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Time Domain Boundary Element Analysis of Wake
Fields in Long Accelerator Structures

Kazuhiro Fujita, Hideki Kawaguchi, Robert Hampel, Wolfgang F. O. Müller, Thomas Weiland, and
Satoshi Tomioka

Abstract—We present an explicit Time Domain Boundary
Element Method (TDBEM) scheme with moving window tech-
nique for short-range wake field simulations of long accelerator
structures. The proposed scheme is formulated by Kirchhoff’s
boundary integral equation of the scattered electromagnetic field
in interior region problems. Implementation of a moving window
technique in the framework of TDBEM is achieved by taking
into account the causality and the retardation properties of the
boundary integral equation. A parallelization algorithm for this
moving window implementation is also proposed. The proposed
TDBEM code with the moving window technique is applied to sev-
eral practical examples of long accelerator structures. Numerical
results obtained with the TDBEM code are compared with those
of several finite integration codes.

Index Terms—Boundary element method, moving window, par-
allelization, scattered fields, short-range wake field.

I. INTRODUCTION

M ANY advanced accelerator projects such as linear col-
liders and linac-based X-ray free electron lasers require

very short and high-intensity electron bunches. As the inten-
sity is increased, the wake field [1], which is excited by elec-
tromagnetic interactions between a beam of charged particles
and its surrounding environment such as accelerating cavities,
becomes stronger, and consequently it can cause energy spread
and emittance growth. In order to predict such harmful effects to
beam qualities, accurate knowledge of short-range wake fields
of a short bunch traversing long accelerator structures such as
multi-cell cavities and tapered collimators is required.

Numerical methods for wake field calculation in the time do-
main come in two types: the more normal type that discretizes
and solves for the fields over a volume domain (subject to
boundary conditions), such as is done in the Finite Integration
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Technique (FIT) [2] and the Finite Element Method (FEM),
and the Boundary Element Method (BEM) that discretizes the
charges and currents on the boundary surface, from which the
fields within the enclosed domain are then obtained [3], [4].
This paper focuses on the time domain BEM analysis of the
wake field. As mentioned in [3], [4], Time Domain Boundary
Element Method (TDBEM) has several advantages in wake
field analysis: zero dispersion in all spatial direction, conformal
modeling of arbitrary 3-D geometries and treatment of a bunch
of charged particles with curved trajectories. However, most
of the previous TDBEM schemes have three severe drawbacks
from a computational point of view: late-time numerical in-
stabilities, heavy calculation, and large memory requirements.
For the problem of numerical instabilities stable time domain
schemes were recently proposed [3]–[6]. The calculation cost
problems are still serious, in particular, for short bunch wake
field simulations of long accelerator structures as appeared in
practical accelerator designs, although a parallelization algo-
rithm suitable for the TDBEM schemes was presented [7]. The
calculation time and the required memory of the parallelized
TDBEM codes become unacceptable for such large scale
problems, even if a supercomputer is available.

As is well-known in the development of wake field simulation
codes, it is possible to dramatically reduce the calculation costs
for a time domain wake field computation by utilizing the indi-
rect wake potential integration [8]–[11] and the moving window
technique [12]. In fact, these techniques have been applied to
FIT codes.

The main purpose of this paper is to introduce a moving
window technique in the framework of TDBEM. In addition,
the implementation of indirect wake potential integrations in
TDBEM is briefly summarized. A newly developed TDBEM
code with moving window technique is applied for dispersion-
free time domain wake field simulations of a short bunch in long
accelerator structures.

II. SCATTERED-FIELD FORMULATION OF TDBEM

At the first part of this paper, the scattered field formulation
of TDBEM is summarized for later reference.

In general, the total electromagnetic fields are explic-
itly split into the bunch self-fields in free space
and the scattered fields :

The bunch self-fields can be then given analytically or calcu-
lated numerically. Only the scattered fields are numerically

0018-9499/$25.00 © 2008 IEEE
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solved by a TDBEM scheme which is based on the retarded
Kirchhoff’s boundary integral equation of scattered electro-
magnetic fields on interior region problems. As described in
[4], this scattered field formulation makes it easy to set up the
initial fields on interior region problems and provides very
stable time domain simulations even for small time step size.

Now we consider electromagnetic scattering problems on an
interior region surrounded by the surface of an accelerator
structure. The scattered fields and can be described
by the following time domain Kirchhoff’s integral representa-
tions of scattered electric and magnetic field on interior prob-
lems with homogeneous material constants [4]:

(1)

(2)

where is the observation point in the interior region, is the
position vector on the surface, , and is
the retarded time denoted by . is the inward unit
vector normal to the surface. The fields on the boundary are
related to the equivalent surface electric and magnetic current
densities and charge densities by

(3)

with the real surface charge density and current density
due to the total fields. Since the equivalent surface sources ,

, , and are related to the boundary condition of perfect
conductor, the bunch self-fields indirectly excite the wake fields
though and in (3).

The equations (1) and (2) can be interpreted as a mathemat-
ical expression of the so-called surface equivalence theorem in
time domain, which states that the scattered fields in an original
problem can be replaced by the fields produced by the surface
equivalent current densities and charges.

This approach was named as Scattered-field Time Domain
Boundary Element Method (S-TDBEM) [4].

