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The observation and electrical manipulation of infrared surface plasmons in graphene have

triggered a search for similar photonic capabilities in other atomically thin materials that

enable electrical modulation of light at visible and near-infrared frequencies, as well as

strong interaction with optical quantum emitters. Here, we present a simple analytical

description of the optical response of such kinds of structures, which we exploit to

investigate their application to light modulation and quantum optics. Specifically, we show

that plasmons in one-atom-thick noble-metal layers can be used both to produce

complete tunable optical absorption and to reach the strong-coupling regime in the

interaction with neighboring quantum emitters. Our methods are applicable to any

plasmon-supporting thin materials, and in particular, we provide parameters that allow us

to readily calculate the response of silver, gold, and graphene islands. Besides their

interest for nanoscale electro-optics, the present study emphasizes the great potential of

these structures for the design of quantum nanophotonics devices.
I. Introduction

Plasmons – the collective electron oscillations in nanostructured conductors – allow
us to control light at the nanometer scale, particularly using the large concentration
and enhancement of electromagnetic intensity that they generate.1 Additionally,
and unlike other optical excitations in small systems (e.g., atomic and molecular
quantum emitters), plasmons display a powerful combination of two appealing
properties: they are robust (i.e., they are not destroyed by the presence of a dielectric
environment) and they interact strongly with light (e.g., they display excitation
cross-sections typically exceeding the projected area of the nanostructures that
sustain the plasmons). These features have facilitated the use of plasmons in
applications as varied as nonlinear optics,2–5 ultrasensitive detection down to the
single-molecule level via surface-enhanced Raman scattering (SERS),6–9 cancer
diagnosis and therapy,10–15 quantum information processing,16–19 improved photo-
voltaics,20,21 and subwavelength lithography.22 Optical metamaterials also largely
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rely on subwavelength plasmons to display properties that are not available in
naturally occurring materials.23–25 These efforts are due in part to the impressive
progress made in nanofabrication26 and colloid chemistry27,28 techniques, as well as
in the theoretical understanding of the response of nanometallic structures.29,30

The eld of plasmonics has been quite focused on noble metals, which are
generally regarded as prototypical plasmonic materials, although they suffer from
relatively large inelastic losses that limit the lifetime of plasmons down to a few
optical cycles in deep-subwavelength structures. In this context, a search for
better plasmonic materials has been initiated with a view to reducing absorp-
tion.31–34 Recently, highly doped graphene has emerged as a promising alterna-
tive,35–44 combining huge eld connement and enhancement with comparatively
lower losses,43,45 as well as large electrical tunability of its optical response.46–49

These properties hold great potential for electro-optics applications, such as fast
light modulation via electrostatic gating,38,39,41–44 which has been demonstrated
with the achievement of frequency variations spanning a whole octave.43

Unfortunately, plasmons in graphene, as well as in other so-called two-
dimensional crystals50 and in topological insulators,51 have so far been observed
at mid-infrared (mid-IR) and lower frequencies, as they are limited by the low
carrier densities in these materials. In contrast, atomically thin metals already
possess a substantial conduction electron density in their undoped state, thus
sustaining plasmons in the visible and near-infrared (vis-NIR), which are spectral
ranges with better prospects for technological applications. Additionally, atomi-
cally thin noble metal nanoislands can undergo strong interaction with light and
exhibit signicant electrical tunability,52 as the doping levels that are currently
attainable using gating technology can produce substantial fractional changes in
the conduction electron density.

Plasmons in metal clusters of atomic dimensions have been examined and
optically characterized for a long time,53 and they have even been used as a
toolbox to test the ability of different rst-principles computational methods to
simulate optical and electron-based spectroscopic measurements.54 In a separate
effort, atomic self-assembly has been used to produce monoatomic gold wires,55

which were later shown to sustain extremely conned plasmons.56 Similar low-
dimensional plasmons have been experimentally characterized using electron
spectroscopy in ultrathin indium57 and silicide58 wires, as well as in few-atomic-
layer silver lms59 and monolayer DySi2.60 Unfortunately, no further exploration
has been pursued towards the coupling of propagating light to these systems and
their application to nanophotonics.

Motivated by the availability of these atomically thin materials and their
potential for nanophotonics applications, we present here a simple analytical
study of the optical properties of disks and ribbons, accompanied by a discussion
of their ability to achieve tunable complete optical absorption and quantum
strong coupling between plasmons and optical emitters.
II. Optical response and tunability of 2D metallic
nanoislands

We describe thin metals in terms of a frequency-dependent 2D conductivity s(u),
which is related to the bulk dielectric function of the material through 3(u) ¼ 1 +
88 | Faraday Discuss., 2015, 178, 87–107 This journal is © The Royal Society of Chemistry 2015
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4pis(u)/ut, where t is the lm thickness. This local approximation works well for
atomically thin islands of noble metals with a lateral extension above �10 nm, as
shown by comparison with quantum-mechanical simulations based upon the
random-phase approximation.52 In the low-frequency limit, the dielectric function
is well approximated by the Drude model 3(u) ¼ 1 � ubulk

2/u(u + ig), where ubulk

is the bulk classical plasmon frequency and g is a phenomenological relaxation
rate. Combining these two expressions for 3, we nd that the 2D conductivity
reduces to

sðuÞ ¼ ubulk
2t

4p

i

uþ ig
: (1)

This formula can even be applied to include the full u dependence of the
measured dielectric function by simply allowing ubulk and g to depend on u. In
noble metals, these parameters are relatively independent of frequency over the
NIR spectral range (see Fig. 5 in Appendix D). The present formalism can also
describe graphene, where ubulk depends on the Fermi energy EF relative to the so-
called Dirac point as ubulk ¼ ð2e=h-Þ ffiffiffiffiffiffiffiffiffi

EF=t
p

(for example, for a nominal graphene
thickness t ¼ 0.34 nm, as extracted from the interlayer distance in graphite, and
considering a realistic value of the Fermi energy EF ¼ 1 eV,49 we have ħubulk ¼
4.1 eV).

