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Abstract

Object proposals for detecting moving or static video ob-
jects need to address issues such as speed, memory com-
plexity and temporal consistency. We propose an efficient
Video Object Proposal (VOP) generation method and show
its efficacy in learning a better video object detector. A
deep-learning based video object detector learned using the
proposed VOP achieves state-of-the-art detection perfor-
mance on the Youtube-Objects dataset. We further propose
a clustering of VOPs which can efficiently be used for de-
tecting objects in video in a streaming fashion. As opposed
to applying per-frame convolutional neural network (CNN)
based object detection, our proposed method called Objects
in Video Enabler thRough LAbel Propagation (OVERLAP)
needs to classify only a small fraction of all candidate pro-
posals in every video frame through streaming clustering of
object proposals and class-label propagation. Source code
will be made available upon publication.

1. Introduction

Object proposal generation is a common pre-processing
step for object detection in images, which is a key challenge
in computer vision. Object proposals dramatically decrease
the number of detection hypotheses to be assessed. Thus,
use of CNN-features [11], which is more effective but com-
putationally expensive, have turned out to be feasible for
accurate detection. For the detection of video objects, pro-
posals not only need to consider the space-time complexity,
but also need to address the temporal consistency. We pro-
pose generating Video Object Proposals (VOP) by scoring
candidate windows based on spatio-temporal edge content
and show that these VOPs help in learning better video ob-
ject detectors. Further, we propose an efficient online clus-
tering of these proposals in order to process arbitrary long
videos. We show that the joint-analysis of all such windows
provides a way towards multiple object segmentations and
helps in reducing test time object detection complexity.

We divide a video into sub-sequences with one-frame

Figure 1. OVERLAP: Object class labels get propagated by
streaming clustering of temporally consistent proposals. The sys-
tem classifies only those VOPs which belong to a new cluster.

overlap in a streaming fashion [37, 34]. We analyze all
candidate windows jointly within a sub-sequence followed
by affinity-based clustering to produce temporally consis-
tent clusters of object proposals at every video frame. The
advantage of performing a streaming spatio-temporal clus-
tering on the object proposals is that it enables an easy label
propagation through the video in an online framework. Pre-
sumably all object proposals of a cluster have the same ob-
ject class type. We propose deep-learning based video ob-
ject detection through objects’ class label propagation using
online clustering of VOPs. As opposed to applying R-CNN
[11]-like approaches, which essentially classify every win-
dow based on the expensive CNN features, at every video
frame, the proposed method of label propagation requires
detection/classification only on video frames which has new
clusters (fig. 1) . Our main contributions are as follows:
• We present a simple yet effective Video Object Pro-

posal (VOP) method for detecting moving and static
video objects by quantifying the spatio-temporal edge
contents;

• We present a novel algorithm, “Objects in Video
Enabler thRough LAbel Propagation” (OVERLAP),
that exploits objects’ class label propagation through
streaming clustering of VOPs to efficiently detect ob-
jects in video with temporal consistency.

We also present the following minor contributions:
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• Demonstrating VOP’s efficacy in learning a better
CNN-based video object detector model;
• Object segmentation as a by-product of object detec-

tion framework, OVERLAP.

2. Related Works
There are several approaches towards video object de-

tection which broadly fall into three categories : (1) image
object proposals for each frame (2) motion segmentation in
video (3) supervoxel aggregation.

Object Proposals and detection: Unsupervised
category-independent detection proposals are evidently
shown to be effective for object detection in images. Some
of these methods are Objectness [1], category-independent
object proposals [8], SelectiveSearch [35], MCG [2], GOP
[21], BING [6], EdgeBoxes [7]. A comparative literature
survey on object proposal methods and their evaluations can
be found in [15, 14]. Although there is no “best” detection
proposal method, EdgeBoxes, which scores windows based
on edge content, achieve better balance between recall and
repeatabilty.

