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Abstract:

This paper defines a multiple resolution represcntation for the two-dimensional gray-scale shapes in an
image. ‘This representation is constructed by detecting peaks and ridges in the Difference of Low Pass
(DOL.P) transform. Descriptions of shapes which are cncoded in this representation may be matched
efficiently despite changes in size, orientation or position.

Motivations for a multiple resolution representation are presented fiest, followed by the definition of the
DOLP Transform. Techniques are then presented for cncoding a symbolic structural description of forms
from the DOLP transform. This process involves detecting local peaks and ridges in cach band-pass image
and in the entire three-dimensional space defined by the DOLP transform. Linking adjacent peaks in
different band-pass images gives a muitiple resolution tree which describes shape.  Pcaks which are local
maxima in this tree provide landmarks for aligning, manipulating, and matching shapes. Detecting and
linking the ridges in cach DOLP band-pass irnage provides a graph which links pcaks within a shape in a
band-pass image and describes the positions of the boundaries of the shape at mulitiple resolutions. Detecting
and linking the ridges in the DOLP three space describes clongated forms and links the largest peaks in the
tree.

The principles for determining the correspondence between symbols in pairs of such descriptions are then
described. Such correspondence matching is shown to be simplified by using the correspondence at lower
resolutions to constrain the possible correspondence at higher resolutions.
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1 Introduction

A representation is a fornal system for making explicit certain entities or types of information, and a
specification of how the system does this [20). Representation plays a crucial role in determining the
computational complexity of an informaticn processing problem.

This papcr describes a representation for two-dimensional shape which can be used tor a varicty of tasks in
which the shapes (or gray-level forms) in an image must be manipulated. An important property of this
representation s that it makes the task of comparing the structure of two shapes to determine the
correspondence of their components computationaily simple.  However, this representation has other
desirable properties as well. For example, the network of symbols that describe a shape in this representation
have a structure which, except for the cffects of quantization, is invariant to the size, oricntation, and position
of a shape. Thus a shape can be compared to prototypes without having to normalize its size or orientation.
An object can be tiacked in a sequence of images by matching the largest peak(s) in its description in each
image. 'This representation can also describe a shape when its boundaries are blurred or poorly defined or
when the image has been corrupted by various sources of image noise.

This representation is based on a reversible transform referred to as the "Difference of Low-Pass” (DCLP)
Tracsform. From its definition, the DOLP transform of an image appears to be very costly to compute.
However several techaiques can be used to greatly reduce the computational complexity and memory
requircment for a DGLP transform. These techniques, together with the definition of the DOLP transform,
arc prescnted in a companion paper [14].

The Difference of Low-Pass (DOLP) Transform is a reversible transform which converts an image into a
set of band-pass images. Each band-pass image is equivalent to a convolution of the original image with a
band-pass filter, b,. Each band-pass filter is formed by a difference of two size scaled copies of a low-pass
filter, 8. and S

be= 8- &
Each low-pass filter g, is a copy of the low pass filter 8., scaled larger in size. These band-pass images

comprise a three space (the DOLP space). The representation is constructed by detecting peaks and ridges in
the DOLP space.

1.1 Motivation:A Muiti-Resolution Structural Description of images

Interpreting the patterns in an image requires matching. If the interpretation is restricted o0 two-
dimensional patterns, this matching is between descriptions of shapes in the iinage and object models. If the
interpretation is in terms of three-dimensional objects then techniques for maiching among sterco images or
motion sequences may be required to obtain the description of threc-dimensional shape. In cither case, the
matching problem is simplified if descriptions are compared at multiple resolutions. Peaks and ridges in a
DOLP Transform provide a structural description of the grey-scale shapes in an image.

The motivation for computing a structural description is to spend a fixed computational cost to transform
the information in each image into a representation in which searching and matching are more efficient. In
many cases the cemputation involved in constructing a structural description is regular and local, making the
computation amenable to fast implementation in special purpose hardware.
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Several rescarchers have shown that the efficiency of ccarching and martching processes can be dramatically
improved by performing the search at multiple resolutions. Moravee [21] has demenstrated a multi-resolution
correspondence matching algorithm for object location in sterco images.  Marr and Poggio [18] have
demonstrated correspondence matching using cdges detected by a ditterence of Gaussian filters at four
resolutions.  Rosenfeld and Vanderbrug 28] have described a two stage hicrarchical emplate-matching
algorithm. Hall has reported using a mutlti-resolution pyramid o dramatically speed up correlation ot acrial
images [15].  Kelly [17], Paviidis and Tanimoto [3C], Hanson and Riscman {16). and many others have
described rhe use of multiple resolution images for segmentation and cdge detection.

There is also experunental evidence that the visual systems of humans and other mammals scparate images
into a set of "spatial frequency” channcls as a first encoding of visual information. This “multi-channel
theory" is based on measurcinents of the adaption of the threshold sensitivity ta vertical sinusoidal functions
of various frequencies [10], [29]. Adaption to a sinusoid of a particular frequency affects vuly the threshold
sensitivity for frequencics within one octave. This evidence suggests that mammalian visual systems employ a
set of band-pass channels with a band-width of about one octave. Such a set of channels would carry
information from different resolutions in the image. These studies, and physiological experiments supporting
the concept of parallel spatial frequency analysis, are reviewed in [9] and [31].

1.2 Properties of the Represeirtation

The patterns which arc described by this representation are "gray-scale shapes™ or "forms"”. We prefer the
term "forms”, because the term shape caiiics connotations of the outline of a uniform intensity region. [t is
not necessary for a pattern to have a uvaiform intensity for it to have a well defined description in this
representation. In this paper we will use the term “form” to reter to the patterns in an image.

In this representation. a form is described by a tree of symbols which represent the structure of the form at
every resolution. There arc four type of svmbols { M, L, P, R }1 which mark lccations (x. y, k) in the DOLP
three spacc where a band-pass filter of radius Rk is a lccal "best-fit" to the form.

Figure 1 shows an example of the use of peaks and ridges for representing a uniform intensity form. This
figure shows the outline of a dark rhomboid on a light background. Circles illustrate the position and radii of
band-pass filters whose positive center lobes are a local "best-fit" to the rhomboid. Below the rhomboid is
part of the graph produced by detecting and linking peaks and ridges in the sampled DOLP transform. The
meaning of the symbols in this graph is described below.

A description in this representation contains a small number of symbols at the root. These symbols
describe the global (or low-frequency) structure of a form. At lower levels, this tree contains increasingly
larger numbers of symbols which represent more local details. The correspondence between symbols at one
level in the tree constrains the possible set of correspondences at the next higher resolution level.

The description is created by detecting local positive maxima and negative minima in onc dimension
(ridges) and two dimcnsions (peaks) in cach band-pass image of a DOLP transform. [ocal peaks in the

1 . .. . .
In previous writing about this representation, most notably in [13], these symbols were referred to by the names { M*, L, M, P }.
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Figure I: A Rhomboidal Form and its Representation:

In the upper part of this figure the rhomboidal form is outlined in solid straight lines.