The far-eld response of islands that are small compared with the light
wavelength can be expressed in terms of their polarizability a(u), which admits
simple approximate expressions under the reasonable assumption that the
lowest-order dipole mode dominates the spectral strength. More precisely, using
the expressions derived in Appendix A, we nd

aðuÞz tA

4p

ubulk
2

up
2 � uðuþ igÞ ; (2)

where A is the area of the island and up is its lowest-order plasmon frequency (see
Table 1 for disks and ribbons). In particular, for a disk of diameter D and
thickness t placed at the planar interface between two media of permittivities 31
and 32, we have (see Table 1 and derivation in Appendix A)

upz
ubulk

neff

ffiffiffiffiffiffiffiffi
3pt

8D

r
; (3)

where neff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið31 þ 32Þ=2

p
.

Fig. 1(a) shows the values of up predicted by eqn (3) for gold, silver, and gra-
phene disks embedded in silica. We consider noble metal disks consisting of 1, 2,
or 5 atomic monolayers, which can clearly reach the NIR. In contrast, the shaded
area shows that the plasmon energies for graphene nanodisks lie in the mid-IR,
even for relatively high doping levels (EF # 1 eV).

We note that the quality factor Q of the plasmon resonances (i.e., 2p times the
number of optical cycles aer which the intensity has decayed by 1/e) is given by
up/g. Here, g is the Drude damping of eqn (1), which depends on frequency and
the material as shown in Fig. 5 (Appendix D), leading to the dependence of Q on
up illustrated by Fig. 1(b). High-quality (mobility m # 10 000 cm2 V�1 s�1) highly
doped (EF # 1 eV) graphene exceeds the performance of gold but is below that of
silver for plasmon energies above �1.6 eV, which are only reachable with
This journal is © The Royal Society of Chemistry 2015 Faraday Discuss., 2015, 178, 87–107 | 89
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graphene structures that are smaller than those considered in Fig. 1,61 although
edge effects can then introduce important corrections.62,63

The range of electro-optical tunability of graphene disk plasmons is illus-
trated by the shaded area in Fig. 1(a). For a given disk diameter, the plasmon
energy can be moved up to the upper value of that area when the doping is
increased up to EF ¼ 1 eV. For silver and gold, the range of tunability is lower
than in graphene, although it has the advantage that the plasmons are in
the NIR. Nonetheless, using currently available gating technology, under the
same doping conditions that allow achieving a graphene Fermi energy EF ¼ 1
eV, corresponding to a charge carrier density n ¼ 7 � 1013 cm�2, we obtain a
fractional variation of the plasmon energy z �n/2n0 ¼ 2.5% in gold and
silver, where n0 ¼ 1.39 � 1015 cm�2 is the areal density of conduction
electrons in a (111) atomic layer. This produces an overall fractional
variation of the plasmon that is resolvable with a quality factor Q � n0/n, rep-
resented by the dashed vertical line of Fig. 1(b), which is clearly within reach
with silver.
Fig. 1 Energy, quality factor, and electrical tunability of thin-disk plasmons. (a) Dipole
plasmon energy as a function of diameter for disks formed by 1–5 atomic layers of gold
or silver embedded in an 3 ¼ 2 dielectric, as predicted from the analytical model of
Table 1. The thickness of each atomic layer is set to 0.236 nm (i.e., the separation
between the (111) atomic planes in these materials, which also have similar values of
ħubulk z 9 eV). Graphene-disk plasmon energies are shown as well for Fermi energies
EF ¼ 0–1 eV, illustrating the large degree of electrical tunability of this material. The
shaded regions for noble metal disks give the variation of the plasmon energy when
electrically doping the disks up to additional carrier densities in the �7 � 1013 cm�2

range (i.e., the same as when doping graphene to EF ¼ 1 eV). (b) Quality factor Q ¼ up/g
of gold and silver plasmons in the electrostatic limit. The effective plasmon damping
rate g depends on frequency as shown in Appendix D (see Fig. 5). The quality factor of
graphene is obtained from the random-phase approximation conductivity in the local
limit (local-RPA,61 see eqn (D1) in Appendix D), which includes temperature (T ¼ 300 K)
and interband transition effects. We assume Fermi energies EF # 1 eV and an intrinsic
impurity-limited lifetime estimated for DC mobilities m # 10 000 cm2 V�1 s�1 as s ¼
mEF/evF

2, where vF ¼ 106 m s�1 is the Fermi velocity of graphene. The dashed vertical
line indicates the value of Q that equals the full-width fractional variation of the plas-
mon energy when single-atom gold or silver disks are doped with carrier densities�7 �
1013 cm�2.

