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Abstract

In this study, we developed a robust subject-specific electromyography (EMG) pattern

classification technique to discriminate intended manual tasks from muscle activation patterns of

stroke survivors. These classifications will enable volitional control of assistive devices, thereby

improving their functionality. Twenty subjects with chronic hemiparesis participated in the study.

Subjects were instructed to perform six functional tasks while their muscle activation patterns

were recorded by ten surface electrodes placed on the forearm and hand of the impaired limb. In

order to identify intended functional tasks, a pattern classifier using linear discriminant analysis

was applied to the EMG feature vectors. The classification accuracy was mainly affected by the

impairment level of the subject. Mean classification accuracy was 71.3% for moderately impaired

subjects (Chedoke Stage of Hand 4 and 5), and 37.9% for severely impaired subjects (Chedoke

Stage of Hand 2 and 3). Most misclassification occurred between grip tasks of similar nature, for

example, among pinch, key, and three-fingered grips, or between cylindrical and spherical grips.

EMG signals from the intrinsic hand muscles significantly contributed to the inter-task variability

of the feature vectors, as assessed by the inter-task squared Euclidean distance, thereby indicating

the importance of intrinsic hand muscles in functional manual tasks. This study demonstrated the

feasibility of the EMG pattern classification technique to discern the intent of stroke survivors.

Future work should concentrate on the construction of a subject-specific EMG classification

paradigm that carefully considers both functional and physiological impairment characteristics of

each subject in the target task selection and electrode placement procedures.
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I. Introduction

Stroke is a primary cause of serious, long-term disability in the United States [1]. While

many stroke survivors eventually regain functional use of their lower extremities (e.g.

walking, albeit often with the use of an aid), their upper limb recovery is slow and often

limited [2,3]. Specifically, hand dexterity is likely to be most affected, and therapeutic

treatment usually appears to have limited effect on those with severe impairment [4].

Consequently, recovery of hand function is often limited and chronic deficits persist. Many

stroke survivors cannot voluntarily perform functional manual tasks without assistance,

mainly due to their weakness [5], spasticity [6], or abnormal muscle coactivation [7]. Due to

the importance of the hand in daily activities, the effective restoration of its functionality

should be one of the primary goals for stroke survivors.

A number of devices have been developed which could potentially provide assistance for the

hand [8-11]. Some of the exoskeleton devices, for example, can assist users in performing

functional tasks such as pinch grip [12] or other complex tasks requiring independent control

of individual finger joints [13]. A greater challenge for effective task performance, however,

lies in providing volitional control of these devices to the user.

One commonly used means of implementing control of external devices is through the use

of electromyography (EMG). In the past, this was often done through the mapping of the

EMG of a single muscle to control of a single degree-of-freedom (DOF). For example, in

myoelectric prostheses, biceps activation might trigger flexion of the prosthetic elbow and

triceps activation might trigger elbow extension [14]. Similarly, in stroke survivors, biceps

and triceps activation might be used to control elbow flexion and extension, respectively,

through a powered orthosis [15]. Alternatively, the EMG signal from a weak muscle could

be detected in order to trigger amplified activation of the same muscle [16].

The digits of a hand, however, contain 21 independent DOF. Most functional manual tasks

involve complex temporal and spatial coordination of multiple muscles [17,18]. Control of

even a subset of these DOF through the single muscle EMG-single DOF is not feasible. To

surmount these limitations, research in the field of upper-extremity prosthetics has

increasingly focused on the classification of the EMG activity patterns of multiple muscles,

and has been successfully performed [19-23]. A number of technical aspects of the EMG

classification method, such as electrode placement [24], classification algorithm [25], and

signal processing [26], have been extensively investigated to improve the classification

performance. Some recent EMG classification techniques explored the potential of subject-

specific classifier by allowing the users to define their own target movements, and achieved

high classification accuracy [27]. Recently, the application of these techniques has been

expanded to a spinal cord injury patient population, and an EMG classification technique

employing artificial neural network was employed to successfully identify their intent from

their remaining ‘voluntary’ muscles, thereby providing necessary inputs for upper extremity

neuroprosthesis using functional electrical stimulation [28].

