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Abstract—We propose a decision triggered data transmission
and collection (DTDTC) protocol for condition monitoring and
anomaly detection in the industrial Internet of things (IIoT). In
the IIoT, the collection, processing, encoding, and transmission
of the sensor readings are usually not for the reconstruction of
the original data but for decision making at the fusion center.
By moving the decision making process to the local end devices,
the amount of data transmission can be significantly reduced,
especially when normal signals with positive decisions dominate
in the whole life cycle and the fusion center is only interested
in collecting the abnormal data. The proposed concept combines
compressive sensing, machine learning, data transmission, and
joint decision making. The sensor readings are encoded and
transmitted to the fusion center only when abnormal signals
with negative decisions are detected. All the abnormal signals
from the end devices are gathered at the fusion center for a
joint decision with feedback messages forwarded to the local
actuators. The advantage of such an approach lies in that it
can significantly reduce the volume of data to be transmitted
through wireless links. Moreover, the introduction of compressive
sensing can further reduce the dimension of data tremendously.
An exemplary case, i.e., diesel engine condition monitoring,
is provided to validate the effectiveness and efficiency of the
proposed scheme compared to the conventional ones.

Index Terms—Industrial Internet of things (IIoT), machine
learning (ML), data transmission, joint decision making, con-
dition monitoring, anomaly detection

I. INTRODUCTION

In the foreseeable future, not only all the humans but

all the things will be interconnected, entitled as Internet of

everything (IoE), with the help of ubiquitous computing and

pervasive connectivity. Industrial Internet of things (IIoT), as

one key component of IoE, has been bringing great societal

impact to the industry [1]. It is driven by industrial automation

and digitalization, and applicable to multifarious application

fields, just to name a few, smart manufacturing (to control the

manufacturing environment and monitor the production lines),

smart city (to use different IoT sensors to collect data and use

the insights gained from it to increase operational efficiency),

autonomous driving, drone, vessel, and telemedicine [2], [3].

This work has been performed in the framework of the IIoT Connectivity
for Mechanical Systems (ICONICAL), funded by the Academy of Finland.
This work is also partially supported by the Academy of Finland 6Genesis
Flagship (grant 318927).

In order to support the ever-growing number of connected

things, e.g., consumer devices, drones, vehicles, and continu-

ous data transfer, a huge amount of spectrum resources are in

high demand. Nevertheless, the problem of spectrum crunch

already exists, which is certain to continue as the number of

connected devices is expected to grow exponentially. In order

to address this critical problem, new methodologies should

be considered for the paradigm shift from the conventional

human-centric scenarios to future machine-centric ones. In the

human-centric applications, the processing and transmission

of the data is to reconstruct the original data at the receiver

side with a required fidelity. However, for the machine-centric

IIoT, the purpose of data collection is usually for extracting the

critical features in the data and making real-time decisions [4].

Spectrum- and cost-efficient schemes should be adopted to

reduce the amount of data to be transmitted while maintaining

the accuracy level of the decision making by taking into

account the new features of the machine-centric IIoT.

In this paper, we propose a novel concept, which takes

advantage of compressive sensing (CS), machine learning

(ML), data transmission (DT), and joint decision making &

storage, for efficient data transmission and collection in the

IIoT. In the conventional scheme, all the sensor readings are

transmitted to the fusion center through wireless links or stored

at the end devices. Such a scheme has three drawbacks: 1)

The real-time analysis cannot be conducted. 2) It requires

a large amount of memory for the end devices. 3) High

demand for the channel capacity is required. In order to

enable real-time analysis while keeping the memory size

reasonably small, our proposed concept can perfectly meet

these requirements. On one hand, CS can reduce the dimension

of the data to be further processed and transmitted due to the

sparsity property of the sensor readings. On the other hand, the

module, empowered by the ML techniques, can be leveraged

to make local decisions based on the sensed time series. If

the anomaly happens less frequently, the normal data is not

necessary to be transmitted and stored at the fusion center

due to its easy availability. The interesting time series are the

abnormal ones, which, on the contrary, should be transmitted,

further processed jointly, and stored at the fusion center. We

entitle this concept as decision triggered data transmission and
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collection (DTDTC), especially for IIoT networks. We further

provide a case study on condition monitoring and anomaly

detection of a big diesel engine in mechanical systems with

field-measurement data, where the normal states are supposed

to occupy more than 90% of the life cycle of the engine. It

is verified that the proposed concept can significantly reduce

the amount of data transmission while maintaining the same

performance.