The description is for such a form which is dark on a light background. Circles indicate

. the locations and sizes where the band-pass filters from a sampled DOLP transform

produced 3-Space peaks (M-nodes), 2-Space peaks (P-nodes), aird 3-Space ridges ( L-

nodes). The structure of the resulting description is shown in the lower part of the

figure. The description of the "negative shape” which surrounds this form is not
presented.

DOLP three space define locations and sizes at which a DOLP band-pass filter best fits a gray scale pattern.
These points arc encoded as symbols which serve as landmarks for matching the information in images. Peaks
of the same sign which are in adjacent positions in adjacent band-pass images are linked to form a trec.
During the linking process, the largest peak along each branch is detected. This largest peak serves as a
landmark which marks the position and size of a gray-scale form. The paths of the other pcaks which are
attached to such landmarks provide further description of the form, as well as continuity with structure at
other resolutions.  Further information is encoded by detecting and linking two-dimensional ridge poiats in
each band-pass image and three-dimensional ridge points within the DOLP three space. The ridges in cach



band-pass image link the peaks in that image which are part of the same form. “The three-dimensional ridges
link the largest peaks that are part of the same forin and provide a description of clongated forms.

1.3 Correspondence Matching

The casiest methed for determining the cerrespondence of points in a pair of images is to detect landmarks
in the two images and deternine te correspondence of these landmarks. The peaks and ridges in a DOILP
transform muke cxcellent landmarks for such correspondence matching for several reasons. These peaks and
ridges provide a compact sct of svmbols which denote the presence and describe the shape of ferms in an
image. Correspoundence of symbols of similar shapes and resolutions can be fouad, even as forms change
shape due o motion of an object or the camera. Such peaks and ridges can also be matched when the image
has been corrupted by blur or high frequency noise. Matching can also be performed for a shape whose
surface is composed of a randon: texture.

When the DOLP transform is computed with a scale factor of \/5, there is a continuity between peaks at
differcent Ievels which provides a description which varies gradually from a few symbols which describe low
resolution information to the much larger numbcr of symbols that describe high resolution details. Finding
the correspondence between any pair of peaks constrains the possible correspondences of peaks under them
at higher resolutions.

Segmentation techniques are used to produce symbols which represent groupings of pixels and which can
act as tokens for later processing. However, the gray-scale forms that occur in an image do not. necessarily,
correspond to individuat objects, pieces of objects, or surfaces in a 3-D scene. Furthunnore, forms wiiich are
best described as a single entity at one resolution may be best described as several entities at a higher
resolution. The peaks and ridges in a DOLP transform provide tokens for matching without the need for
asscrtions about whether adjdcent similar regions should be grouped together. Even if only a small set of
“invariant points” of three-dimensional shapes are to be matched, the presence of these point must still be
detected in the gray-scale patterns of the image. Both recognition and matching of thesc invariant points may
be performed efficiently with peaks and ridges in the DOLP wansform.

‘The band-pass unages in a DOLP transform provide a multi-resolution set of symbols for representing the
imagc gray-scale data. These symbols may be detected in each band-pass image as cither the closed zero-
crossing contours or the peaks and ridges within each contour. In cither case, symbols result from regions
where the intensity is either darker or lighter then in surrounding regions. Each “region” will have one or
more samples which are local "largest peaks” whose position in the DOLP space provides an estimate of the
position and size of the region. It is not necesary for a region to be uniform to yield such peaks.
Furthurmore, regions which produce a single peak at one resolution can produce more than one pcak at
another resolution. Finally, there is no guarantee that each peak corresponds to only one physical object, or
that a particular physical object will result in a single peak.

We have observed that this rcpresentation is useful for correspondence matching to obtain three-
dimensional surface information from generalized stereo, motion, or shape from occluding contours. Stereo
interpretation assumecs that the gray level patterns whose shapes are compared result from the same physical
three-dimensional location. This is not strictly true. Highlights on a shiny surface can move as the position of
the light source or viewing angle changes. The position of shadows will change as light sources move.



Nevertheless. correspondence matching of gray-level patterns can be a usctul source of information about the
shape of three-dimensional surtaces. The representation described above can simplify such correspondence

matching.

1.4 Contents of this Paper

The following scction describes the DOILLP transform. The definition of the DOLP transtform is presented,
followed by a description of a fast algorithim for computing the DOLP transtormi. This fast algerithm is based
on two independent techniques which are bricfly described. An exampic of a DOLP transform of an image
which contains a tcapot is also provided in this section. This image will provide the data for examples in lager
sections.

Scction 3 describes techniques for converting the signals from a IDOLP transform into a network of
symbols. Processes are described for detecting points in each band-pass image which arc on a ridge, or arc a
local peak. Techniques for linking peaks at adjaceut locations in adjaccnt mages arc then described, along
with a technique for detecting peaks which are local positive maxima and negative minima in the three-
dimensional DOLP space. A process is then described for detecting the threc-dimensional ridge paths in the
DOLP space. ‘

Section 4 describes thic basic principles of matching descriptions of shape by presenting a simple example
in which the lower resolution: levels of the descriptions of twe teapot images are matched. The tcapots in
these two images differ in sizc by approximately 1.36. This section itlustrates the usc of correspondcence
between the Jowest resolution largest peak to determine an estimate of the relative sizes and positions cf the
iwo objects. 'The constraint in correspondence imposed by lower resolution peaks on higher resolution peaks
is then illustrated. An example of the use ot the direction and length of the ridge lengthis between peaks to
determine correspondence is also presented.

2 The Difference of Low-Pass Transform

This section defines the Difference of Low-Pass (DOLP) transform and demonstrates its reversibility. A
fast algorithm is then described for computing the DOLP transform. This fast algorithm is described in
greater detail in a companion paper [14].

2.1 The Purpose of the DOLP Transform

The DOLP transform expresses the image information at a discrete set of resolutions in a manner which
preserves all of the image information. This transform separates local forms from more global forms in a
manner that makes no assumptions about the scales at which significant information occurs. The DOLP
filters overlap in the frequency domain; thus there is a smooth variation from each band-pass level to the
next. This "smoothness” makes size-independent matching of forms possible and makes it possible to use the
correspondence of symbols from onc band-pass level to constrain the correspondence of symbols at the next (
higher resolution ) level.

The diffcrence of two low-pass filters is a band-pass filter provided that
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1. The two fitters are not identical.

2. The two filters have both been nommalized so that their coefficients sum to 1.0.

A filter which has a circularly symmetric pass-band that rises and then falls menotonically will be sensitive to
image information at a particular size scale. The DOLP transform cmploys a set of such filters which are
exponentially scaled in size and cover the entire two-dimensional frequency spectrum.

2.2 Definition of the DOLP transform

The DOLP transform expands an image signal p(x.3) composed of N = M x M samples into LogS(N)
band-pass imagcs2 €Bk(x,}9. Izach band-pass image is equivalent (o a convolution of the image pfx,y) with a
band-pass impulse response b (x.y).