In stroke survivors, however, exploration of the use of EMG pattern classification technique

across multiple muscles to identify the intended functional tasks is much more limited. The
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stroke population presents some unique challenges but also some opportunities in

comparison with the population of prosthetics users. In stroke survivors, spasticity,

abnormal muscle activation [29], and excessive antagonist coactivation [30], which do not

exist in amputees, may hamper accurate classification of muscle activation patterns,

specifically for those with severe neurological impairment. For example, activation of a

given finger muscle may show limited modulation across a variety of intended finger force

directions [31]. Synergistic muscle activation patterns in stroke was found to be

distinguished from those obtained from healthy control subjects, as identified by a Bayesian

network modeling method for pattern classification [32]. On the other hand, while EMG

classification techniques for transradial amputees have targeted only forearm muscles,

signals from hand intrinsic muscles are available as inputs in stroke survivors, and their

inclusion should be able to greatly enhance accuracy. Therefore, activation patterns of

different muscle groups (including hand intrinsic muscles) of stroke survivors and their

inter-task and intra-task variability should be carefully analyzed to ensure the successful

EMG pattern classification of stroke survivors.

In this study, we present a subject-specific EMG pattern classification technique that

discriminates intended manual tasks from the muscle activation patterns of stroke survivors.

The specific aims of this study were: (1) to examine inter-task and intra-task variability in

muscle activation patterns of stroke survivors, (2) to clarify the contribution of different

muscle groups to the inter-task variability of the muscle activation patterns, (3) to elucidate

correlation between the subject impairment levels and the inter-task variability of their

muscle activation patterns, and (4) to assess the feasibility of the EMG classification

technique for identifying the intent of stroke survivors to perform different functional

manual tasks, with the intended application of enhanced control of assistive devices.

Accurate identification of the intent of stroke survivors by the EMG pattern classification, if

successfully implemented, would be able to provide control of assistive device enabling

them to voluntarily perform fundamental functional tasks crucial in their daily activities.

II. Methods

A. Subjects

Twenty subjects with chronic hemiparesis (ages 45 – 73 years; 12 males and 8 females;

minimum 1 year since the onset of stroke) participated in the study. Subjects were selected

based on hand motor impairment level, as assessed by a research occupational therapist.

Impairment was classified on an ordinal scale from 1 to 7 in accordance with the Stage of

Hand component of the Chedoke-McMaster Stroke Assessment scale. A “1” indicates the

most severe impairment and a “7” indicates an ability to perform all of the tasks on the scale

[33]. According to the definition of the Hand Stages in the Chedoke-McMaster scale,

impairment level of each subject is categorized as a certain stage if he/she can perform more

than two tasks listed in that stage. Items for the stage 2 include positive Hoffmann,

resistance to passive wrist or finger extension, facilitated finger flexion; for the stage 3, wrist

extension > ½ range, finger/wrist extension > ½ range, thumb to index finger; for the stage

4, finger extension then flexion, thumb extension > ½ range then prehension, finger flexion
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with lateral; and for the stage 5, finger flexion then extension pronation, finger abduction,

spherical grip [33].

Five subjects were recruited for each Stage from 2 – 5. Subjects were categorized into two

groups according to their impairment level: severely impaired subject group (Stage of Hand

2 and 3) and moderately impaired subject group (Stage of Hand 4 and 5). The experimental

protocol was approved by the Northwestern University Institutional Review Board, and

informed consent was obtained from each subject.

B. Instrumentation

Ten pairs of disposable, self-adhesive silver/silver chloride surface electrodes (Noraxon, AZ,

USA) were used for the surface EMG recording of each subject. Three pairs were placed on

the hand, and seven pairs on the forearm. On the hand, the first electrode (E1) was placed on

the radial to the first metacarpal (MC) bone to target the thenar muscles, the second (E2) on

the radial to the second MC to target the first dorsal interosseous muscle (Fig. 1a), and the

third (E3) on the ulnar to the fifth MC to target abductor digiti minimi (Fig. 1b). One

electrode (E4) was placed on the groove of the posterior side of the forearm where the

radius, ulnar and lunate bones meet. Six electrodes (E5-E10) were placed on the forearm at a

location 40% of the distance from the medial epicondyle of the humerus to the styloid

process of the ulna. These six electrodes were equally spaced around the circumference of

the forearm (Fig. 1c), as previous studies have suggested that targeted and untargeted

electrode placement strategies produce similar classification accuracies [24]. Three of the

six electrodes (E5-E7) were placed on the anterior side of the forearm, and three (E8-E10)

on the posterior side.