Applying image object proposals directly for each frame
in video may be problematic due to time complexity and
temporal consistency. In addition, issues like motion blur
and compression artifacts can pose significant obstacles to
identifying spatial contours, which degrades the object pro-
posal qualities. Recent advances like SPPnet [13], Fast R-
CNN [12], and Faster R-CNN [31] have dramatically re-
duced the running time by computing deep features for all
image locations at the same time and snapping them on ap-
propriate proposal boxes. Per-frame object detection still
needs classification of proposal windows and temporal con-
sistency still remains a challenge. The proposed framework
dispenses with the need of classifying every candidate win-
dow of every video frame through spatio-temporal cluster-
ing, thus addressing temporal consistency.

Motion Segmentation in Video: Motion based segmen-
tation is the task of separating moving foreground objects
from the background. Several popular methods of motion
segmentation include the layered Directed Acyclic Graph
(DAG) based framework [39], Maximal weight cliques
[26], fast motion segmentation [28], tracking many seg-
ments [25], identifying key segments [24], and many more.
Although video motion segmentation can detect moving
foregrounds robustly, it is not easy to detect multiple ob-
jects or if objects suddenly stop or change motion abruptly.

Supervoxel aggregation: Spatio-temporal object pro-
posals have been considered in the context of aggregat-
ing supervoxels with spatio-temporal connectivity between
neighboring labels. Jain et al [18] developed an extension of
the hierarchical clustering method of SelectiveSearch [35]
to obtain object proposals in video. Even though their inde-
pendent motion evidence effectively segment objects with

motions from the background, static objects can not be re-
covered. Oneata et al. [27] presented spatio-temporal ob-
ject proposals by a randomized supervoxel merging pro-
cess. Sharir et al. [32] proposed the extension of category-
independent object proposals [8] from image to video by
extracting object proposals at each frame and linking across
frames into object hypotheses in a framework of graph-
based segmentation using higher-order potentials leading to
a high computational expense. All these supervoxels of-
ten cannot replace the object proposal step for object de-
tection either due to its complexity or the associated over-
segmentations.

3. Video Object Proposals
We extend EdgeBoxes [7] from generating image object

proposals to video object proposals. In addition to the spa-
tial edge responses, Es, at every pixel in EdgeBoxes [7],
we consider exploiting temporal edge responses, Et, at ev-
ery pixel location using mid-range optical flow analysis.

Et,Et ∈ RM×N
≥0 (1)

M and N are the height and width of an image.

3.1. Spatio-Temporal Contours and VOP

Optical flow field between pairs of consecutive frames
provide approximate motion contours. We perform 2-frame
forward optical flow [5] for every consecutive frame-pair.
At every pixel, the magnitude of the flow field’s gradient
and the difference in direction of motion from its neighbor
[28], contribute to the measure of the motion contour. To
address incompleteness and inaccuracies of two-frame opti-
cal flow estimation, we analyze mid-range optical flow over
a subset of video frames. Within a sub-sequence, we ap-
proximate which pixels consistently reside inside a moving
object using inside-outside maps [28]. In our experiments,
the inside-outside maps, accumulated over 3 - 5 frames, pro-
vide good estimates of time-consistent gross location priors
for moving objects. In Section 5.2, We describe how this
mid-range accumulation can effectively be exploited for ob-
ject label propagation through streaming clustering. A sim-
ple edge detector on this location prior is called temporal
edge, Et.

EdgeBoxes [7] employs efficient data structures to score
millions of candidates based on the difference of number of
spatial contours that exist in the box and those that straddle
box’s boundary. We use a similar scoring strategy, but on
spatio-temporal edge E ∈ RM×N

≥0 which is formed accord-
ing to Eq 2.