B (xy) = p(xy) * b(xy) (D

For k=0, the band-pass filter is formed by subtracting a circularly symmetric low-pass filter g (x,3) from a
unit sample positioned over the center coefficient at the point (0,0).

bo(x’y) = 8(":))) - go(x'y) (2)

The filter b,(x.3;) gives a high-pass image, B,(x,»;). This image is equivalent to the result produced by the
edge detection technique known as "unsharp masking" [26].
Bo(xy) = f(xy)*(8(x3) - go(x3)) )
Hxy) = (p(xy) * go(x.3))

fror band-pass levels 1 < k < K the band-pass filter is formed as a difference of two size-scaled copics of the
low-pass filter.

blxy) = g (x3) - g(xy) “)

In order for the configuration of peaks in a DOLP transform of a form to be invariant to the size of the
form, it is necessary that each low-pass filter, gk(x, ¥) be a copy of the circularly symmetric low-pass filter
2.(x.y) scaled larger in size by a scale factor raised to the k% power [13]. Thus for each k, the band-pass
impulse response, bk(x,y), is a size scaled copy of the band-pass impulse response, bk_ l(x,y). For two-
dimensional circularly-symmetric filters which are defined by sampling a continuous function, size scaling
increascs the density of sample points over a fixed domain of the function. In the Gaussian filter, this
increases the standard deviation, o, relative to the image sample rate by a factor of S‘z‘.

The scale factor is an important parameter. For a two-dimensional DOLP transform, this scale factor,
denoted Sz, has a typical value of V2. It is possible to define a DOLP transform with any scale factor S2 for
which the difference of low-pass filter provides a uscful pass band. Marr, for example, argucs that a scale
factor of S, = 1.6 is optimum for a difference of Gaussian filters {19). We have found that a scale factor S, =
V2 yields effectively the same band-pass filter and provides two other interesting properties [13].

2S is the square of the scale factor



First. resompling each bund-pass image at a sample distance which is a fixed fraction of the filter's size
provides a configuration of peaks and ridges in each band-pass image which is invariant to the size of the
object, except for the effects of quantization. Thus the resample distance and the scale tuctor should be the
same value. ‘The smallest distance at which a two-dimensional signal can be resampled is V2. Sccond. a
DOL.P transform can be cumputed using Gaussian low-pass filters. The consolution of a Gaussian tilter with
itself produces a new Gaussian filter which is scaled larger in size by a factor of V2. These two propertics
make V2 aconvenient value tor both the scale factor and the resample distance.

[n principle the DOLP transtorm can be defined for any numnber of band-pass levels K. A convenient value
of K is

K = Logg(N) (5)
Where the value S is the squarc of the sample distance Sz-
Q2
§=55 (6)

This value of K i the number of band-pass images that result if cach band-pass image, “Bk, is resampled at a
sampling distance ofS‘,‘. With this resampling, the K® image contains only one sample.

The 12OLP transform is reversible which proves that no information is lost. The original image may be
recovered by adding all of the band-pass images, plus a low-pass residue. This low pass residue, vhich has not
been found o be useful for describing the image, is the convolution of the lowest frequency (largest) low-pass
filter, gK(:(. ) with the image.

K-1

Pey) = (p(x3) % gelx3)) + 2 B,(xy) @)

k=0

2.3 Fast Computation Techniques: Resampling and Cascade Convolution

A full DOLP transform of an image composed of N samples, produces K = Logs(N) band-pass images of
N samples each, and requircs O(Nz) multiplics and additions. Two techniques can be used to reduce the
computational complexity of the DOLP transform: ‘“resampling” and "cascaded convolution with
expansion”,

Resampling is based on the fact that the filters used in a DOLP transform are scaled copies of a band-
limited filter. As the filter’s impulse response becomes larger, its upper cutoff frequency decreases, and thus
its output can be resampled with coarser spacing without loss of information. The exponential growth in the
number of filter coefficients which results from the exponential scaling of size is offset by an exponcntial
growth in distance between points at which the convolution -is computed. The result is that cach band-pass
image may be computed with the same number of multiplications and additions. Resampling each band pass
image at a distance of V2 reduces the total number of points in the DOLP space from N LogS(N) samplgs to
3N samples.

Cascaded convolution exploits the fact that the convolution of a Gaussian function with itself produces a
Gaussian scaled larger by V2. This method also employs “expansion”, in which the coefficicnts of a filter are



mapped into a larger sample grid, thereby expanding the size of the filter, at the cost of introdyicing reflections
of the pass region about a new Nyquist boundary in the transfer function of the filter. This operation does
not introduce distortion, provided the filter is designed so that the reflections of the pass region fall on the
stop region of the composite filter and are sufficiently attenuated so as to have a ncgligible cffect on the
composite filter. Thus a sequence of low-pass images are formed by repcatedly convolving the image with
each expanded version of the low-pass filter g,. Each expansion of the low-pass filter maps its coefficients
onto a sample grid with a spacing between samples increased V2. Thus cach low-pass image has an iinpulse
response which is V2 larger than that of the previous image in the scquence. Each low-pass image is then
subtracted from the previous low-pass image to form the band-pass images.

Combining these two techniques gives an algorithim which will compute a DOLP transform of an N sample
signal in O(N) multiplies, producing 3N sample points. This algorithm is described in [14]. In this algorithm,
each low-pass image is resampled at V2 and then convolved with the low-pass filter g, to form the next
low-pass image. Since cach low-pass imagc has half the number of samples as the previous low-pass image,
and the number of filter cocfficients is constant, each low-pass image is computed from the previous low-pass
image using half the number of multiplies and additions. Thus, if CO is the numbcr of multiplies required to
compute low-pass image 0, the total number of multiplies necded to compute K band-pass levels is given by:

C..= Co(l +1+1/2+1/4 +1/8 + 1/16 + ... + 1/K) )
:_’»CO

Tot

Each low-pass image is then subtracted from the resampled version of the previous low-pass image to form
the band-pass image. Thus each band-pass image has a sample density which is proportional to the size of its
impulse response.

2.4 An Example: the DOLP Transform of a Teapot Image

Figure 2 shows a DOLP transform of an image of a teapot that was produced using the fast computation
techniques described above. In this figure the image at the lower right is the high frequency image, B,(x, ).
The upper left corner shows the level 1 band-pass image, B l(x, y), while the upper right hand corner contains
the level 2 band-pass image, ‘.Bz(x, »). Underneath the level 1 band pass image are levels 3 and 4, then 5 and 6,
etc. Figure 3 shows an enlarged view of band-pass levels 5 through 13. This enlargement illustrates the
unique peaks in the low frequency images that occur for each gray-scale form.

The use of \/5 resampling is apparent from the reduction in size for each image (rom level 3 to 13. Each
even numbered image is actually on a V2 sample grid. To display these V2 images, each pixel is printed
twice, creating the interlocking brick texture evident in Figure 3.

