN IDES

Subclassing directives are of primary importance for frame-
work users and hence should be tightly integrated into the de-
velopment environments so that developers find and use them
easily. In the following, we present an integration proposal of
our mined subclassing directives into the Eclipse IDE.

First, the initial documentation written by the framework
developers is the primary source of information. It contains
a lot of valuable information , e.g., the functional goal of a
method, its design rationales, etc. The mined directives com-
plement the original API documentation. Second, since there is
already a Javadoc viewer in every default Eclipse installation
and that developers may already use it, we propose to extend
this viewer by enriching the initial API documentation with the
mined subclassing directives (and not to create a new view).
Finally, since mined directives are relevant at both the class
level and the method level API documentation, the extended
viewer supports both.

When developers browse the class level documentation,
they are shown the list of overriding directives, the list of
method call directives, and the extension scenarii that have
a high support. Directives are shown in natural language
(e.g., Subclasses may override) together with the underlying
importance value. Figure 4 shows a screenshot of our viewer
displaying the API documentation (both hand-written and
generated directives) for the class PreferencePage of the
JFace framework.

When developers browse the method level documentation,
the documentation view acts differently. It gives the initial
documentation, and in addition adds the mined overriding
directive, the extension directive, and the method call direc-
tives, if any. Figure 5 shows an example of the method level
documentation. Note that both screenshots show directives for
real classes of JFace and that real data underlies them.

This integration is seamless with respect to the IDE and
the usual way of programming with Eclipse. Developers have

new information at the place they naturally would look at:
the Javadoc viewer. If no information is available for certain
classes or certain frameworks, the viewer is simply the default
one and shows only the initial API documentation.

VI. RELATED WORK

For Pree, hotspot mining is a manual activity that consists
of examining maintenance data, investigating framework use
cases and questioning the framework experts. On the contrary,
our approach to hotspot mining is fully automated.

Schauer et al. [17] presented a method and a tool to
automatically recover hotspots from C++ code. In particular,
their approach is able to differentiate between inheritance
hotspots (IHS - based on the design pattern Inheritance Tem-
plate Method) and composition hotspots (CHS - based on the
design pattern Composition Template Method). Their approach
is based on the source code analysis of the framework. On
the contrary, our approach is based on instantiation code,
which enables us to have concrete information about how the
framework under study is actually used. From a functional
viewpoint, our approach provides more information to the user,
namely the extension and the call directives.

Tourwe and Mens [21] address the problem of framework
reuse by making explicit framework contracts by so-called
metapatterns. This approach requires (a) a development en-
vironment that supports metapatterns, and (b) that framework
designers enrich their code with the formal description of
the metapatterns. Along the same lines, previous approaches
[71, 9], [12], [19] address the framework evolution problem
and propose different techniques for specifying, checking, and
enforcing explicit specialization interfaces for frameworks. On
the contrary, our approach does not require additional work
from framework designers, who can use the tool to improve
the current state of documentation.

Schaefer et al. [16] address the problem of framework
evolution, i.e., how client code should change in response
to a new version of the framework. Like with our approach,
they mine instantiation code to mine knowledge. However,
the problem scope is different: Their tool produces a list
of changes to do in order to adapt existing client code to
changes in the framework API, our tool produces a list of
subclassing directives to support the development of new
framework clients.

Michail [13] proposes an approach to mining subclassing
directives based on association rules mining. There are two
important differences between this proposal and ours. First,
the proposal by Michail [13] does not address extension
directives. Further, it provides coarse-grained call directives, at
the class level, i.e., of the form "call a framework method when
extending a framework class". In previous work [2], we also
presented an approach that provides the same coarse-grained
call directives. On the contrary, our call directives are context-
dependent. We tell the user that she has to call method X inside
the body of method Y: this is very important to create code
that respects the framework internal control flow.

In: Proceedings of the 7th IEEE Working Conference on Mining Software Repositories (MSR'2010)
This preprint is provided by the contributing authors to ensure timely dissemination of scholarly and technical work.

[2] [22] Our approach

AAQ’1998 ICSE’2000 FSE’2003 ETX’2006 ASE’2008 MSR’2010
Data Smalltalk C++ Java source | Java Google Java

code bytecode CodeSearch Bytecode
IDE Integration Proposal +
Overriding Directive + + + + + +
Extension Directive +
Call Directive - - +
Extension Scenario + +
TABLE III

PREVIOUS WORK DOES NOT ADDRESS FULL WHITE-BOX REUSE (+ STANDS FOR “SUPPORTS”, - FOR “PARTIALLY SUPPORTS”)

Demeyer [3], Viljamaa [22] and Thummalapenta et al. [20]
also describe mining-based approaches to hotspot detection.
Table III compares our contributions compared to these close
papers including [13] and [2]. Programming with white-box
frameworks requires all subclassing directives together since
having just one or the other is not sufficient. We contribute
with a comprehensive and unified approach on mining sub-
classing directives and especially we provide extension direc-
tives and well-scoped call directives: both document essential
parts of the logic of today’s white-box frameworks.