E = λEt + (1− λ)Es, λ ∈ [0, 1] (2)

As the value of λ increases, the system favors detecting
only moving objects. One example of spatio-temporal
edge is demonstrated in figure 2. A linear combination



Figure 2. Spatio-Temporal EdgeBoxes. Clock-wise from top-left
- (i) A video frame from Youtube-Objects dataset, (ii) Temporal
edge Et i.e. normalized gradient of location prior from motion
analysis, (iii) Spatial edge Es i.e. structured edge detection on
video frame, (iv) linear combination of spatial and temporal edge
E brings out the prominent contours of both static and/or moving
objects.

of spatial and temporal edge responses represents spatio-
temporal contours. This enables a simple yet efficient
strategy for scoring based on spatio-temporal edge content
through edge groups. We find intersecting edge groups
along horizontal and vertical boundaries using two efficient
data structures[7]. We use the integral image-based imple-
mentation to speed up scoring of boxes in sliding window
fashion. As described in the next section, object propos-
als based on these spatial-temporal contours outperforms
those based on only spatial contours for video object de-
tection. The presence of motion blur in spatial edges affects
the performance of spatial contour based proposal predic-
tion in video frames. In practice, λ = 0.2 to 0.5 works well
for Youtube-Objects dataset.

4. Learning Video Object Detector Model
We aim for detecting objects in generic consumer videos.

Due to the domain shift issues between images and video
frames [20], our 10-class video object detection uses su-
pervised pre-training from ImageNet reference model for
classification and fine-tuning on annotated frames from
Youtube-Objects dataset v2.0 [29, 20, 30] for video objects
detection.

Youtube-Objects dataset. The dataset is composed of
videos collected from Youtube by querying for the names
of 10 object classes of the PASCAL VOC Challenge. It
contains 155 videos in total and between 9 and 24 videos
for each class. The duration of each video varies between

30 seconds and 3 minutes. However, only 6087 frames are
annotated with a bounding-box around an object instance.
Hence, the number of annotated samples is approximately
4 times smaller than in PASCAL VOC.

The bottom-up region proposal methods play an impor-
tant role. Motion blur and compression artifacts affects the
quality of spatial edges in video frames, thus, generating
good object proposals becomes more challenging. This is
to be noted that R-CNN [11], or, Fast R-CNN [12] are
fine-tuned for image object detection task, especially for
20-class PASCAL VOC image object categories which is
a superset of Youtube-objects categories.

Feature extraction. We extract a 4096-dimensional fea-
ture vector corresponding to each region proposal using
GPU-based (GeForce GTX 680) the Caffe [19] implemen-
tation of the CNN described by Krizhevsky et al. [22].
Features are computed by forward propagating a mean-
subtracted 227 × 227 R-G-B image through five convolu-
tional layers and two fully connected layers.

Region Proposals. We use approximately 2000 candi-
date proposals per video frame to be processed for learn-
ing detectors. We investigate the object detection model
with different region proposal methods such as selective
search[35], EdgeBoxes[7]. As the resolution of different
videos varies from VGA to HD, we re-size every video
frame to 500 × 500 before performing proposal generation
task.

Training. We discriminatively pre-train the CNN on a
large auxiliary dataset (ILSVRC2012 classification) using
image-level annotations, followed by domain specific fine-
tuning by replacing the last layer of AlexNet [22] model
with 10 + 1 softmax output layer. We use two-step initial-
ization for fine-tuning as described in [4]. As per PASCAL
detection criteria, we treat all region proposals with ≥ 0.5
IoU overlap with a ground-truth box as positives for that
class of the box and the rest as negatives. Once features are
extracted and training labels are applied, we optimize one
linear SVM per class.

Test time detection. During test time, approximately
500 to 2000 VOPs are generated. Then forward propagation
is performed through the CNN to compute features. Finally,
we perform scoring using per-class trained SVM similar to
[11] followed by non-maximum suppression.

In the below section 5, we describe the alternate test
time detection using OVERLAP through objects’ class label
propagation.