3 Construction of the Representation from a DOLP Transform

In this section we describe techniques for constructing the representation for grav-scale forms. This
construction process is described as a sequence of steps in which peaks and ridges are first detected and linked
in each band-pass image, and the ,resulting symbols are then linked among the band pass levels.
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Figure 2: The Resampled DOLP Transform of a Teapot Image
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3.0.1 The Approach

Peaks and ridges mark Jocations where the DOLP iinpulse respunses are a "best fit” to the image data. "This
“best-fit” paradigm is based cn the observation that, for a circularly symmetric tilter. correlation and
convolution are egquivalent operations.  Furthermore, a corrclation is composed of a sequence of inner
preducts beaween the filter coetficients and neighborhoods ( of the same size as the filter support) in the
image. Thus peaXs in the convolution are locations where the impulse response correlates (is a tocal best fit)
to the image. Ridges are a sequence of Jocations where the filters arc a "geod fit" to the image data. We may
think of the DOI.P band-pass impulse responses as a set of "primitive” functions for representing forms in an
image.

The "local necighborhood™ of a DOLP sample is the nearest cight neighbors on the sample grid at its
band-pass level. A "peak” {or P-node) is a local positive maxima or negative minima within a two-
dimensional band-pass image. A "ridge-node” (or R-node) is a local one-dimensicnal positive maximum or
negative minimum within a two-dimensional band-pass image. Peaks within a form are linked by paths of
largest ridge-nodes ( R-paths ).

In order for a DOLP samiple to be a local positive maximum or negative minimum in the DOLP three-
space, it must also te a local peak within its band-pass level. Furthermore, for a sample to be a peak in is
band-pass lovel, it must be a ridge-node in the four directions given by opposite pairs of its cight neighbors.
Peaks and ridge-nodes are first detccted within cach band-pass image. Peaks are then linked to peaks at
adjacent levels to form a tee of symbols (composed of a paths of peaks, or P-paths). During this linking it is
possible to detect the peaks which are local positive maxima and negative minima in the DOILP threc-space.
The three-space peaks are referred to as M-nodes.

The ridge-nodes are also linked to form ridge-paths in each band-pass image (called R-paths) and in the
DOIL.P three-space (called [.-paths). The ridges in the DOLP three-space ( L-paths ) describe elongated torms
and connect the largest peaks ( M-nodes) which arc part of the same form.

The process for constructing a description is composed of the following stages:

1. Detect ridge-nodes (R-nodcs) and peaks (P-nodes) at each band-pass level;

2. Link the largest adjacent ridge-nodes with the same direction flags in a band-pass level to form
ridges ( R-paths ) which connect the P-nodes in that level;

3. Link two-dimensional peiks { P-nodes) at adjacent positions in adjacent levels to form P-paths;
4. Detect local maxima along each P-path ( M-nodes );

5. Detect the ridge nodes (R-nodes) which have larger DOLP values than those at neighboring
locations in adjacent images to detect I.-nodes.

6. Link the largest adjacent ridge points with the same direction among the band-pass levels to form
three-dimensional ridge paths (L-paths).
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The result of this precess is a tree-like graph which contains four classes of symbols:
a R-nodes: DOLP Sumples which arc on a ridge at a level.
o P-nodes: DOLP Samples which are local two-dimeansional maxima at a level.
a L-nodes: DOLP sumples which are on a ridge across levels (i.e. in the three space (x,y k) ).

o M-nodes: Points which are local maxima in the three space.

Every uniform {cr approximately uniform) region will have one or. more M-nodes as a root in its
description. These arc connected to paths of L's (L-Paths) which describe the general form of the region, and
paths of P-nodes (P-Paths) which branch into the concavitics and convexities.  L-paths terminate at other
M-nodes which describe significant features at higher resolutions. The shape of the boundarics arc described
in multiple resvlutions by the ridges at cach band-pass level (R-paths). If a boundary is blurry, then the
highest resolution (lowest-level) R-paths are lost, but the boundary is still described by the lower resolution
R-paths.

3.1 Delection of Peak-Nodes and Ridge-Nodes within each Band-pass Image

Peak-nodes and ridge-nodes in each baind-pass level are detected by comparing the magnitude and sign of
each sample with the magnitude and sign of opposite vairs of its eight nearest neighbors. This comparison is
made in four directions, as indicated hy Figure 4, and can result in one of four "divection flags” being set. A
direction {lag is set when ncither ncighbor sample in a dircection has a DOLP value of the same sign and a
larger magnitude.

If any of the four direction flags are set, then the sample is encoded as a R-node. [f all four direction flags
have been set then the sample is encoded as an P-node. The direction flags are saved to be used to guide the
processes for detecting two-dimensional ridges (R-paths) and three-dimensional ridges (I-paths).

Two possibilities complicate this rather simple process. When the amplitude of the signal is very small, it is
possible to have a small region of adjacent samples with the same DOLP sample value. Such a plateau region
may be avoided by not setting direction flags for samples with a magnitude less then a small threshold. A
value 5 has been found to work well for 8 bit DOLP samples. Also, it is possible to have two adjacent samples
with equal DOLP values, while only on¢ has a ncighbor with a larger magnitude. Such cases may be easily
detected and corrected by a local two stage process. The correction involves turning oft the direction tlag for
the neiginbor without a larger neighbor.

Figure 5 shows the direction flags detected in a region from band-pass level 7 of the Teapot image. fach
direction flag which is set is represented as a pair of short line segments on both sides of a sample. Thesc line
segments point in the direction in which the sample is a onc-dimensional maxima. Samples which are
two-dimensional peaks ( [-nodes ) arc marked with a circle. It is possible to implcment this detection in
parallel or with a fast serial procedure.
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Cartasian Grid Square Root(2) Grid
Figure 4:

The Four Direction Tests for Ridge-Nodcs.

The four pairs of neighbors for a node in a Cartesian grid (left) and a node in a
\/5 grid (right) arc show here. Pairs of neighbors, cn opposite sides of « DOLP samiple,
are numbcred 0 through 3, as illustrated by the arrows. The magnitude and sign of a
DOLP sample is compared to cach pair of neighbors. For each direction , if neither
neighbor has a DOLP value with a larger magnitude and the same sign, then the
direction flag for that direction is set, marking the sample as a ridge-node. .

3.2 Linking of Ridge-Paths at a Band-Pass Level
There arc two purposes for which ridge paths in a two-dimensional band-pass level are detected:
L. To provide a link between P-nodes at a level which are part of the same form, and,
2. to construct a description of the boundary of a form.
Linking P-nodes of the same sign and band-pass level with ridges provides information about the
connectivity of a form and provides attributes of distance and relative orientation which can be used in

determining correspondences of P-nodes across levels.

