
Candid Covariance-Free Incremental
Principal Component Analysis

Juyang Weng, Member, IEEE,
Yilu Zhang, Student Member, IEEE, and

Wey-Shiuan Hwang, Member, IEEE

Abstract—Appearance-based image analysis techniques require fast

computation of principal components of high-dimensional image vectors. We

introduce a fast incremental principal component analysis (IPCA) algorithm, called

candid covariance-free IPCA (CCIPCA), used to compute the principal

components of a sequence of samples incrementally without estimating the

covariance matrix (so covariance-free). The new method is motivated by the

concept of statistical efficiency (the estimate has the smallest variance given the

observed data). To do this, it keeps the scale of observations and computes the

mean of observations incrementally, which is an efficient estimate for some well-

known distributions (e.g., Gaussian), although the highest possible efficiency is not

guaranteed in our case because of unknown sample distribution. The method is for

real-time applications and, thus, it does not allow iterations. It converges very fast

for high-dimensional image vectors. Some links between IPCA and the

development of the cerebral cortex are also discussed.

Index Terms—Principal component analysis, incremental principal component

analysis, stochastic gradient ascent (SGA), generalized hebbian algorithm (GHA),

orthogonal complement.

æ

1 INTRODUCTION

A class of image analysis techniques called appearance-based
approach has now become very popular. A major reason that leads
to its popularity is the use of statistics tools to automatically derive
features instead of relying on humans to define features. Although
principal component analysis is a well-known technique, Sirovich
and Kirby [1] appear to be among the first who used the technique
directly on the characterization of human faces—each image is
considered simply as a high-dimensional vector, each pixel
corresponding to a component. Turk and Pentland [2] were among
the first who used this representation for face recognition. The
technique has been extended to 3D object recognition [3], sign
recognition [4], and autonomous navigation [5] among many other
image analysis problems.

A well-known computational approach to PCA involves solving
an eigensystem problem, i.e., computing the eigenvectors and
eigenvalues of the sample covariance matrix, using a numerical
method such as the power method and the QR method [6]. This
approach requires that all the training images be available before the
principal components can be estimated. This is called a batch
method. This type of method no longer satisfies an up coming new
trend of computer vision research [7] in which all visual filters are
incrementally derived from very long online real-time video stream,
motivated by the development of animal vision systems. Online
development of visual filters requires that the system perform while
new sensory signals flow in. Further, when the dimension of the
image is high, both the computation and storage complexity grow
dramatically. For example, in the eigenface method, a moderate
gray image of 64 rows and 88 columns results in a d-dimensional
vector with d ¼ 5; 632. The symmetric covariance matrix requires
dðdþ 1Þ=2 elements, which amounts to 15,862,528 entries! A clever
saving method can be used when the number of images is smaller

than the number of pixels in the image [1]. However, an online
developing system must observe an open number of images and the
number is larger than the dimension of the observed vectors. Thus,
an incremental method is required to compute the principal
components for observations arriving sequentially, where the
estimate of principal components are updated by each arriving
observation vector. No covariance matrix is allowed to be estimated
as an intermediate result. There is evidence that biological neural
networks use an incremental method to perform various learning,
e.g., Hebbian learning [8].

Several IPCA techniques have been proposed to compute
principal components without the covariance matrix [9], [10], [11].
However, they ran into convergence problems when facing high-
dimensional image vectors. We explain in this article why. We
propose a new method, candid covariance-free IPCA (CCIPCA),
based on the work of Oja and Karhunen [10] and Sanger [11]. It is
motivated by a well-known statistical concept called efficient
estimate. An amnesic average technique is also used to dynamically
determine the retaining rate of the old and new data, instead of a
fixed learning rate.

2 DERIVATION OF THE ALGORITHM

2.1 The First Eigenvector

Suppose that sample vectors are acquired sequentially, uð1Þ; uð2Þ;
. . . , possibly infinite. Each uðnÞ, n ¼ 1; 2; . . . , is a d-dimensional
vector and d can be as large as 5,000 and beyond. Without loss of
generality, we can assume that uðnÞ has a zero mean (the mean may
be incrementally estimated and subtracted out). A ¼ EfuðnÞuT ðnÞg
is the d� d covariance matrix, which is neither known nor allowed to
be estimated as an intermediate result.