5. OVERLAP: Objects in Video Enabler
thRough LAbel Propagation

Classical approach for object localization has tradition-
ally been image window classification, where each window
is scored independent of other candidate windows. Re-
cently, more success in object detection has been reported



by considering spatial relations to all other windows and
their appearance similarity [36] with examplar-based asso-
ciative embedding. Our approach towards video object de-
tection considers spatial relationship and appearance simi-
larity with windows within and even in other nearby video
frames, yet in much simpler way through spatio-temporal
clustering, to avoid classifying every candidate windows.

5.1. Joint analysis of windows

We aim to detect dissimilarity between VOPs generated
within a sub-sequence based on a simple underlying prin-
ciple: proposals corresponding to the same object exhibit
higher statistical dependencies than proposals belonging to
different objects.

As a motivation for our approach, we consider generat-
ing proposal boxes by perturbing the ground truth locations
of PASCAL VOC 2007 objects’ bounding boxes and ob-
serve the statistical association of those proposal boxes. Let,
A and B denote generic features of neighboring proposal
windows, where neighborhood is characterized by non-zero
Intersection-Over-Union (u). We investigate the joint distri-
bution over pairingsA,B. Let, p(A,B;u) be the joint prob-
ability of features A and B of windows with spatial overlap
value, u. Then, P (A,B) could ideally be computed as :

P (A,B) =
1

Z

∫ 1

u

w(u)p(A,B;u)du (3)

where, u ∈ [0, 1], w is a weighting function, w(0) = 0,
and Z is a normalization constant. To simplify the process,
we use uniform weighting function and work in the discrete
(quantized) space of u and replace the integral with sum-
mation. We take the marginals of the distribution to get
P (A) and P (B). Motivated by the analysis presented in
crisp boundary detection work by Isola et al. [17], we model
affinity with point-wise mutual information like function:

PMIρ(A,B) = log
P (A,B)ρ

P (A)P (B)
(4)

We choose the value of ρ to be 1.2 which produces
best performance in PASCAL VOC dataset with perturbed
ground truth proposals. In order to identify the boundary
between two features, the model needs to be able to cap-
ture the low probability regions of P(A,B). We use a non-
parametric kernel (Epanechnikov) density estimator. The
number of sample points are the number of overlapping
candidate windows. We perform affinity-based clustering
afterwards. The affinity matrix, W, for a sub-sequence is
created from the affinity function, PMIρ, as follows:

Wi,j = ePMIρ(fi,fj) (5)

Where i and j are the indices of proposal windows and f
is the feature vector defined for a proposal window. Figure
3 shows an example of spatial clustering of proposal win-
dows. The boxes drawn in same colors correspond to same

Figure 3. Synthetic experiment using perturbed ground truth loca-
tions in PASCAL VOC showing affinity-based clustering of can-
didate windows. The clustering technique works efficiently with
some exceptions where overlapping object instances share very
similar color.

clusters. In the streaming VOP clustering framework for
Youtube videos, we perform the joint analysis on all propos-
als within a sub-sequence. Intuitively this is an easy yet ef-
fective clustering technique which works on actual test pro-
posals (see Figure 8) which are not simply perturbed ground
truth bounding boxes.

This is to be noted that the proposed method measures
the affinity between different object proposal windows (of
varying sizes) within a video sub-sequence (in different
video frames) unlike [17], where the affinity is between the
neighboring pixels in an image.

We demonstrate object segmentation can be achieved
as a by-product of this clustering algorithm. We cast
the segmentation problem through random-field based
background-foreground segmentation without manual la-
beling [23]. Uniformly weighted sum of the location of ev-
ery window corresponding to a unique cluster defines the
foreground location prior for that cluster. However, unlike
[23], in our approach, the location prior is not coming from
the global neighbors of the image but from within itself and
the clustering allows multiple objects segmentations. The
segmentation works well if the proposal boxes tightly en-



Figure 4. Segmentation masks from clustered object proposals.

Figure 5. Segmentation masks generation is not successful where
proposal boxes do not tightly enclose the actual object. This hap-
pens in cluttered background cases.

close an object as shown in figure 4 with some failure cases
as shown in figure 5 where the proposal boxes do not tightly
enclose the object in a cluttered background.