90 | Faraday Discuss., 2015, 178, 87–107 This journal is © The Royal Society of Chemistry 2015
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III. Coupling to quantum emitters

The large concentration of electromagnetic energy associated with the plasmons
of atomically thin structures can lead to strong interaction with nearby quantum
emitters. This idea has been recently explored in graphene36,64,65 and we elaborate
on it here to produce a semi-analytical model that is directly applicable to any thin
conducting material. For this purpose, we introduce the 2D charge density rp(R)
associated with the plasmon as a function of position R ¼ (x, y) along the metal
island. This quantity can be conveniently normalized for one plasmon, as dis-
cussed in Appendix B, where analytical expressions are given for the lowest-order
dipole modes of disks and ribbons (see Table 1). Intuitively, rp plays a similar role
as the charge density �ef*

f (r)fi(r) associated with the transition of one electron
between the bound states fi and ff of a conned system. We now consider a two-
level quantum emitter (e.g., an atom or molecule) of transition dipole d0. Taking
the metal island to lie in the z ¼ 0 plane and the emitter at position r0, the
electrostatic emitter-plasmon interaction is simply given by

ħg ¼ 1

neff 2

ð
d2RrpðRÞ

d0$ðR� r0Þ
jR� r0j3

; (4)

where the integral is extended over the area of the island, neff is dened right aer
eqn (3), and d0 is the effective emitter transition dipole, which is related to its
radiative lifetime s0 in the absence of the island through s0

�1 ¼ 4neffu0
3d0

2/3ħc3.
Incidentally, d0 is the transition dipole in a vacuum multiplied by a local-eld
correction 3neff

2/(2neff
2 + 1).66

The quantum evolution of the emitter-plasmon system can be described by the
Hamiltonian36,64

H ¼ ħ[upa
+a + u0s

+s + g(a+s + as+)] + dp$E
ext(t)(a+ + a), (5)

where a and s (a+ and s+) are the annihilation (creation) operators of the plasmon
and the emitter excitation of energies ħup and ħu0, respectively. Let us stress that
we are using the same rate g of emitter-plasmon coupling as dened by the
electrostatic energy of eqn (4). In the Hamiltonian (5) we are neglecting the direct
interaction of the time-dependent external eld Eext with the emitter, as its dipole
d0 is assumed to be small compared with the plasmon dipole

dp ¼
ð
d2RRrpðRÞ:

Incidentally, the normalization of rp for a single plasmon is actually based on this
dipole, as explained in Appendix B.

The lifetime of the emitter s0 and the plasmon decay rate g can be introduced
in the quantum description of the combined system through the density matrix r,
which follows the equation of motion67,68

dr

dt
¼ i

ħ
�
r;H

�þ 1

2s0

�
2srsþ � sþsr� rsþs

�þ g

2

�
2araþ � aþar� raþa

�
: (6)

In this formalism, we can calculate the polarizability a(u) by rst obtaining the
expected value of the induced dipole from tr{dp(a

+ + a)r} upon illumination with a
weak external eld Eext(t) ¼ E0e

�iut + c.c. We nd the induced dipole to admit the
This journal is © The Royal Society of Chemistry 2015 Faraday Discuss., 2015, 178, 87–107 | 91
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form a(u)E0e
�iut + c.c., thus dening a(u). In the absence of the emitter (i.e.,

taking g¼ 0), we recover a polarizability a(u) as given by the j¼ p term of eqn (B1),
thus demonstrating the self-consistency of our plasmon-normalization scheme.
Additionally, when the combined system is considered, the linear polarizability
becomes a(u) ¼ a0(u) + a*0(�u) with

a0ðuÞ ¼ dp
2

up � u� ig
�
2� g2ðu0 � u� i=2s0Þ�1

:

For up ¼ u0, this expression exhibits two poles at frequencies u¼ up � g, yielding
a vacuum Rabi splitting given by 2g.

For the vacuum Rabi splitting to be observable, it must be larger than the
width of the plasmon peak, that is, g/g > 1. This condition signals the so-called
strong-coupling regime, which has been argued to be achievable in graphene.36 In
this regime, the bosonic plasmon state mixes with the fermionic two-level emitter
to produce a Jaynes–Cummings ladder of hybridized states,69 which has been
predicted to produce non-classical statistics of the plasmon population upon
external illumination, as well as a nonlinear optical response64 (i.e., the nonlin-
earity of the quantum emitter is inherited by the combined plasmon-emitter
system).

It should be noted that the decay rate of the excited emitter is enhanced by the
coupling to the plasmon and becomes for gs0 [ 1

G ¼ 1

s0
þ g

g2�
up � u0

�2 þ g2=4
(7)

under the condition that the fraction in this expression is small (weak coupling).
This well-known result is rederived in Appendix C from eqn (5) and (6), and we
also show that the dielectric formalism of Appendix A reproduces eqn (7) with g as
dened by eqn (4), provided the plasmon charge density rp(R) is normalized as
prescribed in Appendix B, thus demonstrating the self-consistency of the theo-
retical methods elaborated in this work.

Equipped with the analytical model for the plasmons of thin conductor
islands discussed in the Appendix, we examine in Fig. 2 the ratio g/g, where g is
calculated from eqn (4) using the analytical expression of rp for a disk plasmon
given in Table 1. We nd g/g to depend on the lifetime of the emitter s0, the
Drude parameters of the conducting disk ubulk and g (see eqn (1)), the disk
diameter and thickness D and t, and the index of refraction of the surrounding
medium neff only through a multiplicative coefficient ðneffcÞ3=2=ðgDubulk

ffiffiffiffiffiffi
s0t

p Þ.
We plot g/g in Fig. 2 expressed in units of that coefficient (le scale) as a
function of the distance z0 between the emitter and the center of the disk. The
emitter dipole is assumed to be parallel to the disk. The right scale shows the
ratio calculated for ħubulk ¼ 9 eV and ħg ¼ 0.07 eV, typical of gold in the NIR,
with s0 ¼ 1 ns, D ¼ 10 nm, t ¼ 0.236 nm (i.e., one (111) atomic layer), and neff