By definition, an eigenvector x of matrix A satisfies

�x ¼ Ax; ð1Þ

where � is the corresponding eigenvalue. By replacing the
unknown A with the sample covariance matrix and replacing the
x of (1) with its estimate xðiÞ at each time step i, we obtain an
illuminating expression for v ¼ �x:

vðnÞ ¼ 1

n

Xn
i¼1

uðiÞuT ðiÞxðiÞ; ð2Þ

where vðnÞ is the nth step estimate of v. As we will see soon, this
equation is motivated by statistical efficiency. Once we have the
estimate of v, it is easy to get the eigenvector and the eigenvalue
since � ¼ jjvjj and x ¼ v=jjvjj.

Now, the question is how to estimate xðiÞ in (2). Considering
x ¼ v=jjvjj, we may choose xðiÞ as vðiÿ 1Þ=jjvðiÿ 1Þjj, which leads
to the following incremental expression:

vðnÞ ¼ 1

n

Xn
i¼1

uðiÞuT ðiÞ vðiÿ 1Þ
jjvðiÿ 1Þjj : ð3Þ

To begin with, we set vð0Þ ¼ uð1Þ, the first direction of data spread.
For incremental estimation, (3) is written in a recursive form,

vðnÞ ¼ nÿ 1

n
vðnÿ 1Þ þ 1

n
uðnÞuT ðnÞ vðnÿ 1Þ

jjvðnÿ 1Þjj ; ð4Þ

where ðnÿ 1Þ=n is the weight for the last estimate and 1=n is the
weight for the new data. We have proven that, with the algorithm
given by (4), v1ðnÞ ! ��1e1 when n!1, where �1 is the largest
eigenvalue of the covariance matrix of fuðnÞg and e1 is the
corresponding eigenvector [12].

The derivation of (2), (3), and (4) is motivated by statistical
efficiency. An unbiased estimate Q̂Q of the parameter Q is said to be
the efficient estimate for the class D of distribution functions if, for every
distribution density function fðu;QÞ of D, the variance D2ðQ̂QÞ
(squared error) has reached the minimal value given by

1034 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 25, NO. 8, AUGUST 2003

. The authors are with the Department of Computer Science and
Engineering, Michigan State University, East Lansing, MI 48824.
E-mail: {weng, zhangyil, hwangwey}@cse.msu.edu.

Manuscript received 20 Feb. 2002; revised 4 Oct. 2002; accepted 28 Oct. 2002.
Recommended for acceptance by R. Beveridge.
For information on obtaining reprints of this article, please send e-mail to:
tpami@computer.org, and reference IEEECS Log Number 115928.

0162-8828/03/$17.00 ß 2003 IEEE Published by the IEEE Computer Society

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 25, NO. 8, AUGUST 2003 1035

Fig. 1. Intuitive explanation of the incremental PCA algorithm.

Fig. 2. The correctness, or the correlation, represented by dot products, of the first 10 eigenvectors computed by (a) SGA, (b) GHA, and (c) the proposed CCIPCA with
the amnesic parameter l ¼ 2.

D2ðQ̂QÞ ¼ E½ðQ̂QÿQÞ2� � 1

n
Rþ1
ÿ1

@ log fðu;QÞ
@Q

h i2
fðu;QÞdu

: ð5Þ

The right side of (5) is called the Cramér-Rao bound. It says that the
efficient estimate is one that has the least variance from the real
parameter, and its variance is bounded below by the Cramér-Rao
bound. For example, the sample mean �ww ¼ 1

n

Pn
i¼1 wðiÞ is the efficient

estimate of the mean of a Gaussian distribution with a known
standard deviation � [13]. For a vector version of the Cramér-Rao
bound, the reader is referred to [14, pp. 203-204].

If we define wðiÞ ¼ uðiÞuT ðiÞxðiÞ, vðnÞ in (2) can be viewed as
the mean of “samples” wðiÞ. That is exactly why our method is
motivated by statistical efficiency in using averaging in (2). In other
words, statistically, the method tends to converge most quickly or
the estimate has the smallest error variance given the currently
observed samples. Of course, wðiÞ is not necessarily drawn from a
Gaussian distribution independently and, thus, the estimate using
the sample mean in (4) is not strictly efficient. However, the
estimate vðnÞ still has a high statistical efficiency and has a fairly
low error variance as we will show experimentally.