Figure 6 shows two segmentation masks generated on in-
dividual video frames from the clustered video object pro-
posals generated by the proposed VOP on real videos.

5.2. Streaming clustering of proposals

One of the main contributions of this paper is a simple,
principled, and unsupervised approach to spatio-temporal
grouping of candidate regions in streaming fashion. We
describe a clustering framework which enforces a Marko-

Figure 6. Two segmentation masks from clustered video object
proposals from Youtube video “Bird and Cat” for frames #5, #20
and #45.

vian assumption on the video stream to approximate a batch
grouping of VOPs. A video is divided into a series of sub-
sequences with one frame overlap with the previous sub-
sequence as described in [37]. VOP clustering within the
current sub-sequence depends on the results from only the
previous sub-sequence. We consider sub-sequence length
of 3 to 5 frames as a trade-off between quality and com-
plexity. This is the same sub-sequence volume, where mid-
range motion analysis is performed for detecting tempo-
ral edges (Section 3.1 ). The color-histogram features are
used for estimating joint probability between any overlap-
ping window-pair and affinity-based clustering is performed
afterwards. There are two important aspects in this stream-
ing clustering method. The first is generic to any clustering
algorithm i.e. how to select the number of clusters and the
second is specific to streaming method i.e. how to associate
cluster number of the current sub-sequence with any of the
clusters of previous and/or future sub-sequences?

5.2.1 Number of clusters.

Common consumer or Youtube videos contain limited num-
ber of moving objects, often less than five. Youtube-Objects
dataset contains maximum of 3 object instances and quite
often a single moving object. We assume the presence
of at most 5 objects to keep the computational complex-
ity tractable and amenable to practical applications. We
explore two modes of operations. The first method uses
fixed number of clusters, k = 5, with careful initialization
of cluster centers using k-mean++ [3] during spectral clus-
tering. The second one is the spectral clustering with self-
tuning [38]. We observe that while self-tuning outperforms
the fixed cluster number case for hypothetically good object
windows ( such as the perturbed ground truth regions for
PASCAL VOC ), both modes perform similarly in case of



real object proposals generated by some proposal method.

5.2.2 Cluster Label Association.

In the streaming framework, any sub-sequence except for
the first one, needs to address the problem of either as-
sociating a cluster with a cluster number in the previous
sub-sequence or generating a new one. We perform den-
sity estimation using an Epanechnikov kernel using the KD-
tree implementation from [16] for every cluster using the
4-dimensional location (2D center, height and width) and
45-bin color histogram (15 for each color channel) of the
regions of the proposals corresponding to each and every
cluster. If the minimum KL-divergence between a distribu-
tion of the current cluster and a cluster from the previous
sub-sequence is less than a threshold, we perform the clus-
ter assignment. Otherwise, we create a new cluster.

This is to be noted that, for detecting primarily moving
objects in videos, the weight of temporal edges could be as
high as 0.7 or more as described in section 3.1. In such
cases, considering as low as only 100 VOPs can potentially
detect moving objects. Clusters may contain fewer num-
ber of proposal windows than the dimension of the original
feature space which is 49-dimensional. Thus we perform
PCA-based dimensionality reduction before estimating the
distribution. Also, we perform scaling of features to ease
the process of selecting kernel evaluation points.