2 ¼
2. This result indicates that the strong-coupling regime is reachable over a wide
range of distances using gold islands. Silver structures should produce larger
coupling because g is smaller in that material (see Fig. 5). Further connement
of the plasmons in structures that display hotspots, such as bowtie antennas,70

could lead to even larger values of g/g.
92 | Faraday Discuss., 2015, 178, 87–107 This journal is © The Royal Society of Chemistry 2015
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Fig. 2 Achieving quantum strong coupling between the lowest-energy plasmon of a thin
conducting disk and an optical emitter. We represent the ratio g/g between the coupling
and plasmon decay rates for an emitter oriented parallel to the graphene (see inset), as a
function of its separation z0 from the center of a disk of diameter D and thickness t. The
disk material is characterized by a Drude plasma frequency ubulk and it is placed at the
interface between two dielectric media that define the effective permittivity
neff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið31 þ 32Þ=2
p

. The lifetime of the emitter in the absence of the disk is s0. The left
vertical axis is given in units of the dimensionless quantity ðneffcÞ3=2=½gDubulk

ffiffiffiffiffiffi
s0t

p �, whereas
the right axis corresponds to the choice ħubulk ¼ 9 eV and ħg ¼ 0.07 eV (gold in the NIR),
with s0 ¼ 1 ns, D ¼ 10 nm, t ¼ 0.236 nm (i.e., a single (111) atomic layer), and 31 ¼ 32 ¼ 2
(glass).
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Decoherence produced by inelastic transitions can severely damage the effi-
ciency of quantum emitters when they are placed in a solid-state environment,
although close to 100% efficiencies can be achieved with organic molecules under
cryogenic conditions.71 Fortunately, the enhancement of the coupling rate from
the emitter to the plasmon at the frequency of the latter can decrease the relative
importance of inelastic decay channels in the emitter (e.g., coupling to phonons
of the surrounding material, Auger processes, etc.), so that in practice the
coherent part of the decay in emitters such as nitrogen-vacancies in diamond, in
which the zero-phonon elastic channel accounts for only a small fraction of the
emission, can be enhanced by coupling to the nanoisland, and we are thus under
similar conditions as those considered in this study (i.e., the emitter decay
through coupling to a plasmon dominates over other inelastic channels).
IV. Complete optical absorption

Complete optical absorption has been studied and observed over many frequency
ranges in disordered metal lms,72,73 through lattice resonances in gratings and
planar metamaterials,74–80 assisted by localized plasmonic resonances,81,82 using
multilayer structures,83 and in overdense plasma.84 However, the possibility of
achieving complete optical absorption in atomically thin lms offers additional
advantages, as we discuss below.

It is well known that the maximum absorbance produced by an optically thin
lm in a homogeneous environment is 50%: the incident light induces charges
This journal is © The Royal Society of Chemistry 2015 Faraday Discuss., 2015, 178, 87–107 | 93
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and currents that have no memory of where light is coming from, and therefore,
they radiate symmetrically towards both sides of the lm with a scattered wave
amplitude r; consequently, the reected and transmitted amplitudes are r and 1 +
r, where the rst term in the transmission is the incident eld of unit amplitude;
the absorbance is thus 1 � |r|2 � |1 + r|2, whose maximum value is 1/2 as a
function of the complex variable r. Now, with the addition of a reecting screen on
one side of the lm, light can make two passes through the thin material,
producing a maximum of 100% absorption if both incident and reected waves
are in phase at that plane. This is the so-called Salisbury screen conguration, in
which the lm/metal-screen separation should be roughly l/4n85,86 (i.e., a phase of
p is produced by the metallic reection and another p contribution comes from
phase associated with the round trip propagation between the lm and the
screen, assumed to be embedded in an environment of refractive index n).

These ideas have been recently explored for graphene, leading to the predic-
tion of complete optical absorption by a suitably patterned carbon layer,87 under
the condition that the extinction cross-section per unit cell element is of the order
of the unit cell area. The observation of electrically tunable large absorbance in
patterned graphene has been recently accomplished.88,89 We argue here that
similar levels of tunable absorption are achievable using noble metals.

It is instructive to rst examine the maximum extinction of a thin island in
vacuum. The corresponding cross section is90 sext ¼ 4p(u/c)Im{a(u)}, which upon
insertion of eqn (2) is found to exhibit a maximum at u¼ up, given approximately
by sext¼ (ubulk

2t/gc)� A. Remarkably, this maximum extinction is independent of
shape for a given area A of the island, under the assumption that an individual
plasmon mode dominates the extinction. In particular, for single atomic layers of
gold (silver) lms (t¼ 0.236 nm), considering the plasmon energy ħup to be in the
NIR, we have ħubulk � 9 eV and ħg� 70 meV (ħg� 20 meV), so that the maximum
cross section is 1.4 (4.8) times the area of the island. For highly doped graphene,
this number is even larger due to the comparatively lower losses of this material
(see Fig. 5).

Complete optical absorption is achievable in periodic arrays placed above a
Salisbury screen. The normal-incidence reection coefficient of a doubly-periodic
array of small period a compared with the light wavelength, surrounded by a
homogeneous environment of refractive index n, reduces to87

r ¼ iS

a�1 � G
;

where S ¼ (2pu/nAcc), G ¼ g/n2a3 + iS, Ac is the unit cell area, and g is a number
that depends on symmetry (e.g., g z 5.52 and g z 4.52 for hexagonal and square
arrays, respectively, assuming that all islands interact through their induced
dipoles; corrections due to nearest-neighbor interactions beyond dipolar terms
are possible for closely spaced islands, in which case the coefficient g can depend
on their shape). With a Salisbury screen of reectivity r0 ¼ jr0jei40 separated a
distance d from the array, the incident and reected waves are exactly on phase
when 40 + 2udn/c is a multiple of 2p. Complete absorption is then produced
under the condition |r0| ¼ �r/(1 + 2r), which is satised at a frequency u given
by u2 ¼ up

2 � (g/4pn2)(tA/a3)ubulk
2, where upzðubulk=nÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3pt=8D

p
, provided we

have
94 | Faraday Discuss., 2015, 178, 87–107 This journal is © The Royal Society of Chemistry 2015
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2ngc

ubulk
2t

Ac

A
¼ 1þ 1

jr0j : (8)

Interestingly, this condition for complete optical absorption is also independent
of the shape of the island. Using the approximate values of ubulk and g noted
above for gold and silver in the NIR, and considering for simplicity a non-
absorbing Salisbury screen (|r0| ¼ 1) and a glass environment (n2 ¼ 2), the
condition (8) for perfect absorption in gold (silver) arrays is fullled with a frac-
tion A/Ac ¼ 1.02 (0.29) between the areas of the island and the unit cell. Conse-
quently, this condition can be easily met using silver atomic monolayers, and also
with multilayers of either gold or silver.