The Cramér-Rao lower error bound in (5) can also be used to
estimate the error variance or, equivalently, the convergence rate,
using a Gaussian distribution model, as proposed and experi-
mented with by Weng et al. [14, Section 4.6]. This is a reasonable
estimate because of our near optimal statistical efficiency here.
Weng et al. [14] demonstrated that actual error variance is not very
sensitive to the distribution (e.g., uniform or Gaussian distribu-
tions). This error estimator is especially useful to estimate roughly
how many samples are needed for a given tolerable error variance.

IPCA algorithms have been studied by several researchers [15],
[16], [9], [10]. An early work with a rigorous proof for convergence
was given by Oja [9] and Oja and Karhunen [10], where they
introduced their stochastic gradient ascent (SGA) algorithm. SGA
computes,

~vviðnÞ ¼ viðnÿ 1Þ þ
iðnÞuðnÞuT ðnÞviðnÿ 1Þ; ð6Þ

viðnÞ ¼ orthonormalize ~vviðnÞ w:r:t: vjðnÞ; j ¼ 1; 2; . . . ; iÿ 1; ð7Þ

where viðnÞ is the estimate of the ith dominant eigenvectors of the
sample covariance matrix A ¼ EfuðnÞuT ðnÞg and ~vviðnÞ is the new
estimate. In practice, the orthonormalization in (7) can be done by a
standard Gram-Schmidt Orthonomalization (GSO) procedure. The
parameter
iðnÞ is a stochastic approximation gain. The convergence
of SGA has been proven under some assumptions ofA and
iðnÞ [10].

SGA is essentially a gradient method associated with the
problem of choosing
iðnÞ, the learning rate. Simply speaking, the
learning rate should be appropriate so that the second term (the
correction term) on the right side of (6) is comparable to the first
term, neither too large nor too small. In practice,
iðnÞ depends

very much on the nature of the data and usually requires a trial-
and-error procedure, which is impractical for online applications.
Oja gave some suggestions on
iðnÞ in [9], which is typically 1=n
multiplied by some constants. However, procedure (6) is at the
mercy of the magnitude of observation uðnÞ, where the first term
has a unit norm, but the second can take any magnitude. If uðnÞ
has a very small magnitude, the second term will be too small to
make any changes in the new estimate. If uðnÞ has a large
magnitude, which is the case with high-dimensional images, the
second term will dominate the right side before a very large
number n and, hence, a small
iðnÞ has been reached. In either
case, the updating is inefficient and the convergence will be slow.

Contrasted with SGA, the first term on the right side of (4) is not
normalized. In effect, vðnÞ in (4) converges to �e instead of e as it
does in (6), where � is the eigenvalue and e is the eigenvector. In (4),
the statistical efficiency is realized by keeping the scale of the
estimate at the same order of the new observations (the first and
second terms properly weighted on the right side of (4) to get sample
mean), which allows full use of every observation in terms of
statistical efficiency. Note that the coefficient ðnÿ 1Þ=n in (4) is as
important as the “learning rate” 1=n in the second term to realize
sample mean. Although ðnÿ 1Þ=n is close to 1 when n is large, it is
very important for fast convergence with early samples. The point is
that, if the estimate does not converge well at the beginning, it is
harder to pull back later when n is large. Thus, one does not need to
worry about the nature of the observations. This is also the reason
that we used “candid” in naming the new algorithm.

It is true that the series of parameters,
iðnÞ, i ¼ 1; 2; . . . ; k, in SGA
can be manually tuned in an offline application so that it takes into
account the magnitude of uðnÞ. But, a predefined
iðnÞ cannot
accomplish statistical efficiency no matter how
iðnÞ is tuned. This is
true because all the “observations,” i.e., the last term in (4) and (6),
contribute to the estimate in (4) with the same weight for statistical
efficiency, but they contribute unequally in (6) due to normalization
of vðnÿ 1Þ in the first term and, thus, damage the efficiency. Further,
the manual tuning is not suited for an online learning algorithm
since the user cannot predict signals in advance. An online
algorithm must automatically compute data-sensitive parameters.

