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ABSTRACT 

Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) are strains of the bacte-
rium S. aureus that are responsible for skin and soft tissue, blood, bone, and other infections that can be 
life threatening. CA-MRSA strains are resistant to standard antibiotics related to penicillins and have a 
high prevalence in the general community, as well as in healthcare facilities. CA-MRSA presents novel 
challenges for computational epidemiological modeling compared to other commonly modeled diseases. 
CA-MRSA challenges include modeling activities and contact processes of individuals in which direct 
skin contact can be an important infection pathway, estimating disease transmission parameters based on 
limited data, and representing behavioral responses of individuals to the disease and healthcare interven-
tions. We are developing a fine-grained agent-based model of CA-MRSA for the Chicago metropolitan 
area. This paper describes how we are modeling CA-MRSA disease processes based on variants of stand-
ard epidemiological models and individual agent-based approaches. 

1 INTRODUCTION 

Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) are strains of the bacte-
rium S. aureus that are responsible for skin and soft tissue, blood, bone, and other infections that can be 
life threatening. CA-MRSA strains are resistant to standard antibiotics related to penicillins and have a 
high prevalence in the general community, as well as in healthcare facilities. CA-MRSA presents novel 
challenges for computational epidemiological modeling compared to other commonly modeled diseases, 
such as influenza and smallpox. There have been few epidemiological simulation models focusing on 
CA-MRSA until now. This paper describes aspects of modeling CA-MRSA and its spread throughout the 
community that have not been previously reported. These include modeling the co-location of individuals 
and the nature of contact between individuals that could result in CA-MRSA transmission, individual be-
havior in response to MRSA infection, and the effects of healthcare interventions on individuals. The 
modeling approaches developed here may also apply to other diseases and in other public health contexts.  
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This paper is organized as follows. Section 2 provides background on CA-MRSA and epidemiologi-

cal modeling. Section 3 describes the CA-MRSA modeling problem and our approaches to modeling con-
tact, disease transmission and transition, behavior, and metrics. Section 4 presents conclusions.  

2 BACKGROUND 

2.1 Community Associated (CA-)MRSA 

Staphylococcus aureus is a bacterium first described in 1880 in pus from surgical abscesses. Frequently, 
S. aureus lives on the skin, in the nose, throat, and other body surfaces. It has been estimated that up to 
30% of the population are “staph carriers,” exhibiting no symptoms unless an active infection is present. 
Through the 1950s, S. aureus infections were generally treated with early beta-lactam antibiotics includ-
ing penicillin. In the early 1960s an antibiotic-resistant form of S. aureus, named MRSA (Methicillin-
Resistant S. aureus) was isolated in the United Kingdom. MRSA was identified in the U.S. in 1968. Ini-
tially described in hospitals and  facilities, this strain was referred to as “health care-associated” MRSA 
(HA-MRSA). HA-MRSA strains had evolved an ability to resist treatment with all beta-lactam antibiot-
ics, requiring treatment with specialized antibiotics. In hospitals, patients with open wounds, invasive de-
vices, and compromised immune systems were at greater risk for contracting this infection. The spread of 
bacterial colonies from patient to patient was attributed in part to contacts with hospital staff, which sug-
gests that modeling the nature and frequency of contacts between  workers and patients is of central im-
portance in modeling HA-MRSA transmission.  

MRSA was identified in the general community outside of the healthcare system in the late 1990s, 
and genetically distinct strains came to be called Community-Associated MRSA (CA-MRSA). Simple 
CA-MRSA skin infections are often found in people living or working in close quarters where skin con-
tact is more likely, such as in households or as members of sports teams, prison inmates, child care work-
ers, etc. However, individuals with no apparent risk factors have also contracted CA-MRSA. Why some 
healthy people develop CA-MRSA skin infections that are treatable, whereas others infected with the 
same strain develop severe and potentially deadly infections is the subject of ongoing research.  

CA-MRSA infection reports increased dramatically across the U.S. and Europe in the early 1990s, 
leading to the recognition that CA-MRSA had reached epidemic proportions. CA-MRSA became the 
most frequent cause of skin and soft tissue infections seen in emergency departments in the U.S. through-
out the first decade of the 2000s. The frequency of reported deaths from invasive MRSA infections sur-
passed the number of deaths from HIV-AIDS in the U.S. to become the number one public health crisis in 
the country. Lee et al. (2012) estimate that in the U.S., CA-MRSA imposes an annual burden of $478 mil-
lion to $2.2 billion on third-party payers and $1.4 -13.8 billion on society, depending on the CA-MRSA 
definitions and incidences. One of the goals of the CA-MRSA model discussed here is to understand the 
factors that might have been responsible for the rapid progress of the epidemic in its early stages.  