II. CUTTING-EDGE TECHNIQUES

The IIoT is a cross-disciplinary technology, which includes

information and communication technology (ICT), data sci-

ence, mathematics, and related fields. The promising cutting-

edge techniques, which enable the practical implementation of

the IIoT, are selected and listed below:

• Compressive sensing/sampling for dimension reduction

while guaranteeing recovery of the sparse signals with a

high probability.

• Artificial intelligence (AI), e.g., machine learning (ML),

deep learning (DL), and (deep) reinforcement learning

(RL), for decision making, prediction, and inference.

• Fog computing and edge computing for reducing end-to-

end latency.

• Energy- and cost-efficient communications and network-

ing algorithms for saving power and prolonging network

lifespan.

Provided that the sensed signals are smooth or piece-wise

smooth1, CS can be leveraged to reduce the dimension of

the signals logarithmically while guaranteeing a satisfactory

reconstruction accuracy [5]. The low-complexity ML tech-

niques, e.g., one-class support vector machine (SVM) [6] and

random decision forests [7], enable decision making at local

end devices, mobile edge, fusion center, etc. Edge computing

enables computation capability at the edge of any networks,

thus, reducing the transmission latency. Energy efficient and

near-instant communications and networking schemes, driven

by cellular techniques [8], [9], are the state-of-the-art digital

transmission techniques for the future IIoT with the guarantee

of a wide range of coverage, ultra-high data rate, and ultra-low

latency.

III. DECISION TRIGGERED DATA TRANSMISSION AND

COLLECTION

Paradigm shift from conventional full data transfer to deci-

sion triggered data transmission and collection (i.e., partial

data transfer) will play a critical role in the future IIoT

networks [10].

In some use cases of the IIoT, most of the sensor readings

are not necessary to be transmitted to and stored at the

fusion center, e.g., engine state monitoring, due to their easy

availability and high-cost transmission. Therefore, we propose

the DTDTC concept, shown in Fig. 1, which consists of a CS

module, a ML module, and a DT module at each end device

(i.e., sensor node), and a joint decision & storage module at the

1Most of the cases, signals are smooth or piece-wise smooth in the IIoT,
e.g., cylinder pressure discussed in the sequel.
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Fig. 1: Decision triggered data transmission and collection.

fusion center, for such use cases. A binary decision codebook

is introduced at the end devices, where “1” stands for a normal

signal and “0” stands for an abnormal signal. Based on the

decisions, the end devices determine whether to transmit the

decision index or the raw data to the fusion center depending

on the decisions. If the decision is positive, i.e., with binary

decision “1”, the end devices notify the index to the fusion

center. Otherwise, the abnormal signal is quantized, encoded,

and transmitted to the fusion center. After receiving all the

signals from the end devices, the fusion center conducts a

majority vote for a joint decision. Besides, the fusion center

stores the abnormal signals for future usage, e.g., training a

more advanced but complicated ML model. We will describe

all the modules in details in the sequel.

A. Compressive Sensing

Multiple sensor nodes are deployed to sense the same pa-

rameter at different locations. Compressive sensing is applied

to each original data signals, i.e., x1, . . . ,xK ∈ R
N×1, where

N can be chosen as the number of samples in one period.