There is a further improvement to procedure (4). In (4), all the

“samples”

wðiÞ ¼ uðiÞuT ðiÞ vðiÿ 1Þ
jjvðiÿ 1Þjj ;

are weighted equally. However, since wðiÞ is generated by vðiÞ and
vðiÞ is far away from its real value at a early estimation stage, wðiÞ
is a “sample” with large “noise” when i is small. To speed up the
convergence of the estimation, it is preferable to give smaller
weight to these early “samples.” A way to implement this idea is to
use an amnesic average by changing (4) into

1036 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 25, NO. 8, AUGUST 2003

Fig. 3. The correctness of the eigenvalue, jjvi jj�i
by CCIPCA.

vðnÞ ¼ nÿ 1ÿ l
n

vðnÿ 1Þ þ 1þ l
n

uðnÞuT ðnÞ vðnÿ 1Þ
jjvðnÿ 1Þjj ; ð8Þ

where the positive parameter l is called the amnesic parameter. Note
that the two modified weights still sum to 1. With the presence of l,
larger weight is given to new “samples” and the effect of old
“samples” will fade out gradually. Typically, l ranges from 2 to 4.

2.2 Intuitive Explanation

An intuitive explanation of procedure (4) is as follows: Consider a set
of two-dimensional data with a Gaussian probability distribution
function (for any other physically arising distribution, we can
consider its first two orders of statistics since PCA does so). The data
is charactrized by an ellipse, as shown in Fig. 1. According to the
geometrical meaning of eigenvectors, we know that the first
eigenvector is aligned with the long axis (v1) of the ellipse. Suppose
v1ðnÿ 1Þ is the ðnÿ 1Þth-step estimation of the first eigenvector.
Noticing

uT ðnÞ v1ðnÿ 1Þ
jjv1ðnÿ 1Þjj

is a scalar, we know

1

n
uðnÞuT ðnÞ v1ðnÿ 1Þ

jjv1ðnÿ 1Þjj

is essentially a scaled vector of uðnÞ. According to (4), v1ðnÞ is a
weighted combination of the last estimate, v1ðnÿ 1Þ and the scaled
vector of uðnÞ. Therefore, geometrically speaking, v1ðnÞ is obtained
by pulling v1ðnÿ 1Þ toward uðnÞ by a small amount.

A line l2 orthogonal to v1ðnÿ 1Þ divides the whole plane into
two halves, the upper and the lower ones. Because every point ul in

the lower half plane has an obtuse angle with v1ðnÿ 1Þ, uTl
v1ðnÿ1Þ
jjv1ðnÿ1Þjj

is a negative scalar. So, for ul, (4) may be written as,

vðnÞ ¼ nÿ 1

n
vðnÿ 1Þ þ 1

n
uTl

vðnÿ 1Þ
jjvðnÿ 1Þjj

���� ����ðÿulÞ;
whereÿul is an upper half plane point obtained by rotating ul for 180
degrees w.r.t. the origin. Since the ellipse is centrally symmetric, we
may rotate all the lower half plane points to the upper half plane and
only consider the pulling effect of upper half plane points. For the
points uu in the upper half plane, the pure force will pull v1ðnÿ 1Þ
toward the direction of v1 since there are more data points to the right
side of v1ðnÿ 1Þ than those to the left side. As long as the first two
eigenvalues are different, this pulling force always exists and the
pulling direction is toward the eigenvector corresponding to a larger
eigenvalue. v1ðnÿ 1Þwill not stop moving until it is aligned with v1

when the pulling forces from both sides are balanced. In other words,
v1ðnÞ in (4) will converge to the first eigenvector. As we can imagine,
the larger the ratio of the first eigenvalue over the second eigenvalue,
the more unbalanced the force is and the faster the pulling or the
convergence will be. However, when�1 ¼ �2, the ellipse degenerates
to a circle. The movement will not stop, which seems that the
algorithm does not converge. Actually, since any vector in that circle
can represent the eigenvector, it does not hurt to not converge. We
will get back to the cases of equal eigenvalues in Section 2.4.