In general, when a boundary is not a straight line, the convexities and concavities arc described by a P-path.
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73 1 89 37 105 113 121 123 137 1456 153 161
A AN NN N IR VRN
-12 -19 -20 -24 -26 -283 -28 -27 -31 -36
/ | / s V4 | N / | N/ | N/ | N
NN LN ”
-16 -18 -22 -26 -24 -19 -16 -12 -19 -283 — -34—
| AN AN | N/ | AN -
-10 -9 -11 -12 -7 -4 4 9 g9 4 0 -1
NN BN I
[} [1] 2 9 14 — 17 — 16 20 21 23 — 31— 30
V2 AN I N / | A4 | /
N NN iy Y /N
3 5 6 11 18 16 10 20 32 52 - 63—
\ I N | N | l / /7 /S
AN | I
7 6 -4 -1 10 — 11 — [ 1 13 35 57 73
N
| |
N/ N\ | N N/
— 12 — 3 -8 @ -1 — 5= 1 0 10 29 49 - 60—
/N N | N N
N e
12 y — - — -2 -2 -4 -4 4 17 34 — 46—
/ | AN /
y I | N
7 — 10— 4 1 -1 -2 -5 -9 -5 8 24 - 37—
/ I | N\
N
-3 0 3 4 3 0 -1 -4 -3 8 24 - 35—
/N
NP2V N N
-8 -3 -5 -3 1 4 2 -1 2 11 24 — 29—
ZIN 7 1\ I\ 7N
iy
-7 -5 — -8 — -§ o] 1 -2 -1 0 3 10 - 12—
|
Figure 5:

The Direction Flags in a Band-Pass Level 7 of the Teapot Image.

This Figure shows the direction flags cctected in a region of band-pass level 7 of the
teapot image. Each direction flag is represcnted by a pair of bars pointing toward the
smaller valued neighbors. Ridges tend to run perpendicular to the dircction flags.
Peaks ( P-nodes ) are marked with circles, Note that both the positive and ncgative pcaks
and ridges are shown. Note also that dircction flags are not detected for nodes where
the magnitude of the DOLP response is less than 5.
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Band-Pass level 7 Teapot Image Peaks, Ridges and Pointers’
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Figure 6:

The Ridge Paths Connecting Fcaks ( P-nodcs ) in Band-Pass
Level 7 in the Teapot Image

This figure shows the pointers connecting adjacent DOLP samples along positive and
negative ridges in the crop from Band-Pass level 7 of the tca-pot image. Each pointer is
represented by an arrow pointing to a neighbor node. A pointer is made from a R-node
to a ncighboring R-node if it has a common direction flag and is a local maxima among
the ncarest cight ncighbors. A ridge may be traced betwcen pcaks by following the
pointers.
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However, when the curvature is very gradual P-nodes may not occur for the concavitics and convexitics. [n
either case, a precise description of the location of the boundary is provided at multiple resolutions by the
path of the ridge in a band-pass level.

A ridge is the path of largest R-nodes between P-nodes. This path can be formed by a local linking process
which is exccuted independently «it cach R-node. The ridge path can be detected by having cach R-node
make a pointer to neighboring R-nedes which meet two conditions:

1. The neighbor R-node has Uhe same sign and direction flags; and,

2. The magnitude ot the DOLP sample at the neighboring R-node is a local maximum in a linear list
ot DOL.P values of neighbots.

An carlier, more complex algorithm for the same purpose was described in {13]. The result of this process
when applied to the Icvel 7 band-pass image is shown in Figure 6.

3.3 Linking Peaks Between Levels and Detecting the Largest Peak

The band-pass Sliers which cornpose a DOLP wansform are denscely packed in the frequency domain.
Euch filter has a signiticant overlap i the pass-band of its transfer function with the band-pass filters from
neighboring levels. As a result, when a form results in a two-dimensional pcak ( or P-node ) at onc band-pass
level the filters at adjacent levels will tend to cause a peak ol the same sign t¢ occur at the same or adjacent
positions. Connecting P-nodcs of the same sign which arc at adjacent locations in adjacent band-pass iniages
yields a schucnce of P-nodes referred to as a P-path. P-Paths tend to converge at lower resolutions, which
gives the description the form of a tree. The branches at higher resolution of this trec describe tiic form of
"rourdish™ blobs, bar-cnds. corners and pointed protrusions, and the patterns of concavities and convexities
along a bouadary. Descending the tree of P-paths in a description gives an increasingly more complex and
higher resolution description of the form.

The magnitude of the DOLP filter response of P-nodes along a P-path tend to rise monotonically to a
largest magnitude, and then drop off monotonically. This largest value is encoded as an M-node. Such nodes
serve as landmarks for matching descriptions. An M-node gives an estimate of the size and position of a form
or a significant component of a form. Determining the correspondence of parts of forms in two descriptions
is primarily a problem of finding the correspondence between M-nodes and the L-paths which connect them.

A simple technique may be used to simultaneously link P-nodes into a P-path and detect the M-node
(largest P-node) along each P-path. This technique is applied iteratively for eacli level, starting at the next to
the lowest resolution level of the DOLP transform (level K-2). The technique can be implemented in parallel
within each level. This technique works as follows. Starting at eacn P-node at level k, the nearcst upper
ncighbors at level k+1 are examined to scc if they are also P-nodes of the same sign. If so, a two-way pointer
is made between these two P-nodes.

It is possible for P-nodes that describe the same form at two adjacent levels to be separated by as much as
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two samples. Thus, if no P-nedes are found in the nearest 4 or 8 ncighhurs3 at fovel k+ 1 fora P-nede at level
k. then the nodes in the larger neighborhoeod given by the neighbors of the neighbors is examined. A two-way
pointer is made for any P-nodes found in this larger neighborhood.

During this linking process it is also possible to detect the largest P-noces on a P-path by a process referred
to as "flag-stealing”. "This technique requires that P-node linking occur serially by level. [n the flag stealing
process, a P-node with no upper ncighbor or with a magnitude greater or cqual to all of its upper neighbors
sets a flag which indicates that it is an M-node. Peaks which are adjacent to it at lower levels cun "steal” this
flag if they have an equal or larger magnitude. When the flag is stolen, the lower node scts its own flag as well
as sctting a second Hag in the upper P-node which is then used to cancel the flag. This two stage process
permits the M-flag to prepagate down multiple branches if the P-path splits.

19P Level 6

48 P Level 5
——— R-Path (intra-level)

——-——— P.Path (inter-level)
63 M Level 4

52P Level 3

36 P 6P

I \ _l_\ Level 2
\—[— \ |

Figure 7. Positive P-Paths For Square of Size 11 x 11 Pixcls

Figure 7 shows the P-paths and the M-node that occur at level 6 through 1 for a uniform inteusity square of
11 x 11 pixels, and grey level 96 on a background of 32. The reader can simulate the P-node linking and flag
stealing process with this figure. The process starts at level 6, where the P-node has a value of 19.

3 . . .
The two passible upper neighborhoods in the DOLP space with \/3 sampling.



18

3.4 Detecting the Largest Three-Dimenstonal Ridge Path

Three-dimensional ridges arc essential for describing forms which are clongated.  An clongated form
almost always has an M-node at cach end. and a ridge of large DOLP values connecting the two M-nodes.
The DOLP valucs along this ridge tend to be larger than than those along the ridges in the band-pass levels
above and below, because the positive center coefficients of the band-pass for that level "fit” the width of the
clongated form. Where the form grows wider, the largest ridge will move to a higher (coarser) band-pass
level. Where the form grows thinner, the largest ridge will move to a lower (smaller resolution) band-pass
level. This ridge of largest DOLP samples is called an [.-path and the nodes along it are called I.-nodes.
L-rodes are R-nodes that are larger than their neighbors at adjacent band-pass levels.