VII. CONCLUSION

We presented a new approach to improve the quality of
white-box framework documentation. For each framework
class, our system mines from client code a set of subclassing
directives that are all required to quickly and correctly extend
the framework: 1) what methods to override 2) should the
overriding method call the super implementation 3) is the over-
riding method expected to call certain framework methods,
and 4) what are the methods usually overridden together. This
approach is complementary to manually written API documen-
tation. Framework developers can update the documentation
accordingly and framework users can access to the mined
directives as an add-on to the original documentation in the
IDE.

A case study evaluates the approach. We mined subclass-
ing directives for the Eclipse’s JFace framework for user-
interfaces. We found that the existing API documentation is
both incorrect (45 incorrect pieces of documentation) and in-
complete (129 missing high-importance directives) compared
to current usages of JFace.

Our current work goes in two directions. First we try to
automate the analysis of existing documentation with natural
language processing techniques. Then, it will be possible to
automatically detect erroneous and missing documentation
related to subclassing. Second, when developers are given
a particular directive, they still need the intent behind the
directive (e.g. Subclasses may override to change the color
of the widget). We are studying how to mine not only
the directive, but also the rationale behind each subclassing
directive, based on e.g. framework code, symbol names and
existing documentation (at least to the extent possible); we
imagine illustrating such mined intents with generated code
snippets.

[1]
[2]

[3]

[4]

[5]
[6]

[7]

[8]

[9]

[10]
(1]

(12]

[13]
[14]
[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

REFERENCES

J. Bloch. Effective Java (second edition). Addisson-Wesley, 2008.

M. Bruch, T. Schifer, and M. Mezini. FrUiT: IDE support for framework
understanding. In OOPSLA Workshop Eclipse Technology Exchange,
pages 55-59. ACM, 2006.

S. Demeyer. Analysis of overriden methods to infer hot spots. In
Proceedings of the Workshop on Techniques, Tools and Formalisms for
Capturing and Assessing the Architectural Quality in Object-Oriented
Software colocated with ECOOP’98, 1998.

J. des Rivieres. How to use the eclipse api. Technical report, Eclipse
Foundation, 2001.

M. Fayad, D. Schmidt, and R. Johnson. Building application frame-
works: object-oriented foundations of framework design. Wiley, 1999.
R. Johnson. Documenting frameworks using patterns. In Proceedings
of Object-oriented programming systems, languages, and applications
(OOPSLA’1992), page 76. ACM, 1992.

G. Kiczales and J. Lamping. Issues in the design and specification of
class libraries. In Proceedings of the Conference on Object-oriented
Programming, Systems, Languages, and Applications, 1992.

D. Kirk, M. Roper, and M. Wood. Identifying and addressing problems
in object-oriented framework reuse. Empirical Software Engineering,
12(3):243-274, 2007.

J. Lamping. Typing the specialization interface. In Proceedings of the
Conference on Object-oriented Programming, Systems, Languages, and
Applications, 1993.

P. Lazarsfeld and N. Henry. Latent structure analysis. Houghton, Mifflin,
1968.

T. Lewis. Object-oriented application frameworks. Manning Publica-
tions Co. Greenwich, CT, USA, 1995.

M. Mezini. Maintaining the consistency of class libraries during
their evolution. In Proceedings of the Conference on Object-oriented
Programming, Systems, Languages, and Applications, 1997.

A. Michail. Data mining library reuse patterns using generalized
association rules. In ICSE, pages 167-176. ACM, 2000.

M. Robillard. What makes apis hard to learn? answers from developers.
IEEE Software, 26(6):27-34, 2009.

C. Scaffidi. Why are apis difficult to learn and use? Crossroads, 12(4):4,
2006.

T. Schaefer, J. Jonas, and M. Mezini. Mining framework usage changes
from instantiation code. In Proceedings of the 30th international
conference on software engineering, pages 471-480, 2008.

R. Schauer, S. Robitaille, F. Martel, and R. Keller. Hot spot recovery
in object-oriented software with inheritance and composition template
methods. In Proceedings of the IEEE International Conference on
Software Maintenance (ICSM’99), pages 220-229, 1999.

H.-A. Schmid. Systematic framework design by generalization. Com-
mun. ACM, 40(10):48-51, 1997.

P. Steyaert, C. Lucas, K. Mens, and T. D’Hondt. Reuse contracts:
managing the evolution of reusable assets. In Proceedings of OOPSLA,
1996.

S. Thummalapenta and T. Xie. Spotweb: Detecting framework hotspots
and coldspots via mining open source code on the web. In Procedings
of ASE’2008, pages 327-336, 2008.

T. Tourwe and T. Mens. Automated support for framework-based
software evolution. In Proceedings of the International Conference on
Software Maintenance (ICSM’2003), pages 148—157, 2003.

J. Viljamaa. Reverse engineering framework reuse interfaces.
Proceedings of ESEC/FSE, pages 217-226, 2003.

In

In: Proceedings of the 7th IEEE Working Conference on Mining Software Repositories (MSR'2010)
This preprint is provided by the contributing authors to ensure timely dissemination of scholarly and technical work.