2.2 Epidemiological Modeling 

The differential equation model proposed by Kermack and McKendrick (1927) for modeling infectious 
disease spread provides a conceptual framework for modeling CA-MRSA in an agent-based modeling 
framework. The SIR model, as it is known, has been widely used to understand and predict the behavior 
of many epidemics. A population is divided into three groups, or compartments, which consist of suscep-
tible individuals, denoted by S, infected individuals, denoted by I, and recovered individuals, denoted by 
R (thus S-I-R):  
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dS
dt

= ��SI / N

dI
dt
= �SI / N��I

dR
dt

=�

Initial conditions: S0 = N �1, I 0 =1, R0 = 0.

 (1) 

where � is related to both the number of contacts an individual has with other individuals and the likeli-
hood that an infected individual transmits the infection to a susceptible individual upon contact, � is the 
rate at which infected individuals recover from an infection, which is taken as 1/(mean duration of the ill-
ness), and N is the population size, assumed to be constant. The SIR model is termed a homogeneous 
mixing model because of three implicit assumptions: the population is fully mixed in such a way that a 
susceptible individual is equally likely to have contact with anyone in the population; all individuals have 
the same number of contacts per unit time; and infected individuals transmit the disease to any susceptible 
individual with the same probability. Each of these assumptions is relaxed in an agent-based epidemic 
model, which, unlike the deterministic system in Equation (1), is also stochastic in nature.  

Equation (1) represents the number of susceptible individuals that become infected in the time inter-
val �t. Sterman (2000) and others note that � is a composite of two factors, the number of contacts per in-
dividual, �c, and the probability that the infection is transmitted from an infected individual to a suscepti-
ble individual upon contact, �i, as in , where only the composite of �c and �i appears in Equation 
(1). If �S is the number of susceptibles infected in �t, then 
 

�S = (number of susceptibles, S) � Pr[Susceptible becomes infected in �t]. 
 
Decomposing the probability that a susceptible individual becomes infected into its contact and infectivity 
components yields the following: 
 
�S = (Number of contacts per individual) � Pr[infection is transmitted from an infected individual to a 

susceptible individual upon contact] � S I / N. 
 

where the number of contacts per individual is taken as an average value in the deterministic SIR model.  
In an agent-based model of disease transmission, the activities of individuals that lead to contact with 

others are explicitly modeled. Disease transmission is context-dependent and modeled as a stochastic pro-
cess.  The processes that give rise to contact and infection, can be treated separately, mechanistically, and 
in great detail. There are equivalence relationships between differential equation, system dynamics, and 
agent-based models that can inform the epidemic agent-based modeling process (Rahmandad and Ster-
man 2008, Macal 2010).   

2.3 Agent-based Epidemiological Modeling 

From a public health perspective, Maglio and Mabry (2011) observe that agent-based modeling applica-
tions to public health are relatively new, but see ABM as part of an important “movement in public health 
to embrace systems science methodologies and the interdisciplinary study of complex systems.” Some 
large-scale agent-based epidemiological models have appeared in the literature with varying degrees of 
detail and sophistication. Many of these focus on modeling influenza, such as EpiSimS, a massive simula-
tion of the dynamics of contagious pandemic influenza in an artificial society (Stroud et al. 2007), 
GSAM, a global simulation of pandemic influenza (Parker and Epstein 2011), and the urban pandemic in-

� � �c �i
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fluenza model by Aleman et al. (2009). An agent-based approach to modeling infective processes explic-
itly models the processes of contact, infection, treatment, and recovery.  

2.4 Background on Modeling HA-MRSA 

Detailed simulation models for HA-MRSA in the healthcare setting include Chamchod and Ruan (2012), 
Meng et al. (2010), Barnes et al. (2010), D’Agata et al. (2009), Forrester et al. (2005), Hotchkiss et al. 
(2005), Raboud et al. (2005), and Sebille and Valleron (1997). HA-MRSA models are typically probabil-
istic transmission models or discrete-event simulations that model movements of healthcare workers, con-
tacts with patients, and patient contact with the hospital environment. Facilities are represented in spatial 
detail, and time is represented in discrete increments, as in a process or discrete event simulation. This 
approach facilitates the fine-grained modeling of individual contacts between patients and healthcare 
workers, including the nature of, duration of, and timing of contacts, which is necessary to fully investi-
gate the effects of such contact. In another application, Lee et al. (2011) model HA-MRSA transmission 
in a model of a hospital system by modeling patient transfers between facilities.   