[_-nodes may be detected by a process similar to the flag-stealing process used to detect the largest peak, or
M-node along a P-path. That is, starting at the band-pass level below the lowest resolution, cach R-node
cxarmines a ncighborhood in the level above it. An R-node is determined to be an L-node if is has a larger
value than the R-nodes in approximately the same place in the ridges above and below it.

Thus each R-node scans an arca of the band-pass level above it. This area is above and to the sides of its
ridge. The magnitudes of DOLP samples of the same sign found in the neighborhood in the upper ridge are
comparcd to that of the R-node, and a flag is set in the lower R-node and cleared in the ubper R-node if the
lower R-node is smaller. In this way, the L-flags propagate down to the level with the largest DOLP sainples
along the ridge. I-nodces are linked to form [.-paths, by having each L-node scan its three-dimensional

cighborhood and link to {.-nodes which have the same sign and arc local maxima in the three-dimensional
DOLP space neighborhood.

4 A Simple Example of Matching

There arc many applications for shape matching, and each application demands matching algorithms with
certain properties. This section does not provide a matching algorithm. lnstcad, it cescribes some principles
about matching forms that have been encoded in the representation described above. Primarily, these
principles involve techniques for discovering the correspondence between "landmark” symbols in the two
descriptions. A fundamental principle is that the correspondencc of P-nodes and M-nodes in two descriptions
is constrained by the correspondence of P-nodes and M-nodes at coarser resolutions in the same P-path.

As an example of correspondence matching using this rcpresentation, this section shows the process of
discovering the correspondence between the coarsest resolution P-nodes in two images of a teapot taken with
a change in distance betwcen the teapot and the camera by a factor of 1.36. [n this example matching is
shown for the P-nodes from the most global level (level 12) to the second highest level with more than one
P-node.

The first image is referred to as tcapot image 1. This is the image whose sampled DOLP transform is
shown in the examples in figures 2 and 3. The P-nodes for levels 12 through 6 of teapot image 1 were hand
matched to thosc of the second teapot image, referred to below as teapot 2. Other examples of M-node
matching for the teapot images are given in [13]).
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4.1 Abstracting the Granh of Cennected Peaks at a Level

The algorithms described above are all presented from the point of view of having daa which is
"embedded” in the DOLP space. To obtain a description of gray-scale shape which is general purpose itis
desirable o construct a graph which not embedded in the DOLP space. Such a description may be stored
with much less memory.

The primary skcleton of such a description is the tree of P-paths and the interconnecting f.-paths. The
P-nodes at each band-pass level are Jinked to other P-nodes of the same sign and level which are part of the
same form. This linking is provided by tracing the R-paths that connect P-nodes at a level. Each link is
encoded as a two-way pointer between P-nodes.

Each P-node and M-node has attributes of its DOLP sample value and its position (x, y, k) in the DOLP
spacc. Connccted P-nedes are "linked™ by two way pointers. Each half of a pointer may also be assigned the
attributes of distance (D) and orientation (&), which arc defined as:

Distance: The distance betwcen two P-nodes is the cartesian distance measured in terins of the
number of samples at that level. In levels with a V2 sample grid, the distance along the x
and y axes arc in units of V2.

Orientation: The orientation between two P-nodes is the angle between the line that connccts them and
the x axis in the positive direction.

The attributes of distance and orientation are usetul for determining the correspondence betwecn smali
groups of P-nodes from two DOLP transforms.

4.1.1 Example of Abstracted P-nodes and R-paths

The P-nodes and R-ncdces from level 7 of the teapot image are shown above in Figure 6. Level 7 is the
highest level with more than one P-node describing the tcapot.

19P (1)
@
14 P <’”’“/,/ @

73P Level 7

Figure 8: Positive P-nodes and R-paths for Level 7 ¢f the Teapot Image

The three positive peaks from level 7 of the teapot image are shown abstracted from the band-pass data in
Figure 8. The R-path links betwesn these P-nodes arc illustrated with arrows and labeled with circled
numbers, called "Link numbers”. Links 1 and 2 are examples of "directly” connected P-nodes. A pair of
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P-nodes are directly connected when they are connected by an R-path with no intervening P-nodes between
them. The R-path link between the right-most and left-most P-nodes is shown as a dotted arrow labeled as
link 3. Link 3 shows an cxample of a pair of "indirectly” connected P-nodes. Including indirect R-path links
in matching P-nodes prevents the matching algorithm from errors caused by missing or extrancous P-nodes.

In this carty matching experiment, special status was given to the P-nodces along the "principal P-path”.
This 1s the P-path which includes the highest M-node. Thus arrows and indirect links are shown cmanating
from the P-node from this P-path. In our more recent experiments, all links arc two-way, and indirect links
are madc for all P-nedes which arc not at the top of a P-path.

The link numbers arc also used as an index into a table of attributes. The attributes for these particular
links are given in table 1 in the next section. This same set of links is included in Figure 9. These numbers
arc also usad to show the correspondence which was assigned by hand matching between these links and the
same links in the larger teapot image.

These attribute tables give the values for dx, dy, D, and 8 for cach R-path link. The positive directions for
dx and dy arc the same as used in the image: + x poiats right, +y points down. Note that § increases in the
counter-clockwise direction. In these tables, in the levels which are at a V2 sample grid, the distances dx and
dy arc recorded in units of v/2. In cases where a P-node spans two adjacent samples, the P-nodes position is”
assigned at the mid-point between them. This results in values of dx or dy that have fractional parts of .5 in
the cartzsian-sampled (0dd) levels, and .25, .5 or .75 in the V2 -sampled (cven) levels.

In tables 1 and 2, orientation (#) is measurced in degrees. On a cartesian grid. at distances that are typically
5 to 10 pixels, angular resolution is typically 5 to 10 degrees. Of course, the longer the distance, the more
accurate the estimate of orientation.

The P-nodes for levels 12 through 6 of the teapot image are shown in Figurc 9. In levels 12 through 9 of
Figurc 9 only a single P-node occurs in the teapot. These P-nodes all occur within a distance of two samples of
the P-node above them, and arc thus linked into a single P-Path.* This P-path is referred to as the principal
P-Path. The P-node at level 8 has the largest value along this P-path and is thus marked as an M-node. This
P-node corresponds to a filter with a positive center lobe of radius R, = 18 pixels or a diameter of 37 pixels.
This corresponds to the form in the image that results from the overlap of the shadow on the right side of the
teapot and the darkly glazed upper half of the teapot.5 At level 7, additional detail begins to emerge.
P-nodes occur over the upper right corner of the teapot and over the handle region. These P-ncdes are joined
to the P-node on the principal P-path by an R-Path.

FFive P-nodes occur in level 6. Three of these P-nodes occur underneath (within 2 samples of) P-nodes from
level 7. These three P-nodes are thus part of three P-paths. The remaining two P-nodcs are in fact the highest
levels of two more P-paths. The P-path that begins at level 12 is referred to as the principal P-path. Only the
indirect links between the principal P-path and a subset of the other P-nodcs are shown in this figure and used
in the matching example.