2.3 Higher-Order Eigenvectors

Procedure (4) only estimates the first dominant eigenvector. One
way to compute the other higher order eigenvectors is following
what SGA does: Start with a set of orthonormalized vectors,
update them using the suggested iteration step, and recover the
orthogonality using GSO. For real-time online computation, we
need to avoid the time-consuming GSO. Further, breaking-then-
recovering orthogonality slows down the convergence compared
with keeping orthogonality all along. We know eigenvectors are
orthogonal to each other. So, it helps to generate “observations”
only in a complementary space for the computation of the higher
order eigenvectors. For example, to compute the second order
eigenvector, we first subtract from the data its projection on the
estimated first order eigenvector v1ðnÞ, as shown in (9),

u2ðnÞ ¼ u1ðnÞ ÿ uT1 ðnÞ
v1ðnÞ
jjv1ðnÞjj

v1ðnÞ
jjv1ðnÞjj

; ð9Þ

where u1ðnÞ ¼ uðnÞ. The obtained residual, u2ðnÞ, which is in the
complementary space of v1ðnÞ, serves as the input data to the
iteration step. In this way, the orthogonality is always enforced
when the convergence is reached, although not exactly so at early
stages. This, in effect, better uses the sample available and, thus,
speeds up the convergence.

A similar idea has been used by some other researchers.
Kreyszig proposed an algorithm which finds the first eigenvector

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 25, NO. 8, AUGUST 2003 1037

Fig. 4. The absolute values of the first 10 eigenvalues.

Fig. 5. The effect of the amnesic parameter. The correctness of the first 10 eigenvectors computed by CCIPCA, with the amnesic parameter l ¼ 0. A comparison with Fig. 2c.

using a method equivalent to SGA and subtracts the first

component from the samples before computing the next compo-

nent [17]. Sanger suggested an algorithm, called generalized

hebbian algorithm (GHA), based on the same idea except that all

the components are computed at the same time [11]. However, in

either case, the statistical efficiency was not considered.
The new CCIPCA also saves computations. One may notice that

the expensive steps in both SGA and CCIPCA are the dot products

in the high-dimensional data space. CCIPCA requires one extra dot

product, i.e., uTi ðnÞviðnÞ in (9), for each principal component in

each estimation step. For SGA, to do orthonormalization over

k new estimates of eigenvectors using GSO, we have totally kðkþ
1Þ=2 dot products. So, the average number of dot product saved by

CCIPCA over SGA for each eigenvector is ðkÿ 1Þ=2.

2.4 Equal Eigenvalues

Let us consider the case where there are equal eigenvalues.

Suppose ordered eigenvalues between �l and �m are equal:

�lÿ1 > �l ¼ �lþ1 ¼ . . . ¼ �m > �mþ1:

According to the explanation in Section 2.2, the vector estimate will

converge to the one with a larger eigenvalue first. Therefore, the

estimate of eigenvectors ei, where i < l, will not be affected anyway.
The vector estimates of el to em will converge into the subspace

spanned by the corresponding eigenvectors. Since their eigen-

values are equal, the shape of the distribution in Fig. 1 is a hyper-

sphere within the subspace. Thus, the estimates of the multiple

eigenvectors will converge to any set of the orthogonal basis of that

subspace. Where it converges to depends mainly on the early

1038 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 25, NO. 8, AUGUST 2003

Fig. 6. A longer data stream. The correctness of the first 10 eigenvectors computed by (a) SGA, (b) GHA, and (c) CCIPCA (with the amnesic parameter l ¼ 2),
respectively, over 20 epochs.

samples because of the averaging effect in (2), where the contribu-
tion of new data gets infinitely small when n increases without a
bound. That is exactly what we want. The convergence of these
eigenvectors is as fast as those in the general case.

2.5 Algorithm Summary

Combining the mechanisms discussed above, we have the candid

covariance-free IPCA algorithm as follows:

Procedure 1. Compute the first k dominant eigenvectors,
v1ðnÞ; v2ðnÞ; . . . ; vkðnÞ, directly from uðnÞ, n ¼ 1; 2;
For n ¼ 1; 2; . . ., do the followings steps,

1. u1ðnÞ ¼ uðnÞ.
2. For i ¼ 1; 2; . . . ;minfk; ng do,

(a) If i ¼ n, initialize the ith eigenvector as

viðnÞ ¼ uiðnÞ.
(b) Otherwise,

viðnÞ ¼ nÿ1ÿl
n viðnÿ 1Þ þ 1þl

n uiðnÞuTi ðnÞ
viðnÿ1Þ
jjviðnÿ1Þjj ; (10)

uiþ1ðnÞ ¼ uiðnÞ ÿ uTi ðnÞ
viðnÞ
jjviðnÞjj

viðnÞ
jjviðnÞjj : (11)

A mathematical proof of the convergence of CCIPCA can be
founded in [12].