5.3. Object Label Propagation.

Time-consistent clustering enables object label propaga-
tion through the video. We perform CNN-based object de-
tection i.e. classification of every window in CNN feature
space at a video frame only when we encounter a new clus-
ter label. An assigned cluster label means the object cate-
gory is the same as what was already detected in the associ-
ated cluster of the previous sub-sequence. We still need to
perform the localization, however. In order to address the
localization, we fit a 4-D Gaussian distribution on the lo-
cation parameters ı.e. center (x,y), height(h) and width(w),
of windows in a cluster. We simply keep track of the dis-
tance, d, of the detected final object location (after first-
time detection using R-CNN like approach) from the mean
of the fitted Gaussian for every cluster. Furthermore, we
localize the object by adding d with the mean of the 4-D
Gaussian location distribution of the cluster in current sub-
sequence. In general videos, new objects do not appear in
every video frame. Thus, we do not need to detect objects
at every video frame. Even when a new object appears, we
need to detect/classify only for the proposals assigned to the
new cluster. Thus, OVERLAP framework requires to pro-
cess CNN features for only a small fraction of the number
of proposals generated.

In some sense, the spatio-temporal clustering for object
detection is related to tracking. However, a set of windows

is tracked instead of a single region/object. Ability to by-
pass critical tracker initialization step and the possibility
for applying R-CNN like detection at a more frequent and
configurable interval to increase the detection accuracy (if
needed) are the major advantages.

6. Experimental Results
6.1. Video Object Detector using VOP

We observe that the proposed VOP helps in learning a
better object detector model. Table 1 shows the per-class
detection accuracy and the mean Average Precision (mAP)
for the 10-class Youtube-Objects Test set [29].

classes R-
CNN

DPM Fine-
tune
SS

Fine-
tune
EB

Fine-
tune
VOP

plane 14.1 28.42 25.57 26.52 29.77
bird 24.2 48.14 27.27 27.27 28.82
boat 16.9 25.50 27.52 33.69 35.34
car 27.9 48.99 35.18 36 41
cat 17.9 1.69 25.02 27.05 33.7
cow 28.6 19.24 43.01 44.76 57.56
dog 12.2 15.84 24.05 27.07 34.42
horse 29.4 35.10 41.84 44.82 54.52
mbike 21.3 31.61 26.70 27.07 29.77
train 13.2 39.58 20.48 24.93 29.23
mAP 20.57 29.41 29.67 31.92 37.413

Table 1. Object Detection Results on Youtube-Objects test set.
Pre-trained R-CNN detector[11] is downloaded from [10]. De-
tection result using Deformable Parts Model [9] (DPM) are from
[20]. Fine-tune SS uses fine-tuning with Selective Search propos-
als (similar to R-CNN), Fine-tune EB uses fine-tuning with Edge-
Boxes proposals and Fine-tune VOP uses fine-tuning with pro-
posed video Object Proposals (λ = 0.2).

Fine-tuning on Youtube-Objects training data with Se-
lective Search proposals [35] improves the detection results
by at least 9% compared with the model fine-tuned for the
image dataset PASCAL VOC. The detector learned with
EdgeBoxes performs better than the one learned with Selec-
tive Search proposals. However, the detector learned with
VOP even outperforms the detection rate by another 5.5%
and achieves state-of-the-art detection accuracy (37.4%) on
this dataset. Although detection accuracy for “cat”, “cow”,
“dog” and “horse” have improved by a huge margin after
using CNN features, categories like “train” and “bird” are
still best detected using DPM [9] detector.

6.2. Streaming Clustering of VOP

Figure 8 shows the results of frame-level clustering vs
streaming clustering at sub-sequence levels on arbitrary
videos downloaded from Youtube. In these experiments,
a sub-sequence contains 3 video frames, with an overlap of



Figure 7. Sample results of Video Object Detection with VOP. First 6 rows show successful detection cases and the last row shows false
detection cases.

one frame from the previous sub-sequence. We use high λ
value ( 0.8 ) to identify only the moving objects with very
few number of proposals. For clear visualization, we use
only 50 proposal windows at every frame and that makes
less than 200 proposals per sub-sequence. We aim to take
the advantage of fast approximate spectral clustering al-

gorithm which scales linearly with the problem size. In
our current implementation, clustering takes less than 0.1
second for 3 frames streaming-volume with 50 VOPs per
frame.