The P-path links appear as vertical dark lines in figure 9 although in fact there can be a lateral shift of up to two samples between their
positions.

h) . L . .
The teapot images were digitized from ncgatives. Thus dark forms appear light in Figures 2 and 3.
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Figure 9: P-nodes and P-Paths for Levels 12 to 6
of the Smaller Teapot Image (teapot 1)
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R-Path 1.ovel dx dy D f

L 7 -6 -2 6.32 161.5°
2 7 -5 3 5.83 210.9°
3(1&2) 7 S 1 11.04 185.2°
4 6 -4.0V2_ 2.0V2 6.32 153.4°
5 6 -3.25V2 1.5V2 5.06 205.8°
6 6 3.0V2 0.0 _ 4.24 180°
7 6 0.25V2 3.25V2 4.6 265.6°
8 (4&5) 6 -1.25V2 -0.5vV2 10.2 176.1°
9 (4&5&6&7) 6 -10v/2 2.75V2 14.6 195.3°

Table {: R-Path Links for Levels 7 and § of the First Teapot

Note that an M-node occurs ct level 6. This M-node cerresponds to the upper left corner of the tcapot and
marks the ieft end of the dark region of glaze on the upper half of the teapot. The width of the positive center
lobe of the filter which corresponds to this M-node gives an approximation of the width of the darkly glazed
rcgion.

2.2 Inttial Alignioent to Obtain Size and Position

In matching two forms it is convenient to designate one form as a “reference form™ and the other as a "data
form". One then speaks of rotating, translating and scaling the reference form so that its elements are brought
inw correspondence with the data form. In the examiples presented below, tecapot 1 is considered as the
reterence form which is transformed to match the teapot 2 (the data form).

Initial estimates of the alignment and relative sizes of two gray scale forms may be constructed by making a
correspondence betveen their highest level P-nodes. This is itlustrated by comparing the P-nodes and links in
Figure 9 to those in Figure 10 shown below. Figure 10 shows the P-nodes and P-Path links for a tcapot from a
sccond image. This size scaling was accomplished by moving the teapot closer to the camera, and was thus
accompanicd by some changes in lighting. This second teapot is scaled larger in size by a factor of 1.36, which
is just less than V2. The distance and orientation for each P-Path link in this second teapot levels 12 through
7 is shown in table 2 below.

The highest level M-node in this second teapot occurs at level 9. The fact that this M-node is cne level
higher than the highest level M-nodc for teapot 1 confirms that this second teapot is approximately V/2 larger
than the first teapot.

The correspondence of the highest level M-nodes from these two teapots gives an cstimatc of the alignment
of the two teapots as well as the scaling. The correspondence tells us the position at which the first teapot,
scaled by V2 in size will match this second teapot. The tolerance of the initial position alignment is * the
sample rate at the level of the M-node in the data image. If this second teapot is designated as the data image,
then the sample rate at level 9 determines the tolerance. The positioning tolerance at level 9 is #3V/2 pixcls.

The tolerance of the size scaling is less than £V/2 .. The correspondence of the highest level M-nodes
provides an cstimate of the size scaling factor which is a power of V2. Such an estimate is sufficient to
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Figure 10: P-nodes and P-Paths for Levels 12 to 7
of Second Teapot (Scaled Larger in Sizc by 1.36)
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R-Path 1 .evel dx dv D 4

3 8 -7.5V2 1.5V?2 10.31 191.3°
4 7 -35 -6.0 6.94 149.7°
5 7 -4.0 1.0 4.12 194.0°
6 7 -4.5 1.0 4.61 192.0°
7 7 -0.5 5.0 5.02 264.3°
8 (4&5) 7 -10.0 -15 10.11 171.5°
9 (4&5&6&T) 7 -15 35 15.4 193.1°

Table 2: R-Path Links for l.evels 8 and 7 of the Second Teapot
(Scaled jarger in Size by 1.36)

constrain the correspondence process. A more accurate estimate can be obtained from the correspondence of
higher resolution P-nodes and M-nodes,

4.3 Determining Further Correspondence and Orientation

‘The matching process starts by finding the correspondence for the highest level M-nodes. This provides
the process with an wnitial estimates of the size and position f the two forms. The nexi step is to find the
correspondence of lower level P-nodes and M-nodes to refine the estimates of relative size and pesition,
discover the relative orientations, and discover where onc ¢f the forms has been distorted by parallax or other
erfects.

Ict us continue with our example. A P-node for the upper left corner of this second teapot does not occur.
The change in scale from the first teapot to this sccond teapot was not enough to bring this P-node up to level
8. This may also be a result of the slight difference in shading that resulted from moving the teapot with
respect to the lights and camera in order to size scale the object. Such errors are a natural result of changing
the relative position between the camera and objects. A matching algorithm must tolerate them to be useful.
The fact that the P-node of value 16 in level 8 of this second teapot corresponds to the P-node of value 14 in
level 7 of the first teapot must be discovered from the position relative to their principal P-nodes and the
distance and oricntation from the P-node on the principal P-path at the same level.

Teapot 1 Teapot 2 Difference
R-Path D, 8, D, 0, 6,6, Dy/D, D,D, 100x(D,-D)/D,
3 1109  185° 108 191° -6° 0574 -0 -1.8%
4 6.3 153° 69 148° s° 1.095 06 8.7%
5 5.1 206° 41 194° 12° 0.804 1.0 24.4%
6 42 180° 4.6 192° 1»° 1.09 0.4 8.7%
7 46 266° 5.2 264°  2° 1.13 -06  -11.5%
8 10.2 176°  10.1 171° 5° 0.99 -0.1 -1.0%
9 14.6 195° 15.4 193° 2° 1.05 0.3 5.2%
Average Error 4.57° 1.020 0.257 4.3%

Table 3: Comparison of D and & attributes for Teapots 1 and 3
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The values for D and @ for the link attributes in levels 7 and 6 of teapot 1 are compared to the attributes in
the corresponding links from levels 8 and 7 of teapot 2 in table 3. All of these links are constrained to begin
and cnd at samples in their respective levels. Because we are dealing with distances of between 4 and 15
samples at arbitrary angles, there is quantization noise in these attributes. The differences in orientation are
shown in the column labeled §,-9,. Except for link 3, these values show a consistent small rotation in the
counter-clockwise direction for tm links from teapot 2. A carcful measurceinent of the angle between the line
connecting two lundmarks and the raster line in the two images confinns that the two teapots actually have a
relative change in orientation of approximatcly 3.3°. The actual values of @ fluctuate more than this due to
quantization crror from sampling and changes in shading.