Incidentally, similar results are obtained for ribbon arrays of period a.61

Then, the condition (8) remains unchanged, with A/Ac ¼ D/a, to where D is now
the ribbon width. Because of the ribbon translational symmetry, we work with
2D rather than 3D scattering, so we need to redene a(u) z (tD/4p)ubulk

2/
[up

2 � u(u + ig)], G ¼ 2p2/3n2a2 + iS and S ¼ 2pu/nac. The frequency at which

complete absorption occurs is then u ¼ up

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðp2=24ÞðD=aÞ2

q
, where

upzðubulk=nÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4t=pD

p
(see Table 1).

It is important to note that the value of ubulk can be modulated byz�2.5% in
noble metals using currently available gating technology (see above), and this in
particular produces peak shis larger than the peak width in silver (see Fig. 1(b)),
as shown in Fig. 3 for an illustrative example. This type of structure is convenient
because the ribbons can be contacted at a large distance away from the region in
which the optical modulation is pursued. Besides, the strong absorption only
occurs for polarization across the ribbons, thus suggesting a possible application
as tunable polarizers.
Fig. 3 Tunable complete optical absorption. We show the absorbance of a single-atomic-
layer silver ribbon array embedded in silica (3 ¼ n2 ¼ 2) and placed at a distance d ¼ 286 nm
above a perfectly reflecting mirror. The ribbon width and period are D ¼ 20 nm and a ¼ 68
nm, respectively. The response of silver is describedwith ħubulk¼ 9 eV and ħg¼ 0.02 eV. The
dashed curve shows the result for undoped silver ribbons, whereas the solid curves corre-
spond to a fractional variation of �2.5% in the areal conduction electron density (i.e., �7 �
1013 cm�2), enabling a large change in absorption, as indicated by the double vertical arrow.
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V. Outlook and perspectives

Graphene plasmons are receivingmuch attention due in part to the demonstrated
ability to modulate their frequencies by electrically doping the carbon layer
through suitably engineered gates.38,39,41–44 This modulation can be potentially
realized at high speeds, as the number of charge carriers that are needed to
produce changes in the Fermi energy of the order of the electronvolt is relatively
small, and consequently, so are the inductance and capacitance associated with
the graphene itself. Unfortunately, graphene plasmons have only been observed
at mid-infrared and lower frequencies. Moving to the vis-NIR is challenging and
requires patterning structures with sizes <10 nm under realistically attainable
doping conditions. In this respect, molecular self-assembly provides a viable way
of synthesizing nanographenes in this size range.91–94 Doped carbon nanotubes
have also been predicted to display plasmons that are rather insensitive to their
degree of chirality,61 and therefore, they provide a viable route towards the
fabrication of large-scale tunable plasmonic structures operating in the vis-NIR
regime. Polycyclic aromatic hydrocarbons also sustain excitations at vis-NIR
frequencies that behave as graphene plasmons95 and constitute promising
candidates to advance towards atomic-scale tunable plasmonics.

Although plasmons in atomically thin metals have been observed in several
systems,56–60 these studies have focused on extended surfaces whose plasmon
dispersion relations are far from the light cone, thus averting the possibility of
direct coupling to propagating light. Further patterning of these types of surfaces
into disks and ribbons such as those considered here could facilitate the coupling
to optical probes. An alternative option consists of decorating atomically thin
lms with dielectric colloids to provide periodic optical contrast. Substrate pre-
patterning of disks, ribbons, or other morphologies, followed by atomic layer
deposition constitutes yet another possibility.

We conclude that atomically thin materials hold great potential for the
manipulation of light at truly nanometer scales and for the development of
applications to optical signal processing, quantum optics, and sensing. We
should emphasize that small nanoparticles, not necessarily atomically thin, can
produce similar levels of strong-coupling and optical absorption as discussed
above for thin lms, although they are not tunable using electrical gates because
the injected charge carriers have to compete with a much larger number of bulk
conduction electrons. The great opportunities offered by these materials are
however accompanied by formidable challenges to produce the islands at
designated positions and with controlled morphology, possibly requiring a
combination of top-down patterning and bottom-up self-assembly methods
similar to those mentioned above.
Appendix A: optical response of thin metal islands
in the electrostatic limit

The scale-invariant character of the electrostatic problem (i.e., the absence of a
frequency-dependent length scale imposed by the wavelength) has been used on
several occasions to express the solutions in terms of modal expansions.96–99 Here,
we formulate a suitable decomposition for optically thin structures. We consider
96 | Faraday Discuss., 2015, 178, 87–107 This journal is © The Royal Society of Chemistry 2015
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islands of small characteristic size D (e.g., the diameter for disks or the width for
ribbons) compared with the light wavelength, such that the optical electric eld E
¼ �Vf can be expressed in terms of a scalar potential f. The islands are however
taken to be large enough to be described as innitesimally thin domains char-
acterized by a local, frequency-dependent 2D conductivity s(u). Following
previous analyses for graphene,43,61,100 we write the self-consistent potential at
positions R ¼ (x, y) in the plane of the island as

fðRÞ ¼ fextðRÞ þ 1

neff 2
i

u

ð
d2R0

jR� R0jVR0$sðR0;uÞVR0fðR0Þ; (A1)

which is the sum of the external perturbation fext and the contribution produced
by the induced charges (integral term). The island is chosen to lie at the planar
interface between two media of permittivities 31 and 32, which contribute to the
above expression through a 1/neff