3 EMPIRICAL RESULTS ON CONVERGENCE

We performed experiments to study the statistical efficiency of the
new algorithm as well as the existing IPCA algorithms, especially
for high-dimensional data such as images. We define sample-to-
dimension ratio as n=d, where n is the number of samples and d is
the dimension of the sample space. The lower the ratio, generally,
the harder a statistical estimation problem becomes.

First presented here are our results on the FERET face data set [18].
This data set has frontal views of 457 subjects. Most of the subjects
have two views, while 34 of them have four views and two of them
have one view, which results in a data set of 982 images. The size of
each image is 88 x 64 pixels or 5,632 dimensions. Therefore, this is a
very hard problem with a very low sample-to-dimension ratio of
982=5; 632 ¼ 0:7.

We computed the eigenvectors using a batch PCA with
QR method and used them as our ground truth. The program
for batch PCA was adapted from the C Recipes [19]. Since the real
mean of the image data is unknown, we incrementally estimated
the sample mean m̂mðnÞ by

m̂mðnÞ ¼ nÿ 1

n
m̂mðnÿ 1Þ þ 1

n
xðnÞ;

where xðnÞ is the nth sample image. The data entering the IPCA
algorithms are the scatter vectors, uðnÞ ¼ xðnÞ ÿ m̂mðnÞ; n ¼ 1; 2;

To record intermediate results, we divided the entire data set
into 20 subsets. When the data went through the IPCA algorithms,
the estimates of the eigenvectors were saved after each subset was
passed. In SGA, we used the learning rate suggested in [9, p. 54].
Since only the first five
i were suggested, we extrapolated them to
give
6ðnÞ ¼ 46=n,
7ðnÞ ¼ 62=n,
8ðnÞ ¼ 80=n,
9ðnÞ ¼ 100=n, and

10ðnÞ ¼ 130=n. In GHA, we set
ðnÞ as 1=n. The amnesic
parameter l was set to be 2 in CCIPCA.

The correlation between the estimated unit eigenvector v and the
one computed by the batch method v0, also normalized, is
represented by their inner product v � v0. Thus, the larger the
correlation, the better. Since jjvÿ v0jj ¼ 2ð1ÿ v � v0Þ, v ¼ v0 iff
v � v0 ¼ 1. As we can see from Fig. 2, SGA does not seem to converge
after being fed all images. GHA shows a trend to converge, but the
estimates are still far from the correct ones. In contrast, the proposed
CCIPCA converges fast. Although the higher order eigenvectors
converge slower than earlier ones, the 10th one still reaches about 70
percent with the extremely low sample-to-dimension ratio. We will
see below that the 10th principal component represents only 3
percent of the total data variance. So, 70 percent correlation with the
correct one means that only about 1 percent of the total data
variance is lost.

To examine the convergence of eigenvalues, we use the ratio jjvijj�i
as the length of the estimated eigenvector divided by the estimate
computed by the C Recipe batch method. The results for eigenvalues
show a similar pattern as in Fig. 2. For conciseness, we only shown
the eigenvalue result of the proposed CCIPCA in Fig. 3, together
with Fig. 4 showing the first 10 eigenvalues. The ratio between the
summation of these 10 eigenvalues and the variance of the data is
58.82 percent, which means that about 60 percent of the data
variance falls into the subspace spanned by the first 10 eigenvectors.

To demonstrate the effect of amnesic parameter l in (10), we
show the result of eigenvector estimate with l ¼ 0. Comparing
Fig. 5 with Fig. 2c, we can see that the amnesic parameter did help
to achieve faster convergence. The amnesic parameter has been
made to vary with n in our SAIL robot development program [20],
but, due to the space limit, the subject is beyond the scope here.