C. Experimental Protocol

Subjects were seated upright comfortably on a chair and instructed to rest their forearm on

the table, which was adjusted according to their seated height, and their elbow was flexed to

approximately 90°. They were asked to perform the following six tasks or to relax (no

movement): hand open, key grip, pinch grip, cylindrical grip, spherical grip, and three-

fingered grip (Fig. 2). For grip tasks, objects were placed in their hand by the experimenter.

Specialized MATLAB-based software (ACE, Neural Engineering Center for Artificial

Limbs, Chicago, IL) was used to guide subjects throughout each session. This software

provided each subject with visual feedback regarding target task and task initiation/

termination time, recorded EMG signals during each task performance.

Subjects participated in three sessions (Fig. 3) on one day. In each session, subjects were

asked to perform seven tasks (six functional tasks + no movement). During each session,

two blocks of these seven tasks were performed to train the classifier system (Classifier

training session 1 – 3 in Fig. 3). For each task, subjects were asked to hold the object with

moderate grip force for 3 – 5 seconds. Between tasks, brief relax/preparation periods were

given to help the stroke survivors to relax, to decrease muscle spasticity resulting from each

task performance, and to prepare for the next task. The length of the preparation period was

adjusted to a value between 7 and 20 seconds, according to the impairment level of each

subject. The duration of the preparation period (rest time) was determined from a
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preliminary experiment performed prior to this study. In this pilot work, we examined how

much time would be required for each subject to change between grip tasks. Generally, for

moderately-impaired subjects, 5-10 seconds of the preparation period between grip tasks

was sufficient, whereas at least 10-15 seconds were required for the subject with severe

impairment in order for them to open the hand, release the object, and prepare to perform the

next grip task.

Classification performance was measured in two evaluation sessions, the first of which took

place after the 2nd training session, and the second after the 3rd training session (Classifier

evaluation session 1 – 2 in Fig. 3). In each evaluation session, the seven tasks were

presented in a random order, twice per task. The entire experiment took approximately 2 to 3

hours to complete.

D. Classifier

In the classifier training sessions, pattern classification was performed on segments of the

data. Data analysis windows were 150 ms in duration shifted in 100 ms increment (i.e.

overlap of 50 ms). For each analysis window, four sets of features from time-domain

statistics of the EMG signals were computed, mean absolute value (MAV), the number of

zero crossing (ZC), the slope sign change (SSC), and the waveform length (WL) [20] (see

Appendix). These time-domain features were used since these features can be estimated with

less computational cost, but still yield classification performance similar to that of more

complex feature sets, such as Fourier transform, wavelet transform, and autoregressive

coefficients [34]. The feature set was computed on each of ten EMG channels, and these

feature sets were concatenated to a 40-dimensional feature vector and provided to train a

subject-specific linear discriminant analysis (LDA) classifier [35]. LDA was selected over

other types of classification methods due to its ease of implementation and its faster training

process. It was reported in previous studies [34,36] that LDA does not compromise the

classification accuracy when compared to other types of more complex classifiers.

Here, note that, from the EMG data collected from one three-second task performance, 30

feature vectors were calculated (100 ms increment over 3 seconds). Therefore, 60 feature

vectors for each task were collected during each training session.

In the classifier evaluation sessions, pattern classification was performed on data analysis

windows, which were 150 ms in duration (tL1) shifted in 100 ms increments (i.e. overlap of

50 ms). In each evaluation session, a subject-specific LDA classifier constructed in the

preceding training session was applied to discern the intent of the stroke survivors. It should

be noted that the training data accumulated over the training sessions were combined into a

single training set. In other words, the classifier used in the Classifier evaluation session 1,

which took place after the Classifier training session 2, was built based on the EMG data

collected in the training session 1 and 2, and the classifier in the Classifier evaluation

session 2 was constructed using the entire EMG data set collected in all three training

sessions (Classifier training session 1 – 3) (Fig. 3).
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E. Data Analysis

Performance of subject-specific EMG pattern classifier—In order to evaluate the

performance of the subject-specific classifier, classification accuracies were calculated in the

two evaluation sessions for each subject (Fig. 3). Confusion matrices, whose elements

indicate incidence rates of correct and false classifications, were calculated in order to

delineate the classification performance of subject-specific classifiers. A two-way analysis

of variance (ANOVA) was performed to examine the effects of the two variables, i.e. the

subject impairment level and the number of training sessions, on the classification accuracy.