2 factor multiplying the in-plane Coulomb
potential, where

neff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð31 þ 32Þ=2

p
: (A2)

Now, using the denitions~q ¼ R/D and

h ¼ 1

neff 2
isðuÞ
uD

;

taking the gradient in both sides of eqn (A1), and multiplying by � ffiffiffi
f

p
, we nd100

~3
�
~q;u

� ¼~3 ext
�
~q;u

�þ hðuÞ
ð
d2~q0M

�
~q;~q0

�
$~3
�
~q0;u

�
; (A3)

where

~3
�
~q;u

� ¼ �
ffiffiffiffiffiffiffiffiffiffiffi
f ~q
� 	r

V~qf
~q;u
� 	

;

whereas f (~q) is a lling function that is 1 if~q lies on the metal and zero otherwise,
so that the frequency and spatial dependences of the conductivity are separated as
s(R, u) ¼ f(R)s(u). Notice that this formalism is also valid for inhomogeneous
layers by allowing f to take values different from 0 or 1.101 Here, we have dened

M
�
~q;~q0

� ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f
�
~q
�
f
�
~q0
�q
V~q5V~q

�
1
�

~q�~q0



�, which is a real, symmetric operator that

admits a complete orthonormal set of real eigenvectors ~3j and eigenvalues 1/hj
satisfying the relations

eigensystem/hj

ð
d2~q 0M

�
~q;~q0

�
$~3j
�
~q0
� ¼~3j

�
~q
�
;

orthogonality/

ð
d2~q~3j

�
~q
�
$~3j0
�
~q
� ¼ djj0 ;

closure/
X
j

~3j
�
~q
�
5~3j

�
~q0
� ¼ d

�
~q�~q0

�
I2:

Then, the solution to eqn (A3) reduces to

~3 ¼
X
j

�
cj
��

1� h
�
hj

��
~3j ; (A4)

where cj ¼
ð
d2~q~3 ext�~q�$~3j�~q�.
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Applying these results to a uniform external eld E0 aligned with a symmetry
direction of the island x̂ (i.e., for ~3ext ¼ ffiffiffi

f
p

DE0x̂), we obtain the polarizability

along that direction aðuÞ ¼ E0
�1
ð
d2RxrindðRÞ from the induced density

rindðRÞ ¼ is

u
VR$f ðRÞVRfðRÞ ¼ �is

uD2
V~q$

ffiffiffiffiffiffiffiffiffiffiffi
f ~q
� 	r

~3 ~q
� 	

: (A5)

Inserting eqn (A4) into this expression, we obtain

aðuÞ ¼ D3
X
j

Aj

�1

neff 2hj

� iuD

sðuÞ
; (A6)

where j runs over eigenmodes of the system and

Aj ¼






ð
d2~q

ffiffiffiffiffiffiffiffiffiffiffi
f ~q
� 	r

3jx ~q
� 	






2

(A7)

are dimensionless coupling coefficients. Using the conductivity of eqn (1), we can
recast eqn (A6) as

aðuÞ ¼ tD2

4p

X
j

Ajubulk
2

uj
2 � uðuþ igÞ ; (A8)

where the plasmons of the nanoisland can be identied with modes j of negative
eigenvalues hj and frequencies

uj ¼ ubulk

neff

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�4phj

p ffiffiffiffi
t

D

r
; (A9)

corresponding to the u z uj � ig/2 poles of eqn (A8).
Eqn (A8) involves coefficients that are subjected to two useful sum rules:61

(i) For any arbitrarily shaped island of area A, we have
X
j

Aj ¼ A=D2.

This result is readily obtained from the denition of the Aj coefficients in eqn
(A7) upon using the closure relation for ~3j (see above). Applying this sum to a
Drude metal (i.e., for frequency-independent ubulk), we conclude that the integral
of the extinction cross-section (f ua(u)) is actually proportional to ubulkAt,
which is in turn proportional to the number of electrons (i.e., it fullls the f-sum
rule102).

(ii) Another sum rule follows from eqn (A6) in the u / 0 limit (i.e., when the
island behaves as a perfect conductor, so that u/s / 0). Without loss of gener-
ality, we can consider a freestanding island (neff ¼ 1), so we have

�
X
j

hjAj ¼ að0Þ=D3. Now, for in-plane polarization of a disk of diameter D, we

have a(0)¼ D3/6p (this result can be derived from the polarizability of an ellipsoid

of vanishing height103), which leads to �
X
j

hjAj ¼ 1=6p. Likewise, from the

transversal polarizability of a thin metal ribbon of width D90 (a(0)¼ D2L/16, where

L / N is the length), we nd �
X
j

hjAj ¼ L=16D.
98 | Faraday Discuss., 2015, 178, 87–107 This journal is © The Royal Society of Chemistry 2015
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Interestingly, for these types of structures and polarizations, we nd one single
mode j ¼ p to be dominant and to absorb most of the weight in the above sums.61

More precisely, this is the lowest-order dipole plasmon. Neglecting all other
modes, these sum rules lead to the values of up, hp, and Ap listed in Table 1 and
extensively used throughout this work to produce analytical estimates of plas-
monic behavior.
Appendix B: charge induced by a single plasmon