The source signals are separately sensed through a linear

measurement matrix as

yi = Φixi + zi, for i = 1, . . . ,K (1)

where each element of Φi ∈ R
Mi×N follows the Gaussian

distributions N (0, 1

Mi

) and zi ∼ N (0, σ2

zi
IMi

) is the additive

white Gaussian noise (AWGN). We assume that Φ1, . . . ,ΦK

are fixed and known at the decoder. The source signal xi =
Ψui is assumed to have a sparse representation in a transform

domain, where Ψ ∈ R
N×N is usually an orthonormal matrix,

i.e., ΨTΨ = IN , with ()T denoting the transpose and IN
being the identity matrix with dimension N × N , and ui is

the sparse transform coefficient vector. The support of ui is

expressed as Ωui
= {j|ui,j 6= 0}, and the cardinality of Ωui

is Ci, i.e., |Ωui
| = Ci. Without loss of generality, we set

M1 = · · · = MK = M . The measurement rate of the CS is

defined as RM = M
N

.

B. One-Class SVM

In the scenario of condition monitoring, it is easy to get

normal sensor readings. In this sense, normal and abnormal
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training samples are highly unbalanced. The one-class SVM

can be used here as a decision making technique. The general

idea is to map the input training data to a high dimensional

feature space and iteratively find the maximal margin in the

hyperplane which best separates the training data from the

origin. For the training (using the measurements from (1),

defined as {yT,1, · · · ,yT,m}), the optimization problem is

formulated as follows [6]:

min
a,R,ξ

R2 +
1

mν

m∑

l=1

ξl

s.t. ‖φ(yT,l)− a‖2 ≤ R2 + ξl,

∀l = 1, . . . ,m, ξl ≥ 0, (2)

where a is the center of the hypersphere and its radius is

R, m is the number of training samples, ν is the predefined

parameter that controls the trade-off between the size of the

hypersphere and the fraction of training samples falling outside

the hypersphere. Terms ξl, l = 1, . . . ,m are the slack variables

that allow a portion of the training samples to lie outside the

hypersphere. The function φ(·) is used to map the training

samples to a higher dimensional space, e.g., φ(·) : RM →
RQ,M < Q. For the testing, if the new input y satisfies

‖φ(y)−a‖2 > R2, one can claim that an anomaly is detected,

and vice versa.

C. Data Transmission

In the existing cellular IoT standards, e.g., the extended

coverage GSM IoT (EC-GSM-IoT) and narrowband IoT (NB-

IoT), a low-complexity channel code (i.e., tail-biting convolu-

tional code (TBCC)) and lower-order modulation are consid-

ered [11]. It is reasonable that low-complexity modulation and

coding scheme (MCS) are adopted in the IoT end devices due

to their limited computation power, memory size, and battery

capacity.

Besides cellular IoT standards, there exist a series of short-

range communication standards, such as wireless local area

networks (WLANs), for instance, IEEE 802.11 [12], and

wireless personal area networks (WPANs), e.g., IEEE 802.15.1

or IEEE 802.15.4, enabled by bluetooth, Zigbee, etc [13].

The general principle for the MCS is also applied to these

standards. In our proposed DTDTC concept, for the index

transmission, extremely low-rate short-blocklength channel

coding scheme can be considered, while for the abnormal data

transmission, we can adopt the scheme: TBCC with lower-

order modulation.

D. Joint Decision Making & Storage

After receiving all the signals/indices from the end devices,

the majority vote is the easiest method for joint decision

making at the fusion center based on all the local decisions

made at the end devices. The reconstruction of abnormal

signals can be done by ℓ1-norm based algorithm (e.g., basis

pursuit [5]), greedy algorithm (e.g., orthogonal matching pur-

suit (OMP) [14]), and iterative approximate message passing

(AMP) [15]. The reconstructed abnormal signals are stored

at the fusion center, which will be used for training more
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Fig. 2: A case study on V-configuration diesel engine state monitor-
ing.

Fig. 3: A snapshot of cylinder pressure of the diesel engine, provided
by Wärtsilä.

advanced machine learning models, e.g., deep neural network

(DNN).

IV. CASE STUDY: ENGINE STATE MONITORING

In this section, we provide a case study on engine state

monitoring by following the proposed DTDTC concept. In or-

der to monitor the state of the diesel engine, cylinder pressure

is continuously measured by 10 sensor nodes, installed within

the V-configuration engine, as shown in Fig. 2. Each sensor

node has the functionalities, depicted in Fig. 1, i.e., CS, ML,

and data transmission. In order to provide some intuition about

the sensor readings, we provide a snapshot of cylinder pressure

from 10 pressure sensors in Fig. 3.