Inter-task and intra-task variability of muscle activation patterns—Inter-task and

intra-task variability of muscle activation patterns of each stroke survivor were examined

based on the EMG feature vector data collected in the two evaluation sessions (7 task × 2

task performances/session × 2 sessions = total of 28 task performances). In order to quantify

the degrees of inter-task and intra-task variability, squared Euclidean distance (SED) matrix,

D, between the feature vectors of the seven tasks (six manual task and rest) were calculated.

In addition, in order to clarify the contribution of different muscle groups to the inter-task

variability, SED matrices were estimated from the feature vectors of each of the following

three subsets of muscles, 1) hand intrinsic (HI) muscles (E1-E3), 2) forearm anterior (FA)

muscles (E4-E7), and 3) forearm posterior (FP) muscles (E8-E10; see section 2.B).

Accordingly, three SED matrices that represent inter-task variability of the three muscle

groups, DHI, DFA, DFP, were estimated as follows:

(1)

where

Here,

 : 12-element EMG feature vector of task i at kth task performance estimated

from three channels recording HI muscle activities (E1-E3) (k = 1, 2, 3, 4; 2 task

performances × 2 sessions)

 : Mean EMG feature vector of task i (HI muscles) averaged across all 4 task

performances

 : 16-element EMG feature vector of task i at kth task performance estimated

from three channels recording FA muscle activities (E4-E7) (k = 1, 2, 3, 4)
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 : Mean EMG feature vector of task i (FA muscles) averaged across all 4 task

performances

 : 12-element EMG feature vector of task i at kth task performance estimated

from three channels recording FP muscle activities (E8-E10) (k = 1, 2, 3, 4)

 : Mean EMG feature vector of task i (FP muscles) averaged across all 4 task

performances

Each off-diagonal element (i, j) of each SED matrix, dij provides a quantitative measure for

the inter-task variability (i.e. distance inter-task variability) between task i and task j, while

the ith diagonal component, dii, denotes a quantitative intra-task variability of the task i.

III. Results

A. Classification Accuracy/Performance

Average classification accuracies across 1) subject impairment level, and 2) number of

training sessions are summarized in Table 1. The average classification accuracy was 37.9%

for highly impaired subjects (Chedoke Stage of Hand 2 and 3), and 71.3% for moderately

impaired subjects (Chedoke Stage of Hand 4 and 5). The classification performance was

significantly different across subjects with different functional impairment levels (i.e.

Chedoke-McMaster score) (p < 0.01). A grand mean of the classification accuracy across all

subjects and all experimental conditions was 54.6%. ANOVA revealed that the number of

training sessions did not significantly affect the classification accuracy (p > 0.45).

Interaction between these two variables, the impairment level and the number of training

sessions, was not found to be significant (p > 0.45).

Generally, subject-specific classifiers were able to distinguish different grip tasks performed

by moderately impaired subjects (Chedoke Stage of Hand 4 and 5), although there was some

difficulty discriminating between similar grasps, specifically between pinch grip and three-

fingered grip and between spherical grip and cylindrical grip, which can be also observed in

the representative classification performances presented in Fig. 4a. For severely impaired

subjects (Chedoke Stage of Hand 2 and 3), larger number of misclassifications between grip

tasks were generally observed (Fig. 4b).