3 MODELING CA-MRSA 

The challenges for modeling CA-MRSA differ from those for modeling HA-MRSA. Instead of modeling 
individual facilities or the relationships between facilities, the entire community must be modeled. There 
are many open questions about the types of contact between individuals that might result in CA-MRSA 
transmission and the importance of individual factors, such as genetic predisposition, demographic char-
acteristics, etc. In addition, some individuals seem to resist colonization and infection, while others appear 
to be in a semi-permanent state of colonization. CA-MRSA differs from other diseases such as influenza 
in several important ways for modeling; in influenza models, the geographic scope is often national or 
global, as mobility patterns could allow infection to spread around the globe within a short time. For CA-
MRSA, the focus is on the community, and the geographic scope is local or regional, such as a metropoli-
tan area; the effects of new people entering the region are not thought to be large once CA-MRSA has 
been established in the community. The asymptomatic colonization state makes the disease interesting in 
terms of modeling agent behaviors. Specific aspects of modeling CA-MRSA contact and transmission as 
embodied in the CA-MRSA ABM are described in the following sections. The CA-MRSA ABM is being 
developed as part of the Models of Infectious Disease Agent Study (MIDAS 2012).  

3.1 Contact Through Modeling Agent Activities 

The CA-MRSA ABM models people as agents who go through their daily activities at various places in 
the metropolitan area, on an hourly basis, and separately for weekdays and weekends. Agents engage in 
activities that afford possibilities for disease transition, such as self-infection due to an abrasion or injury, 
or transmission, if other agents are present and have close contact. The model includes a synthetic popula-
tion of agents for the metro area based on U.S. Census and other data (Wheaton et al. 2009). Individual 
places across the area are included in the model, with locations denoted by geographic coordinates. 
Agents located in the same place and engaged in the same activity at the same time in the simulation pos-
sibly have the type of close physical contact with one another that can result in CA-MRSA transmission. 
They may transition to different disease states through contact or other possible disease state transition 
pathways. 

Data are combined from many data sources to model the daily activities of the synthetic agent popula-
tion. The American Time Use Survey (ATUS) is used to model adult activities. ATUS, available from the 
U.S. Department of Labor, measures the amount of time people spend in various activities, such as paid 
work, childcare, volunteering, and socializing. The Panel Study of Income Dynamics (PSID) is used to 
model children’s activities. PSID, administered by the University of Michigan, is a longitudinal house-
hold survey. The ATUS data categorize an extensive number of individual daily activities. For the CA-
MRSA ABM, ATUS activities are aggregated into a smaller number of categories most relevant to the 
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kinds of contact that might occur for individuals engaged in the activities and the possibilities these activi-
ties afford for CA-MRSA disease state transmission and transition. Places and activities relevant to CA-
MRSA include households, schools, workplaces, hospitals and clinics, jails and prisons, and general liv-
ing quarters, such as nursing homes, college dorms, gyms, and military barracks. These CA-MRSA spe-
cific activities can be modified as new data and studies are reported. Each place and activity type has its 
own model for the likelihood of uncolonized individuals becoming colonized or infected when engaged in 
that activity. 

Agent activities vary by time of year; for example, children are out of school during summer recess 
and have different contact patterns. We assume that the time of year is not important in terms of the direct 
effect of environmental conditions (temperature, humidity, rainfall, etc.) on CA-MRSA infectivity, since 
no data suggests these factors are important for CA-MRSA.  

To model individual activities and movements as realistically as possible, assignment algorithms have 
been developed to match specific people with specific places and activities. Children agents are matched 
to schools, people agents are matched to workplaces, individuals who visit other households are matched 
to a set of households they could likely visit, etc. For example, children are matched to the nearest schools 
in their neighborhood, based on geographic coordinates of households and schools. Within schools, stu-
dents are assigned to grade levels based on age, which allows for children to have more contact with the 
children in their same classrooms, and less contact with other children in the same school. The matching 
is designed to be statistically accurate. Although an agent may not correspond exactly to a specific person 
in the population engaged in an activity at a particular time and place, the aggregate of all the agents en-
gaging in all such activities at a particular time is consistent with empirical data at the regional level. 