We introduce a purely electrostatic scheme to normalize the induced charge
density rj(R) associated with a single plasmon j. From linear-response theory,102

the polarizability reads

aðuÞ ¼ 1

ħ

X
j

dj
2

�
1

uj � u� ig
�
2
þ 1

uj þ uþ ig
�
2

�
; (B1)

where

dj ¼
ð
d2RxrjðRÞ (B2)

is the dipole moment associated with mode j for polarization along a symmetry
direction x̂. Now, in order to compare eqn (B1) with eqn (A8), we neglect g2 in
front of uj

2 and approximate eqn (B1) as

aðuÞz 2

ħ

X
j

ujdj
2

uj
2 � uðuþ igÞ: (B3)

Now, inserting the Drude conductivity of eqn (1) into eqn (A6), comparing the
result with eqn (B3), and taking eqn (A9) into account, we nd the normalization
condition

dj
2 ¼ Ajħubulkneff

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi��hj

16p

	
tD5

r
: (B4)

Within the single-mode approximation noted at the end of the previous para-
graph, writing the charge density associated with the lowest-order disk dipole
plasmon as rp(R) ¼ rp(R)cos 4, where rp(R) gives the radial dependence, we nd
the normalization condition





ðD=2

0

R2 dRrpðRÞ





2

¼ ħubulkneff

16p2

ffiffiffiffiffiffiffiffiffiffi
2tD5

3p

r
:

Similarly, the plasmon charge density rp(x) along the transversal direction x̂ of a
ribbon contained in the |x| < D/2 region satises





ðD=2

0

x dxrpðxÞ





2

¼ ħubulkneff

64A

ffiffiffiffiffiffiffiffi
tD5

p

r
;

where A ¼ LD is the ribbon area (with L / N) and we have utilized the symmetry
rp(�x)¼ �rp(x). Using these normalizations, we nd that the analytical expressions
for rp that are given in Table 1, where the density prole is taken to t previous
calculations101,104 based upon the boundary-element method. Actually, these
formulas reproduce the calculated density proles rather well, as shown in Fig. 4.
This journal is © The Royal Society of Chemistry 2015 Faraday Discuss., 2015, 178, 87–107 | 99
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Table 1 Analytical approximations for the parameters up, hp, and Ap corresponding to the
lowest-order dipole resonance of a disk of diameter D and a ribbon of width D and length
L / N. The dependence on the dielectric environment is entirely contained in a
factor neff ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið31 þ 32Þ=2
p

dividing the frequency when the film is placed at the interface
between two media of permittivities 31 and 32. The rightmost column shows approxima-
tions to the radial and transversal dependences of the charge density induced by a single
plasmon in disks and ribbons, respectively, which involve the coefficients
Cd

2 ¼ 4:58neffðħubulk=D3Þ ffiffiffiffiffiffiffiffi
t=D

p
and Cr

2 ¼ 3:10neffðħubulk=LD2Þ ffiffiffiffiffiffiffiffi
t=D

p
. The ribbon edges are

taken at x ¼ �D/2

up hp Ap rp(R)

Disk ðubulk=neffÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3pt=8D

p �2/3p2 p/4 Cd
x

D

 
1þ e�5ð1�2R=DÞ

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2R=D

p
!

Ribbon ðubulk=neffÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4t=pD

p �1/16 L/D Cr
x

D

0
B@1þ e�5½1�ð2x=DÞ2 �

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð2x=DÞ2

q
1
CA

Fig. 4 Induced charge of a single plasmon in thin disks and ribbons. We show the charge
densities associated with the lowest-order dipolar plasmon in a disk of diameter D (m ¼ 1
azimuthal symmetry) and in a ribbon of width D (transversal polarization with wave vector
kk ¼ 0 along the direction of translational symmetry). The solid curves correspond to
numerical results taken from the literature for disks104 and ribbons.101 The dashed curves
represent the fitting functions of Table 1.
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Appendix C: plasmon-enhanced emitter decay
rate
1. Density-matrix approach

It is convenient to expand the density matrix of eqn (6) as

r ¼
X
ln;l0n0

rln;l0n0 ðtÞ e�iðl�l0Þu0t e�iðn�n0Þupt e�ð1=2s0Þðlþl0Þt e�ðg=2Þðnþn0 Þtjlnihl0n0j; (C1)

where rln,l0n0(t) are time-dependent coefficients, while |lni denotes a state with n
plasmons accompanied by the excited (de-excited) emitter for l ¼ 1 (l ¼ 0).
Inserting this expression into eqn (6), we nd
100 | Faraday Discuss., 2015, 178, 87–107 This journal is © The Royal Society of Chemistry 2015
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_rln;l0n0 ¼ �ig
�
r0nþ1;l0n0

ffiffiffiffiffiffiffiffiffiffiffi
nþ 1

p
e�iDtdl;1 þ r1n�1;l0n0

ffiffiffi
n

p
eiDtdl;0

� rln;0n0þ1

ffiffiffiffiffiffiffiffiffiffiffiffi
n0 þ 1

p
eiD

*tdl0 ;1 � rln;1n0�1

ffiffiffiffi
n0

p
e�iD*tdl0 ;0

�
þ s0�1r1n;1n0e

�t=s0dl;0dl0 ;0 þ grlnþ1;l0n0þ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðnþ 1Þðn0 þ 1Þp
e�gt;

(C2)

whereD¼ up� u0� i(g� s0
�1)/2. We now argue that, for an initial density matrix

in which all terms of eqn (C1) with l + n > N or l0 + n0 > N are zero (i.e., a density
matrix involving a maximum number of N excitations in the combined plasmon-
emitter system), the last two terms of eqn (C2) vanishes because it involves states
that are never populated. We are then le with a self-contained subset of equa-
tions involving coefficients rln,l0n0 with l + n ¼ l0 + n0 ¼ N. For this manifold of N
excitations, we trivially nd solutions rln;l0n0 ¼ alna*l0n0 , where the coefficients aln
satisfy the equations