Confusion matrices, which display the frequency of correct and misclassification incidences

in the evaluation sessions, were estimated to summarize the classification results across the

different tasks (Table 2). For both subject groups, the highest number of misclassifications

was observed between cylindrical and spherical grip tasks, followed by misclassifications

between pinch and key grip tasks. Overall, higher incidence rate of misclassifications

between grip tasks was observed in severely impaired subjects (Table 2b). In severely-

impaired subjects, hand open tasks were often confused with no movement. In both subject

groups, three-fingered grip task resulted in the lowest classification accuracy (54.8% for

moderately-impaired subjects, and 23.0% for severely-impaired subjects).
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B. Inter-task and intra-task variability of muscle activation patterns

Estimated SED matrices indicated that inter-task variability values between most grip tasks

were considerably higher than their intra-task variability values in moderately-impaired

subject groups (Table 3a); however, in severely-impaired subjects, inter-task variability

values between similar types of grip tasks were similar to the intra-task variability values

(Table 3b). Inter-task variability values between similar type of grip tasks, specifically

between cylinder grip (CG) and spherical grip (SG), and pinch grip (PG) and key grip (KG)

were found to be similar to or smaller than the intra-task variability values (i.e. diagonal

elements of the confusion matrices), which explains higher misclassification incidence rates

between these tasks. SED values between the three-fingered grip and other grip tasks were

generally small. Among the three muscle groups, inter-task variability values estimated from

the hand intrinsic muscles (DHI) was the largest (Table 3c,d vs. e-h).

In order to explain the low classification accuracy in severely-impaired subjects, EMG

signals from the three hand muscles/muscle groups of these subjects and their inter-task

variability were qualitatively assessed (Fig. 5). In the subjects with low classification

accuracies, activities of these intrinsic hand muscles (Electrode 1, 2 and 3; see Fig. 1a) were

found to be generally either weak (Fig. 5b) or changed approximately with the same

proportion according to the task (Fig. 5c), whereas the muscle activation patterns were

relatively distinct across tasks in moderately impaired subjects (Fig. 5a).

IV. Discussion

Classification of intended manual tasks was performed from EMG data obtained from

individuals with chronic hemiparesis following stroke. Subjects performed 7 different tasks:

hand open (HO), key grip (KG), pinch grip (PG), cylindrical grip (CG), spherical grip (SG),

three-fingered grip (3G), and relax (NM). The number of classifier training sessions (i.e.

amount of training data) was not found to significantly affect the classification accuracy.

The accuracy tends to increase with more classifier training sessions (Table 1), but these

improvements did not reach statistical significance (p > 0.45). Thus, training could be

performed in a relatively short time (4 performances per task).

The classification accuracy was mainly affected by the subject's functional impairment level,

as rated according to the Chedoke-McMaster scale (Table 1). Classification ranged from

33.5% accuracy for severely impaired subjects at Stage 2 to 77.4% accuracy for moderately

impaired subjects at Stage 4. The diminished classification accuracy for the severely

impaired subjects seemed to result from the reduced signal-to-noise ratio in the EMG signals

(due to reduced signal strength) and an inability to independently modulate muscles with

task – in other words, EMG signals from different muscles changed with the same

proportion across tasks (Fig. 5c). It should be noted that generally larger (trial-to-trial)

variability in EMG signals was observed in stroke survivors compared to neurologically

unimpaired subjects. Therefore, EMG data obtained from amputees, who often have no

further neurological damage than the amputation, would provide more uniform and stable

muscle activation data, allowing various signal features (for example, time-domain and

frequency-domain features) and classifier types (such as LDA, fuzzy logic, and neural

network) to be tested for optimizing classifier performance.
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Previous studies reported that functional manual tasks require accurate control of not only

large extrinsic muscles (e.g. flexor digitorum profundus) but also intrinsic hand muscles

(e.g. dorsal interosseous, lumbrical, flexor pollicis brevis, abductor pollicis brevis, etc.)

[17,37]. Since the control of distal muscles tends to be more impaired in stroke survivors

[38], many subjects, specifically severely impaired subjects, seemed to have more difficulty

in controlling these intrinsic muscles during different grip tasks (Fig. 5b and 5c).