3.2 Modeling Disease Transmission and Disease State Transition 

We model the disease transitions between the three disease states for CA-MRSA: colonized (denoted by 
C), uncolonized (denoted by U), and infected (denoted by I). The uncolonized state corresponds to the 
state S and infected to state I in the SIR model, Equation (1). Colonized is an additional compartment cor-
responding to an asymptomatic state in which an individual has measurable levels of CA-MRSA but ex-
hibits no symptoms. An individual transitions between pairs of these states and is susceptible to repeated 
colonizations and infections. Figure 1 summarizes the CA-MRSA disease states and transitions in the 
CA-MRSA ABM.  

Various approaches to modeling contact have been used in epidemiological models. Some model dis-
ease state transition as a Markov process with probabilistic “memoryless” agent disease state transitions 
(Larson 2007). Others model the social contact structure for individuals within households based on fami-
ly relationships. For example, Marathe et al. (2011) considers synthesized household contact networks for 
complete mixing and care-giver types. In care-giver networks, infected individuals have contact only with 
caregivers, who in turn have contact with the rest of the household members.  

There is incomplete data at this time on the nature of various contacts and specific relationships 
among individuals that result in CA-MRSA colonization or infection. So the CA-MRSA ABM uses a hy-
brid approach to model contact likelihood, based partly on perfect mixing and partly on implied social 
network relationships by activity. Disease transition at the individual level is modeled by transition prob-
abilities and event scheduling. The event scheduler is a nondeterministic finite state automaton (FSA) and 
discrete event simulation (DES). The FSA models individual disease state transition in the absence of 
agent behavioral responses or policy interventions. Effectively, this is a Markov discrete-time state transi-
tion model in which agents change disease states and are dynamically compartmentalized based on their 
current disease and activity states. The DES is used to model disease state transitions that depend on indi-
vidual patient behavior and assumed policy interventions, and potentially of physician and healthcare 
worker behavior.  

The next section describes modeling each disease transmission and transition pathway.  
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Figure 1 Disease State Transition Probabilities in CA-MRSA Model 

3.2.1 Uncolonized to Colonized 

An uncolonized individual may become colonized upon contact with a colonized or infected individual. 
The likelihood of an individual becoming colonized is greater when the individual contacts an infected 
individual than when contacting a colonized individual. We assume CA-MRSA is only transmitted be-
tween individual people; transmission does not occur from animals to people or through contact with in-
animate objects (fomites). If ongoing research shows other transmission pathways could be important, the 
structure of the CA-MRSA ABM allows them to be readily incorporated. 

We define the parameter a as the empirically-estimated transition probability of an uncolonized indi-
vidual (in disease state U) becoming colonized (transitioning to disease state C) due to contact for one 
hour with a colonized individual. (Empirical estimation of all parameters  in the model is described in 
Section 3.2.6.) Parameter a is the only disease state transition parameter in the CA-MRSA model that is 
the result of physical contact between individuals. To reflect a higher probability of becoming colonized 
upon contact with an infected individual, we define the Transmission Intensity Parameter (TIP), which 
scales the transmission rate. The value of TIP is based on expert judgment of clinical physicians,  and is 
one of the model parameters designated for sensitivity testing experiments.  

The likelihood of transmission also depends on the kind of activity individuals are engaged in that re-
sults in contact. For example, activities in which abrasions are more likely as the result of contact, such as 
certain sports activities, are more likely to result in colonization of an uncolonized individual by a colo-
nized or infected individual. To account for this activity-related risk, a is adjusted according to the risk 
level of the place and activity in which the contact occurs. This scaling factor is denoted as the 
Place/Activity Risk parameter (PAR). Equation 2 summarizes the state transition process from the uncol-
onized to the colonized state. 

 
 Pr[Us � C] = TIPs � PAR � a (2) 

 
where Us is the disease state of the uncolonized individual having contact with an individual in state s 
{C, I}, and TIPs depends on the state of the contacting individual.  

Uncolonized

Colonized

Infected

e

b x AIP 

1 - (a x PAR x TIP) 

c

1 - c - d

1 - b x AIP - e~0

d

a x PAR x TIP 

PAR varies by place/activity
TIP    = 1 if U has contact with C
          = 2 if U has contact with I
AIP varies by activity type

PAR: Place/Activity Risk parameter
TIP: Transmission Intensity Parameter
AIP: Activity Infection Parameter 
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3.2.2 Colonized to Infected 

Colonized individuals may develop infections by infecting themselves as a result of a skin abrasion, cut, 
or other injury, represented as parameter b, estimated from empirical data. In the model, 

 
 Pr[C � I] = AIP � b 

 
where b is the probability of a colonized individual becoming infected per hour, and AIP (Activity Infec-
tion Parameter) is a parameter that reflects the relative likelihood that an activity results in an infection. 
An infected individual either clears the infection naturally through self-care or seeks treatment. Upon re-
ceiving care, the individual is treated with antibiotics and most likely clears the infection, returning to ei-
ther a colonized (parameter c below) or uncolonized state (parameter d below). If the infection clears by 
itself, we assume it takes several days longer to clear than if it is treated. We assume that an individual 
passes through the C state to become infected; direct infection by a colonized or infected individual is not 
an important pathway.  