PF SS PF EB
PF VOP OVERLAP

CPU OF GPU OF CPU Optical Flow GPU Optical Flow
200 V 500 V 1K V 2K V 200 V 500 V 1K V 2K V

Prop time 10 0.3 3.8 1.3 3.8 1.3
Overall time 30 20.3 23.8 21.3 6.2 9.3 14.6 28.0 3.7 6.8 12.1 26.5

mAP 29.62 31.95 37.72 37.72 28.59 33.59 35.82 36.63 28.59 33.59 35.82 36.63

Table 2. Complexity and accuracy comparison. Proposal generation (Prop time), overall detection time for per-frame (PF) baseline methods
with Selective Search (SS) proposals, EdgeBoxes (EB) proposals, proposed VOPs and OVERLAP are shown. Baseline methods use 2000
proposals per frame. GPU OF and CPU OF denote GPU-based and CPU-based optical flow (OF) respectively. mAP increases as number
of VOPs increases. About 3× speedup achived with 500 VOPs with only 4% drop in mAP compared to the baseline per-frame detection.

Figure 8. Temporal consistency in streaming clustering of VOPs
on arbitrary videos “Horse riding”, “Bird-cat” and “Alaskan bear”
downloaded from the Internet. Windows drawn in same color be-
long to same cluster. Top rows of every pair show the proposals
clustered on individual frame (frames #2, #10, #25 in each case)
level; bottom row shows the results of streaming clustering.

6.3. Video Object Detection

To investigate the relative detection rate with OVERLAP
compared with frame-wise R-CNN like approach, we cre-
ate a subset (955 frames) of Youtube-Objects test-set (1783
frames) where the video frames form a valid video play. We
find that for OVERLAP, CNN feature extraction and classi-
fication is needed only for 10% to 30% windows among all
of them. Table 2 corroborates the fact that the detection ac-
curacy improves as we increase the number of VOPs from

200 to 2000 in OVERLAP at the cost of increased complex-
ity needed for spectral clustering. Difference in mAP is be-
tween 1-9% . As an example, compared to per-frame detec-
tion, OVERLAP achieves about 3× speedup at the cost of
only 4% mean Average Precision (mAP) with 500 VOPs per
frame. The non-GPU based spectral clustering implemen-
tation in MATLAB makes cases for more than 2000 VOPs
even slower than per-frame RCNN.

Per-frame proposal generation with Selective Search and
EdgeBoxes takes about 10 seconds [14] and 0.3 seconds
[14] respectively. Overall time for object detection per-
frame in R-CNN per-frame becomes about 30 seconds and
20.3 seconds with the above corresponding methods. Gen-
eration of VOPs requires optical flow which takes 3.5 sec
per frame in CPU-implementation and 1 sec per frame for
GPU-implementation for about 500×500 resolution frame-
pairs. “CPU” and “GPU” in Table 2 denote optical flow im-
plementation in CPU [5] and GPU [33] respectively. The
Youtube-Objects dataset mostly contains moving objects.
In addition, the test dataset does not contain significant
number of test cases where multiple instances of objects
with similar appearances are spatially overlapped. Thus, ac-
curacy of OVERLAP successfully approaches the baseline
per-frame detection accuracy as we increase the number of
VOPs. For the fastest detection (with 200 VOPs only), we
use more weight (lambda = 0.6) for temporal edge and still
manage to get acceptable detection accuracy with over 5×
speedup as shown in the column corresponding to 200 VOP
in Table 2. GPU-based spectral clustering can potentially
lead to further speed up.

7. Conclusion
Experimental results show that VOP helps in learning

a better moving or static video object detector model and
achieves state-of-the-art detection accuracy on Youtube-
Video dataset. We show that the proposed OVERLAP
framework can detect temporally consistent objects in
videos through object class label propagation using stream-
ing clustering of VOPs with significant speedup compared
with naive per-frame detection with acceptable loss of accu-
racy. We also show that multiple objects segmentation can
also be achieved as a by-product of OVERLAP.
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