For moderately impaired subjects, however, EMG signals from the intrinsic hand muscles

did increase the inter-task distance considerably, thereby promoting accurate task

classification, as indicated by the increase in the inter-task squared Euclidean distance

(SED) values (Table 2). For these subjects, these inter-task SED values of the feature vector

were generally larger than the intra-task variability of the feature vector (0.41 × 106 < dii <

0.68 × 106; Table 3), which indicates the inherent variability of the EMG feature vector

within each task; note that, however, the SED values between some tasks of very similar

nature were still relatively small (e.g. between spherical grip and cylindrical grip; see Table

3). In general, for many moderately impaired subjects (Chedoke Stage of Hand 4 and 5),

subject-specific classifiers were able to distinguish different intended functional grip tasks.

Thus, EMG signals from the intrinsic hand muscles should be utilized in the EMG pattern

classification of grip tasks performed by stroke survivors, although some practical

limitations should be considered; for example, some electrodes placed on the hand muscles,

depending on their location, might interfere with the given manual task.

Although the classification performance was relatively poor in highly impaired subjects,

subject-specific classifiers for most of these stroke survivors were able to distinguish tasks

of different nature, for example, hand open vs. grip tasks. Note that most misclassification in

moderately impaired subjects occurred only between similar types of grip tasks, i.e. between

spherical and cylindrical grips, or between pinch and key grips (Fig. 4a; Table 2b). Two of

these tasks, cylindrical and spherical grips, can be categorized as ‘power grasp-type’ tasks,

and three of these tasks, key, pinch, and three-fingered grips, as ‘pinch-type’ tasks. While

discrimination accuracy among the entire set of target tasks was relatively low,

discrimination accuracy among distinct types of tasks (i.e. power grasp, pinch, and hand

open) was high. In a supplementary analysis in which only 4 categories (open, no

movement, pinch, power grasp) were used instead of original 7 tasks, we found that the

classification accuracy was much improved. Classification accuracy across this set was

56.7% for highly impaired subjects, and 89.3% for moderately impaired subjects (overall

classification accuracy = 73.0%).

The results of this study strongly suggest that the EMG pattern classification system for

stroke survivors should be designed specifically for each subject. The selection of target

tasks (number and complexity), for example, should reflect the functional impairment level

of each subject. For severely-impaired subjects, using fewer, more distinct tasks (i.e. hand

open, power grasp, and pinch) would produce more favorable outcomes than using more

tasks with may be difficult to discriminate. Also, electrode placement strategy should

consider the motor control characteristics of each subject; for instance, if a subject maintains

the control of intrinsic hand muscles, the classification system should utilize those muscles.

For those who cannot control intrinsic muscles, in contrast, the system should focus on more
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proximal muscles (i.e. forearm muscles) in order to extract useful signals for task

classification. Age of the subjects should be considered in the design of subject-specific

EMG classification systems, since the changes due to aging in strength, fatigability, and

signal variability may impact the EMG pattern classification performance significantly.

Some limitations of the study should be recognized. We used untargeted electrode

placement strategy for forearm muscles (Fig. 1b) because previous studies found no

significant difference in classification performance between targeted and untargeted

electrode placement [24]. Additionally, it is difficult to locate individual muscles of stroke

survivors who lost control of many muscles due to their motor impairment. However,

considering their weakness [5] and consequent weak EMG signals, accurate placement of

the electrodes targeting individual muscles may significantly improve the EMG signal

quality, thereby improving classification performance. In addition, it should be

acknowledged that many muscles of the hand and forearm (specifically thumb muscles) are

located relatively deep, and thus cannot be accessed by surface electrodes. Previous studies

reported that surface and intramuscular electrodes result in similar classification

performance in subjects with no neurological impairment [24,34]. But, since stroke

survivors lose control of significant muscles due to their neurological impairment, additional

signals from their deep muscles (e.g. flexor digitorum profundus or flexor/extensor pollicis

longus) may be able to provide useful supplementary information to the pattern classifier.

Nevertheless, note that targeting these muscles may involve additional procedures (e.g.

ultrasound guidance), pain and discomfort (percutaneous insertion), or even surgical

operations (implanted electrodes). Further investigation will be required to accurately assess

both the positive and negative impact of these factors, thus developing efficient and accurate

subject-specific EMG pattern classification system for stroke survivors.