Because of the rotation in the mechanical diesel engines,

there are good physical intuition that the actual measurements

exhibit cyclostationary characteristics [16]. In this sense, for

the training and testing of the ML methods, the input of the

ML model can be one period of CS measured samples. We

follow this principle in the following experiments.

A. Experiments with Field Measurement Signals

We focus on the field measurement data on cylinder pres-

sure, gathered by 10 sensors within the engine on 22.2.2013.

The sampling rate is 50 kHz. In order to validate the proposed

concept, we run simulations based on half-an-hour samples

when the engine is in a normal state. The samples are stored
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TABLE I: SIMULATION PARAMETERS

Parameter Value

number of sensors 10
sampling rate 50 kHz

duration 30 minutes
number of H5 files 30

number of training vectors per file 200
number of testing vectors per file 170

measurement rate 0.5
kernel ‘linear’
ν 0.02
α 0.00001
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Fig. 4: End-to-end accuracy rate for the proposed scheme
with/without CS.

in 30 H5 files with each file last one minute. That means

each file contains 3×106 samples. Since the cylinder pressure

is cyclostationary, we divide one file into multiple segments

with each last one period of time. We use 200 of them for

training one-class SVM, i.e., m = 200, and the remaining for

testing. The performance metrics we consider are the end-to-

end accuracy rate (based on joint decision making), transmis-

sion efficiency (related to the number of transmitted indices

and that of transmitted sequences, including both raw data

and compressively sensed data sequences), and reconstruction

accuracy for the CS based schemes. For the CS setup, we

use random Gaussian measurement matrix with measurement

rate set to 0.5, i.e., RM = 0.5. In the one-class SVM, we

use a linear kernel with ν = 0.02. We use least absolute

shrinkage and selection operator (LASSO) [17] for the CS

reconstruction at the fusion center with penalizing parameter

α = 0.00001 and adopt normalized mean square error (NMSE)

as the performance metric. The simulation parameters are

summarized in Table I.

In the experiments, it is assumed that the transmission

channels are always perfect for the purpose of simplicity. No

specific quantization, channel coding, and modulation schemes

are taken into consideration. We left these aspects as our future

works.

As shown in Fig. 4, the simulation results of end-to-

end accuracy rate are presented. One can observe that the

introduction of CS makes no major difference on the accuracy

rate performance compared to the scheme without CS. We

also provide the results of the reconstruction accuracy for

the scheme with CS2, the number of transmitted sequences

and that of transmitted indices for the schemes with and

without CS. Detailed comparisons are made between the

proposed DTDTC approach and the conventional transmission

scheme (i.e., transmitting all the raw data), shown in Table II.

The conclusion can be drawn from the results that 1) the

introduction of CS does not affect the accuracy of the joint

decision making, and 2) our proposed DTDTC can signifi-

cantly improve the transmission efficiency, since transmitting

an index is apparently much more efficient and beneficial for

energy saving than transmitting the whole data sequence.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a novel concept of effi-

cient data transmission and collection (DTDTC) protocol for

condition monitoring and anomaly detection. It is feasible

and applicable in the IIoT realms by enabling local decision

making at the end devices. Our proposed concept has been

validated by real-field measurement engine data provided by

Wärtsilä in terms of reconstruction distortion, accuracy rate of

joint decision making, and the number of transmitted indices

and sequences. As observed from our numerical discussions,

this concept is beneficial for improving energy efficiency, since

it can tremendously reduce the amount of transmitted data.

As an initial study, we only use the one-class SVM as the

machine learning tool for local decision making. Its simplicity

is well tailored for the IoT end devices due to their limited

battery and computation capability. There exists a trade-off

between the performance and the computational complexity.

In the future, more advanced machine learning techniques can

be applied when the IoT devices have stronger computation

power and are able to harvest energy from their ambient

environments.

Besides, different parameters, including vibration, noise,

temperature, stress, etc, should be jointly considered for the

condition monitoring and anomaly detection other than only

considering one single parameter, e.g., cylinder pressure.
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