_a0N ¼ �iga1N�1

ffiffiffiffiffi
N

p
eiDt

_a1N�1 ¼ �iga0N
ffiffiffiffiffi
N

p
e�iDt

and admit the familiar Jaynes–Cummings solutions69�
a0N

a1N�1

�
f

��u�e�iuHt

g
ffiffiffiffiffi
N

p
eiu�t

!

with u� ¼ �D=2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2=4þ g2N

p
. In the |D| [ g limit, we have u+ z g2N/D and

u� z �D, so the solution with the upper (lower) signs has |a0N| � |a1N�1| (|a0N|
[ |a1N�1|) at t ¼ 0, and therefore it corresponds to the initially excited (de-
excited) emitter. The decay rate of the emitter when it is initially excited and the
plasmon is not populated (i.e., starting from l¼ 1, n¼ 0) is then given by the decay
of the |10i h10| term of eqn (C1) in the upper-sign solution. We nd G ¼ s0

�1 �
_r10,10(0)/r10,10(0) ¼ s0

�1 + 2Im{u+} z s0
�1 + 2g2Im{1/D}, which reduces to eqn (7)

under the condition gs0 [ 1.

2. Dielectric approach

The decay rate of an emitter placed at a position r0 in the vicinity of a plasmonic
structure can be related to its transition dipole d0 as105

G ¼ 1

s0
þ 2

ħ
Im


d*0$E

ind
�
; (C3)

where Eind is the self-induced electric eld produced by a dipole d0 located at r0.
We can calculate this eld from the dielectric formalism of Appendix A using the
induced density of eqn (A5), but now the coefficients cj of eqn (A4) have to be
obtained from the external dipole eld Eext ¼ (1/neff

2)(d0$V0)V0(1/|r0 � R|), where
neff is dened in eqn (A2) (notice that the potential produced by the dipole at the
planar interface between media of permittivities 31 and 32 is the same as in a
vacuum multiplied by 1/neff

2). Aer some algebra, we nd

d*0$E
ind ¼ t

4pneff 4D4

X
j

ubulk
2

uj
2 � uðuþ igÞ







ð
d2R

"
V~q$

ffiffiffiffiffiffiffiffiffiffiffi
f
�
~q
	r
~3j
�
~q
�#

�
�
d0$V0

1

jr0 � Rj
�






2

: (C4)
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Inserting eqn (C4) into eqn (C3), and retaining only the j ¼ p term, we recover the
emitter decay rate given by eqn (7) with the exact same value of the coupling rate g
as given by eqn (4), provided we dene

rj
�
~q
� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ħubulk

2t

8pujD4

s "
V~q$

ffiffiffiffiffiffiffiffiffiffiffi
f ~q
� 	r

~3j ~q
� 	#

:

Finally, inserting this expression into eqn (B2), integrating by parts, and keeping
in mind the denition of Aj in eqn (A7), we recover eqn (B4) for the plasmon
transition strength. Therefore, we conclude that the normalization of the plas-
mon charge density discussed in Appendix B, based upon the polarizability of the
plasmonic structure, produces the same decay rate of a neighboring emitter when
calculated either following the semi-classical dielectric formalism described in
this paragraph or using the density-matrix formalism with the intuitive coupling
rate dened by eqn (4).
Appendix D: Drude parameters for noble metals
and graphene

We show in Fig. 5 the Drude parameters ubulk and g for silver, gold, and graphene.
For noble metals, we obtain these parameters by tting the measured dielectric
function of the material106 to the expression 3(u) ¼ 1 � ubulk

2/u(u + ig). For
graphene, we use the local-RPA conductivity,36,107 which we correct in the
following expression to simultaneously account for inelastic attenuation and
nite temperature T in both intraband and interband transitions:61,108,109
Fig. 5 Drude parameters for the response of noble metals. We represent the u-depen-
dent parameters ubulk (solid curves) and g for Au and Ag as obtained from 3(u)¼ 1� ubulk

2/
u(u + ig), where 3(u) is the measured dielectric function of these materials.106 The gra-
phene parameters are obtained by fitting eqn (1) to match the local-RPA conductivity (eqn
(D1)) with the Fermi energy, mobility, and temperature EF ¼ 1 eV, m ¼ 10 000 cm2 V�1 s�1,
and T¼ 300 K, respectively, assuming a film thickness t¼ 0.34 nm equal to the interatomic
plane distance in graphite. Notice that ubulk is no longer real for ħu > 1.66 eV in graphene
(i.e., above the range of plasmonic response for the chosen doping level).
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sðuÞ ¼ �e2

pħ2
i

uþ is�1

ðN
�N

dE

"
|E|

vfE

vE
þ ðE=|E|Þ

1� 4E2
��
ħ2ðuþ is�1Þ2� fE

#
; (D1)

where fE ¼ 1/[1 + e(E�EF)/kBT] is the Fermi-Dirac distribution as a function of elec-
tron energy E and Fermi energy EF. The rst term inside the integral of eqn (D1),
which corresponds to intraband electron–hole pair transitions within the partially
occupied Dirac cones of the doped carbon layer, can be integrated analytically to
yield a contribution ie2EeffF /pħ2(u + i/s) with EeffF ¼ EF + 2kBT log(1 + e�EF/kBT). The
second term, which originates in interband transitions between lower and upper
Dirac cones, needs to be integrated numerically. In Fig. 5, we represent ubulk and
g for graphene by tting eqn (1) to the values of s(u) calculated from eqn (D1).
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