The ratio 1D,/D shows a factor by which the lengths consistently shift when the teapot is scaled by 1.36.
Because the actual valms of D, and D are restricted to distances between discrete locations, there is some
random crror built into this ratio. Smcc this shift in scale_ was enough to drive the corresponding R-paihs in
this second tecapot up to a new level, but less than the \_/2 = 1.41 scale change between levels, an average
ratio of D,/D; = 1.36/1.41 = 0.96 was anticipated. In table 3 we sce that this average ratio worked out to
1.02. Our conclusion is that quantization noise and changes in shading accounted for most of this difference.
The actual differences in length, D, D show that the lengths are always within one sample. Except for link
3, the percentage differences. (D Dl)/D arc gcncmlly small (<10%). The conclusion from this experiment
is that the correspondence bc["' ¢en R-nodes from similar gray-scale forms of different sizes can be found,
provided that the marching wlerates variations of the lengths of R-paths of up to 25% and variations in the
relative angles of up to 12°.

5 Comments

The representation for gray scale shape which is formed by detecting peaks and ridges in a resampled
DOLP transform resembles the representation provided by a Medial Axis Transform (MAT) described by
Blum S]. ‘There are, however, several important ditferences. It is worth while to compare these two
representations and examine their similarities and differcnces.

5.1 Comparison With Blum’s Medial Axis Transform

The MAT ( or grass-fire transform) is a technique for deriving a spine for a binary shape. The transform is
defined as follows: Every point on the boundary of the binary shape simultaneously emits a circular wave.
The waves propagate in such a manner that waves do not flow through cach other. When waves meet head
on, they cancel. The point at which they cancel is marked as a point on the MAT spinc of the shape. By
propagating the waves in discrete time units, and kecping track of the time at which waves cancel, the spine
may be encoded with the distance to the boundary. An axis occurs inside every concave curve, whether it is
inside of a shape or not.

Rosenfeld [27] has shown a fast two pass operator which will implement the grass fire transform. This
operator is significant on its own right because it makes possible the matching technique of "Chamfer
Matching” [6].

There are at least two fundamental problems which prevent the spinc from a MAT from being uscful for
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describing gray-scale shape. The first of these is that the transform only exists for binary shapes. The second
problem. first pointed out by Agin [2], is that a small narrow concavity in the boundmy will significantly alter
the shape of the resulting spine. Similar cffects can occur from many other types of noise patterns. Thus the
transform and the spinc are very sensitive to noisc.

In contrast, the represcntation given by peaks and ridges in a DOILLP transform is a representation for gray
scale shape instead of binary shape. The DOLP band-pass filters have a circular positive center lobe which is
a best fit to the gray scale patiern when the DOLP value is large. Thus, as with the MA' sping, the DOLP
ridges tend to exist where a circle is a best fit to the pattern. However, the DOLP band-pass filters have a
smoothing effect; they are only sensitive to patterns at narrow range of sizes (spatial frequencics). Thus a
narrow concavity is described in detail by small DOL.P filters, the concavity has almost no effect on the ridgc
given by large DOLP filters.

The representation given by peaks and ridges in the DOLP transform has many other propertics which a
MAT spine does not have: For example, there is the existence of a largest peak as a landmark for matching,
the fact that the representation can be used to guide matching from course resolution to high resolution, and
the important property that the configuration of pcaks and ridges can be matched when the pattern occurs at
any size.

o Sumrnary and Conclusion

The principal topic of this paper is a representation for grey scale shape which is composed of peaks and
ridges in the DOLP transform of an image. Descriptions of the shape of an object which are enceded in this
representation may be matched cfficiently despite changes in size, orientation or position by the object. Such
descriptions can also be matched when the object is blurry or noisy.

The definition of the DOLP Transform was presented, and the DOLP Transform was shown to be
reversible. A fast algorithm for computing the DOLP Transform based on the techniques of resampling and
cascaded convolution with expansion was then described. This fast aigorithm is described in greater detail in
[14]. This section concluded with an example of the DOLP transform of an image which contains a tcapot.

A represcntation for gray-scale form based on the peaks and ridges in a DOLP transform was then
described. This representation is composed of four types of symbols: {M, P, L, R}. The symbols R and P
(Ridge and Peak) are detected within cach DOLP band-pass image. R-nodes are samples which are local
positive maxima or necgative minima among three contiguous DOLP samples in any of the four possible
directiuns. P-nodes are samples which are local positive maxima or negative minima in all four dircctions.
P-nodes within the same form in a band-pass level are connected by a path of largest R-nodes, called an
R-path (or ridge). An R-path is formed by having each R-node make a pointer to members of its local
ncighborhood which arc also R-nodes and local maxima within a lincar list of the neighborhood. P-nodes are
connected with nearby P-nodes at adjacent band-pass levels to form P-paths. The skeleton of the description
of a form is a tree composed of P-paths.

The DOLP values along each P-path rise monotonically to a maximum in magnitude and then decrease.
The maximum magnitude DOLP sample along a P-path is marked as an M-node. M-nodes serve as
landmarks for matching, and provide an estimate of the position and orientation of a form in an image. [f the
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values along an R-path are compared to the values along the R-paths at nearby locations in adjacent band-
pass images, an R-path of largest DOLP samples can be detected. These samples are marked as L-nedces. and
the these nodes form an T-path. [.-paths begin and end at M-nodes and describe clongated forms. - Thus,
descriptions in this representation have the structure of a tree composed of P-paths, with a distinguished
M-node along cach. The P-nodes in each level are connected by R-paths, and the M-nodes are connected by
L-paths which can travel among as well as within the levels.

The teapot image was used to illustrate the construction of a description in this represeatation.  In this
iliustration, the R-nodes and P-nodes from.band-pass level 7 from the DOLP ttansform of the teapot and the
pointers between these R-nodes were displayed.

The final section of the paper presented a description and cxamples of the problem of determining the
correspondence between the M-nodes and P-nodes in two descriptions of the same object. A description of a
sccond tcapot image, in which the teapot had been moved so as to be scaled larger by 1.36, was used to
illustrate the principles of matching such descriptions. In beth teapot images, the P-paths, R-paths and
M-nodes from the coarsest resolution band-pass images were presented. Matching to determine the
correspondence of L-paths was not described in this paper. Such matching is described in [13].

The teapot matching examples first illustrated the correspondence of the coarsest resolution M-nodes in the
two descriptions. This correspondence provides an estimate of the position and size at which the two teapot
description best match. The principle that P-nodes in two descriptions can only correspond if the P-nades
above them correspond was atso illustrated. An example was then provided for the use of the lengths and
directions of the R-paths that connect P-nodcs at each level to further determine correspondence when new
P-paths are introduced and the orientation has not been determined.

This example addresses only a small part of the general problem of matching descriptions of objects. The
problem of matching two descriptions of an object with large differences in image planc orientation was not
illustrated. An example of such matching is provided in [13]. The more difficult problems of matching in the
presence of motion of either the camera or the object was not discussed. Such matching must be robust
enough to accominodate the changes in two-dimensional shape that occur with a changing three-dimensional
viewing angle. Similarly, the problems of forming and matching to a prototype for a class of objccts was not
discussed. We believe that this representation will provide a powerful structural pattern recognition
technique for recognizing objects in two-dimensional domain and for dynamically constructing a three-
dimensional model of a three-dimensional scene.
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