V. Conclusion

This study demonstrated the feasibility of the EMG pattern classification technique to

discern the intent of stroke survivors performing manual tasks. To our knowledge, this is the

first study that employed pattern classification techniques to identify intended functional

tasks from the muscle activation patterns of stroke survivors. The proposed EMG

classification system was able to distinguish tasks of a distinct nature (i.e. hand open vs. grip

tasks), although its classification accuracy for similar grip tasks was relatively low,

specifically for severely impaired subjects. Most misclassification occurred between similar

types of grip tasks such as cylindrical and spherical grip; however, it should also be

acknowledged that, as a pilot study, some tasks of similar nature were purposely included as

target tasks. Future work should concentrate on the construction of a subject-specific

classification paradigm that carefully considers both functional (for selection of target

functional tasks) and physiological (for target muscle selection for EMG channels)

impairment characteristics of each subject for target task selection and electrode placement

procedures.
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APPENDIX

A. Mean absolute value (MAV): m

(1)

Here, xi(k) is the kth sample of the channel i, and N is the total number of data within each

time window.

B. Zero Crossing (ZC): z

(2)

For each channel (i = 1, 2 ... 10), given two consecutive samples xi(k) and xi(k+1), increment

zero crossing count, if

(3)

Here, εz is a threshold value set to reduce noise-induced zero-crossing (in this study, εz =

0.025V). Each zi value was normalized by the total number of data N.

C. Slope Sign Change (SSC): s

(4)

For each channel (i = 1, 2 ... 10), given three consecutive samples xi(k–1), xi(k) and xi(k+1),

increment slope sign change count, if

(5)

εs is a threshold value set to reduce noise-induced slope sign change (in this study, εs =

0.025V). Each si value was normalized by the total number of data N.

D. Waveform Length (WL): w

(6)
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Fig. 1.
Electrode placement: (a) and (b) Three electrodes (E1 – E3) targeting hand intrinsic muscles (E1: thenar muscles, E2: first dorsal

interosseous, E3: hypothenar muscle) (c) one electrode (E4) placed near the wrist and six electrodes (E5 – E10) on the

circumference of the forearm.
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Fig. 2.
Six target tasks: (a) Hand open (b) key grip (c) pinch grip (d) cylindrical grip (e) spherical grip (f) three-fingered grip
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Fig. 3.
Schematic diagram of the experimental protocol.
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Fig. 4.
Representative real-time classification performances: (a) Moderately impaired subject (Subject 5, Chedoke Stage of Hand 4),

and (b) severely impaired subject (Subject 6, Chedoke Stage of Hand 3). Note that longer preparation time was required for the

severely impaired subject (~ 20 sec). A higher number of misclassifications between similar grip tasks, e.g. between cylindrical

and spherical grip, and between pinch and three-fingered grip, were observed in severely impaired subjects. However, even for

severely impaired subjects, misclassification between the tasks of a very different nature (between open and grip tasks) was

rarely observed. Open task was often misclassified as no movement, due to their weak extensor activities (Abbreviation: OP;

open, KG; key grip, SG; spherical grip, CG; cylindrical grip, PG; pinch grip, 3G; 3-fingered grip, NM; no movement).
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Fig. 5.
EMG signals recorded from thenar, first dorsal interosseous (FDI), and hypothenar muscles across four functional tasks: open,

key grip, spherical grip, pinch grip: (a) Moderately impaired subject (Subject 14 – Chedoke Stage of Hand 5) (b, c) severely

impaired subjects (b: Subject 7 – Chedoke Stage of Hand 3, c: Subject 17 – Chedoke Stage of Hand 2). Hand muscle activations

across different functional tasks showed distinct patterns in the moderately impaired subject (a). However, activities of these

distal muscles (i.e. hand intrinsic muscles) of severely impaired subjects were generally either very weak (b) or changed with the

same proportion across tasks (c), thereby providing very little information for the classification.
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Table 1

Mean (SD) classification accuracy (%): Effects of impairment level and number of training sessions

Number of training sessions Subject impairment level

2 3 4 5

2 31.6 (21.5) 43.9 (20.0) 74.2 (15.0) 66.1 (24.8)

3 33.5 (17.3) 42.5 (18.4) 77.2 (12.1) 67.6 (22.2)

Mean 32.6 (19.4) 43.2 (19.2) 75.7 (13.6) 66.9 (23.5)
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