Next, we will show the performance of the algorithm with a
much longer data stream. Since the statistics of a real-world image
stream may not necessarily be stationary (for example, the mean

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 25, NO. 8, AUGUST 2003 1039

Fig. 7. The first 10 eigenfaces obtained by (a) batch PCA, (b) CCIPCA (with amnesic parameter l ¼ 2) after one epoch, and (c) CCIPCA (with amnesic parameter l ¼ 2)
after 20 epochs, shown as images.

and variance may change with time), the changing mean and
variance make convergence evaluation difficult. To avoid this
effect, we simulate a statistically stable long data stream by feeding
the images in FERET data set repeatedly into the algorithms. Fig. 6
shows the result after 20 epochs. As expected, all IPCA algorithms
converge further while CCIPCA is the quickest.

Shown in Fig. 7 are the first 10 eigenfaces estimated by batch
PCA and CCIPCA (with the amnesic parameter l ¼ 2) after one
epoch and 20 epochs, respectively. The corresponding eigenfaces
computed by the very different methods are very similar.

The average execution time of SGA, GHA, and CCIPCA in each
estimation step is shown in Table 1. It is independent of the data.
Without doing the GSO procedure, GHA and CCIPCA run
significantly faster than SGA. CCIPCA has a further computational
advantage over GHA because of a saving in normalization.

We observed a similar efficiency difference for other data sets,
such as speech data. For the general readership, an experiment
was done on a lower dimension data set. We extracted 10 x 10
pixel subimages around the right eye area in each image of the
FERET data set, estimated their sample covariance matrix �, and
used MATLAB to generate 1,000 samples with the Gaussian
distribution Nð0;�Þ in the 100-dimensional space. Thus, the
sample-to-dimension ratio is 1; 000=100 ¼ 10. The original eye-
area subimage sequence is not statistically stationary because the
last person’s eye-area image does not necessarily following the
distribution defined by the early persons’ data. We used the
MATLAB-generated data to avoid this nonstationary situation. It
turned out all of the first 10 eigenvectors estimated by CCIPCA
reached above 90 percent correlation with the actual ones.

4 CONCLUSIONS AND DISCUSSIONS

This short paper concentrates on a challenging issue of computing
dominating eigenvectors and eigenvalues from an incrementally
arriving high-dimensional data stream without computing the
corresponding covariance matrix and without knowing data in
advance. The proposed CCIPCA algorithm is fast in convergence
rate and low in computational complexity. Our results showed that
whether the concept of the efficient estimate is used or not plays a
dominating role in convergence speed for high-dimensional data.
An amnesic average technique is implemented to further improve
the convergence rate.

The importance of the result presented here is potentially
beyond the apparent technical scope interesting to the computer
vision community. As discussed in [7], what a human brain does is
not just computing—processing data—but, more importantly and
more fundamentally, developing the computing engine itself, from
real-world, online sensory data streams. Although a lot of studies
remain to be done and many open questions are waiting to be
answered, the incremental development of a “processor” plays a
central role in brain development. The “processor” here is closely
related to a procedure widely used now in appearance-based
vision: inner product of input scatter vector u with an eigenvector,
something that a neuron does before sigmoidal nonlinearity. What
is the relationship between IPCA and our brain? A clear answer is
not available yet, but Rubner and Schulten [21] proved that the
well-known mechanisms of biological Hebbian learning and lateral
inhibition between nearby neurons [22, pp. 1,020 and 376] result in
an incremental way of computing PCA. Although we do not claim
that the computational steps of the proposed CCIPCA can be

found physiologically in the brain, the link between incremental
PCA and the developmental mechanisms of our brain is probably
more intimate than we can fully appreciate now.

ACKNOWLEDGMENTS

The work is supported in part by US National Science Foundation
under grant No. IIS 9815191, DARPA ETO under contract
No. DAAN02-98-C-4025, and DARPA ITO under grant
No. DABT63-99-1-0014. The authors would like to thank Shaoyun
Chen for his codes to do batch PCA.

REFERENCES

[1] I. Sirovich and M. Kirby, “Low-Dimensional Procedure for the Character-
ization of Human Faces,” J. Optical Soc. Am. A, vol. 4, no. 3, pp. 519-524,
Mar. 1987.