3.2.3 Infected to Colonized 

We assume an infected individual eventually clears the infection, either through self-care or by receiving 
treatment, and returns to either a colonized state or uncolonized state. We characterize the disease state 
transition from I to C by a probability as: 

 
 Pr[I � C] = c 

 
where c is the probability of an infected individual transitioning to a colonized state per hour after receiv-
ing treatment, estimated from empirical data. If the individual does not receive treatment, this probability 
is adjusted downward, as described below and represented in Figure 4, corresponding to observed disease 
durations for individuals who self-care.  

3.2.4 Infected to Uncolonized 

We characterize the disease state transition from I to U by the probability : 
 
 Pr[I � U] = d  
 
where d is the probability of an infected individual transitioning to an uncolonized state per hour after 
seeking treatment, estimated from empirical data. If the individual does not receive treatment, this proba-
bility is adjusted downward, corresponding to observed disease durations for individuals who do not seek 
treatment.  

3.2.5 Colonized to Uncolonized 

An individual may spontaneously become uncolonized (i.e., without treatment), as the individual’s own 
defenses eliminate the bacteria, or through targeted decolonization treatments. The hourly probability of 
the transition is denoted by parameter e, estimated from empirical data: 
 
 Pr[C � U] = e. 
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3.2.6 Estimating Disease Transmission and Transition Parameters 

Miller et al. (2012) conducted a cross-sectional study of adults and children with skin infections and their 
household contacts in Los Angeles and Chicago; it is one of the few sources of detailed data on CA-
MRSA infection and colonization disease states over time. These data, along with data from studies in the 
literature on CA-MRSA infection and colonization, are the basis for estimating disease state transmission 
probabilities.  

Describing the full process for estimating transmission parameters is beyond the scope of the current 
paper. In general, parameter estimates are based on Miller et al. (2012) and a small set of time series data 
from the literature. Bootstrap resampling is applied to the household contact data to estimate uncertainty 
ranges for the disease state transition parameters a, c, d, and e; data from several studies on CA-MRSA 
infection rates are used to estimate the range for parameter b. Figure 2 shows, for example, the resampled 
distribution for disease state transitions U � C. Figure 3 shows the estimated ranges for all parameters.  

3.2.7 Modeling Behaviors  and Policy Interventions 

Ferguson (2007) contends that understanding the dynamics of infectious-disease transmission demands a 
holistic approach, yet today's models largely ignore how epidemics change individual behavior. Some 
models incorporate endogenous behavior of agents who dynamically respond to disease states computed 
by the model. Del Valle et al. (2005) use a simplified model of an epidemic outbreak that includes behav-
ioral changes modeled by the permanent transfer of individuals during the outbreak to a less active class; 
transfer rates depend on people’s knowledge of the outbreak as measured by the number of identified cas-
es. Epstein et al. (2008) model two interacting compartmentalized contagion processes: one of disease and 
one of fear of the disease. Aleman et al. (2009) and Aleman et al. (2011) model the actions of individuals 
based on the recognition of a pandemic outbreak; as people realize an outbreak is occurring, they decide 
to quarantine themselves, admit themselves to hospitals, etc. Lizon et al. (2010) incorporate patient be-
haviors and interactions with healthcare workers into their model.  

Figure 2 Bootstrap resampling statistics for 
portion of the population transitioning 
from U to C state in 90 days based on 660 
data points and 200 samples.  95% confi-
dence interval is [0.0796, 0.1308] (used for 
estimation of parameter a), 
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We develop a framework for modeling behavior of patients, and potentially of healthcare workers. 

Figure 4 shows a scenario in which an individual agent acquires a CA-MRSA infection for the first time. 
The behavioral framework shown explicitly represents the infection duration, actions the agent might take 
in response to the infection, and a possible public health intervention. An alternative behavioral model 
might be invoked for the same agent if infection reoccurs; for example, the next time the agent develops 
an infection, they might seek treatment more quickly and receive alternate treatments.  