[2] M. Turk and A. Pentland, “Eigenfaces for Recognition,” J. Cognitive
Neuroscience, vol. 3, no. 1, pp. 71-86, 1991.

[3] H. Murase and S.K. Nayar, “Visual Learning and Recognition of 3-D
Objects from Appearance,” Int’l J. Computer Vision, vol. 14, no. 1, pp. 5-24,
Jan. 1995.

[4] Y. Cui and J. Weng, “Appearance-Base Hand Sign Recognition from
Intensity Image Sequences,” Computer Vision and Image Understanding,
vol. 78, pp. 157-176, 2000.

[5] S. Chen and J. Weng, “State-Based SHOSLIF for Indoor Visual Navigation,”
IEEE Trans. Neural Networks, vol. 11, no. 6, pp. 1300-1314, 2000.

[6] G.H. Golub and C.F. vanLoan, Matrix Computations. Baltimore, Md.: The
Johns Hopkins Univ. Press, 1989.

[7] Proc. NSF/DARPA Workshop Development and Learning, J. Weng and
I. Stockman, eds., Apr. 2000.

[8] J. Hertz, A. Krogh, and R.G. Palmer, Introduction To the Theory of Neural
Computation. Addison-Wesley, 1991.

[9] E. Oja, Subspace Methods of Pattern Recognition. Letchworth, U.K.: Research
Studies Press, 1983.

[10] E. Oja and J. Karhunen, “On Stochastic Approximation of the Eigenvectors
and Eigenvalues of the Expectation of a Random Matrix,” J. Math. Analysis
and Application, vol. 106, pp. 69-84, 1985.

[11] T.D. Sanger, “Optimal Unsupervised Learning in a Single-Layer Linear
Feedforward Neural Network,” IEEE Trans. Neural Networks, vol. 2, pp. 459-
473, 1989.

[12] Y. Zhang and J. Weng, “Convergence Analysis of Complementary Candid
Incremental Principal Component Analysis,” Technical Report MSU-CSE-
01-23, Dept. of Computer Science and Eng., Michigan State Univ., East
Lansing, Aug. 2001.

[13] M. Fisz, Probability Theory and Mathematical Statistics, third ed. John Wiley &
Sons, 1963.

[14] J. Weng, T.S. Huang, and N. Ahuja, Motion and Structure from Image
Sequences. Springer-Verlag, 1993.

[15] N.L. Owsley, “Adaptive Data Orthogonalization,” Proc. IEEE Int’l Conf.
Acoustics, Speech, and Signal Processing, pp. 109-112, Apr. 1978.

[16] P.A. Thompson, “An Adaptive Spectral Analysis Technique for Unbiased
Frequency Estimation in the Presence of White Noise,” Proc. 13th Asilomar
Conf. Circuits, Systems, and Computers, pp. 529-533, 1979.

[17] E. Kreyszig, Advanced Engineering Mathematics. Wiley, 1988.
[18] P.J. Phillips, H. Moon, P. Rauss, and S.A. Rizvi, “The FERET Evaluation

Methodology for Face-Recognition Algorithms,” Proc. IEEE Conf. Computer
Vision and Pattern Recognition, pp. 137-143, June 1997.

[19] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling, Numerical
Recipes in C, second ed. Cambridge Univ. Press, 1986.

[20] J. Weng, W.S. Hwang, Y. Zhang, C. Yang, and R. Smith, “Developmental
Humanoids: Humanoids that Develop Skills Automatically,” Proc. First
IEEE-RAS Int’l Conf. Humanoid Robots, Sept. 2000.

[21] J. Rubner and K. Schulten, “Development of Feature Detectors by Self-
Organization,” Biological Cybernetics, vol. 62, pp. 193-199, 1990.

[22] Principles of Neural Science, third ed. E.R. Kandel, J.H. Schwartz, and
T.M. Jessell, eds., Norwalk, Conn.: Appleton and Lange, 1991.

. For more information on this or any other computing topic, please visit our
Digital Library at http://computer.org/publications/dlib.

1040 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 25, NO. 8, AUGUST 2003

TABLE 1
The Average Execution Time for

Estimating 10 Eigenvectors with One New Data

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