Figure 4 Discrete Event Framework for Modeling Behavior 

3.3 Data Logging and Metrics 

A deterministic differential equation epidemic model produces the values for the state variables over the 
simulation time horizon, which consists of the numbers of individuals in each disease state. A detailed 
agent-based model produces data on many more variables in a single simulation run, from agent disease 
states to agent interaction outcomes, to agent behavioral responses activities. The stochastic nature of the 
simulation also requires many simulation runs to properly characterize uncertainty. Recording all of the 
data the model produces is prohibitive due to the overhead of recording and storing the data. A subset of 
“indicator variables” consists of summary statistics computed by the model and logged as the simulation 
progresses. The indicator variables are initially used for debugging and to determine whether the model is 
producing reasonable results; later in the modeling process indicator variables are used for model calibra-
tion, verification, and validation. Indicator variables include infected and colonized counts at each time, 
new colonizations due to contacts with infected and colonized individuals, dendograms for selected 
agents that portray their entire disease state history, and many more. 

t1

Individual 
becomes infected

t3 

t2

t4

U

Infected 
seeks 

treatment

Household 
contacts begin 

treatment

Household contacts 
decolonized

Household contacts 
remain colonized

Infected seeker 
to uncolonized 

Infected 
seeker to 
colonized C

Infected self-care to 
uncolonized

Infected self-care 
to colonized

a

1 - a

g

1 - g

q

1 - q

z

1 - z

7
Nominal 

Timeline (days)14 19 28

Infected 
self-care

0

Behavioral 
branching
Probabilistic 
branching
Milestone

Pool for 
disease state

Key:

Notes: (1) a, q, g, z are empirically estimated parameters related to  the propensity of individuals to exhibit 
specific behaviors. (2) t1 is the distribution of time individuals wait before deciding to seek care, t2 is the 
time individuals remain infected after seeking care, t3 is the time individuals remain infected after deciding 
to self-care, t4 is the delay in starting decolonization treatments for household members after an infected 
individual from the household seeks care, under a simulated household decolonization program.  
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Indicator variables include metrics that correspond to the metrics that public health decision makers 

typically use to understand epidemics. One of the key metrics that indicates the severity of an epidemic is 
called the basic reproduction ratio, referred to as “R0,” an empirical statistic often calculated from surveil-
lance data in the initial stages of fast-moving epidemics, such as influenza. R0 is defined as “the expected 
number of secondary cases produced in a completely susceptible population, by a typical infected indi-
vidual during its entire period of infectiousness” (Diekmann et al. 1990) and is typically calculated as the 
spectral radius of the next generation operator for a differential equation epidemic model. From Equation 
(1), R0 (not to be confused with the number of recovered individuals at time zero from Equation (1)) is es-
timated as , which can be seen by assuming the index patient is the only infected at t = 0, and interacts 
with a fully susceptible population. When estimated in this way, R0 is a threshold, rather than the average 
number of secondary infections and is used to understand whether an epidemic will die out (R0 < 1) or be-
come endemic (R0 > 1). Longini et al. (2005) provides a method for calculating R0 from a stochastic epi-
demiological model, which also applies to agent-based models, by performing many simulations starting 
with a single infected individual entering a wholly susceptible population. For an agent-based model, R0 
can also be calculated explicitly, true to its definition as the number of secondary infections per infected 
individual per infection episode by logging data on agent colonization/infection (C/I) events and C/I in-
teractions with other agents. This calculation is done in the CA-MRSA ABM.  

4 CONCLUSIONS 

We are developing a fine-grained agent-based model of community associated CA-MRSA for the Chica-
go metropolitan area. Time is represented at the hourly level and space is represented at the place and ac-
tivity level. The model represents the details of contact and disease transmission and transition for indi-
viduals as they go through their daily routines and participate in various activities in various places. The 
model combines U.S. Census data, samples of individual activity diaries, data from the CA-MRSA litera-
ture, clinical data, expert judgments based on clinical experience, and specialized studies. The model pro-
vides a detailed picture of general activity patterns of the population, CA-MRSA transmission pathways, 
and individuals’ behaviors in response to contracting the disease and public health programs. Using tradi-
tional epidemic models as a foundation, several modeling challenges (modeling contact, infectivity, be-
havior, metrics) are addressed in making the transition to the CA-MRSA ABM, some of which are appli-
cable to other diseases that share CA-MRSA characteristics.  
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