A. Spatial and Temporal Discretizations

In this work, we adopt the magnetic field integral equation
(MFIE) in time domain (2) as a basic equation. The surface is
discretized with spatial quadrilateral planar patches as boundary
element and the time axis is divided by constant time step size

. The fields inside a boundary element are spatially expanded
into the 2D curl-conforming vector basis function [13], and tem-
porally expanded into the triangular basis function [14] (i.e. lin-
early-interpolated temporally). The time derivative is approxi-
mated by backward finite difference.

The evaluation of the boundary integrals in (2) should be care-
fully performed. In particular, for the strongly singular kernel
terms of self-elements, the Cauchy principal value integration
is evaluated, and by virtue of the use of planner patch it can be
analytically performed [15]. For the other elements, the integra-
tions can be numerically performed by taking into account the
retarded time on the discrete time axis.

After performing this discretization procedure for (2), we fi-
nally obtain the following matrix equation:

(4)

where , and denote the boundary value vectors which
consist of the tangential and normal magnetic field components
and the tangential electric field component on the boundary
elements at time , respectively. The
coefficient matrices , and are determined by the
boundary integral of (2), respectively. Then, and are
known boundary value vectors which can be calculated directly
from the self-fields in (3). Therefore we finally obtain a system
matrix equation as follows:

(5)

where is the vector resulting from the matrix-vector multi-
plications of the second and the third terms in the right-hand side
of (4) at a time step . By solving the reduced matrix equation
(5) at each time step, the electric surface current and charge den-
sities induced on the boundary surface of an accelerator struc-
ture can be obtained iteratively. The matrix-vector multiplica-
tions in term of and over all time steps should be per-
formed before the system matrix (5) is solved.

Once the boundary values have been obtained over all time
steps, the wake fields at any position in the bounded domain
can be calculated from (1) and (2).
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B. Numerical Stability of System Matrix Equation

The reduced system matrix equation (5) is the starting point of
discussion of time domain numerical schemes with the moving
window technique in this paper. Note that the matrices
and in the original matrix equation (4) do not contribute
to numerical stabilities since the boundary value vectors and

multiplied by their matrices are given, and it is not neces-
sary to discuss the matrices and in term of the nu-
merical stabilities of S-TDBEM. In order to consider numerical
stabilities of (5), we should take into account only a set of the
matrices .

Many previous works [16]–[19] indicate that
( is the maximum mesh size) is a stable condition in many
practical cases. In fact, this tendency has been numerically
validated in the Walker’s eigenvalue analysis [18] for several
simple cases. In this choice of time step size, a spherical surface
with radius centered at the observation point r contains
a lot of neighbor boundary elements, or at least the closest
boundary elements. Owing to this situation, the field quantities
on a boundary element at the -th time step are not independent
of the ones on other adjacent boundary elements at the same
time step, and thus the system matrix becomes non-diag-
onal. As becomes larger, the number of boundary elements
included in the sphere increases, and therefore the number
of non-zero element of increases, i.e. the system matrix
equation becomes more implicit, and consequently time domain
scheme becomes more stable [17]. This choice of
is often called implicit scheme while a choice of
(the minimum mesh size ) is called explicit scheme. It
is well recognized that the explicit scheme is usually very
unstable [17], [19]. So, most of time domain boundary element
schemes (exactly saying, schemes formulated with temporally
local basis function) usually employ the implicit scheme.

We have recently shown that the S-TDBEM formulation [4]
is able to achieve long-time numerical stability even with very
small time step size. The main reason for the stability is in re-
forming the scheme from the open scattering to the interior re-
gion problems. In Section VI, we will demonstrate that this ap-
proach is very stable for practical large-scale problems even in
the explicit scheme.

III. MOVING WINDOW TECHNIQUE IN TIME DOMAIN

BOUNDARY ELEMENT METHOD

In order to compute the short-range wake fields of a short
bunch traversing long accelerator structures at low calculation
costs, a moving window technique [12] has been used in Finite
Integration Technique (FIT) codes such as TBCI [20], ECHO
[21], PBCI [22], and ROCOCO [23]. For the same purpose,
we incorporate the concept of this technique into the TDBEM
scheme.

It can be understood immediately that implicit schemes (the
matrix is non-diagonal) cannot be available for the moving
window technique in principle because a part of the off-diag-
onal elements of the matrix is corresponding to the contri-
bution of unknown present boundary values outside the moving
window, and thus the lack of boundary value information at the
tail of moving window arises and it finally results in an un-
wanted numerical error and its accumulation. Therefore, for a

Fig. 1. Time evolution of field inside a moving window with light velocity
traversing an accelerator structure on four-dimensional time space.

Fig. 2. System matrix equation with moving window technique.

moving window implementation of the TDBEM scheme, we
use the explicit S-TDBEM scheme for the system matrix (5), in
which the matrix is diagonal.

We shall consider the explicit S-TDBEM scheme with
moving window technique (S-TDBEM(w)) on a four-dimen-
sional time-space volume which involves a bunch passing
through a long multi-cell cavity as shown in Fig. 1. The basic
idea of this technique is based on the following facts: (i) no field
travels in front of an ultra-relativistic bunch and (ii) the fields
inside the moving window with the speed of light synchronized
with the bunch are not affected by any fields that happen behind
the window. These two points result from causality and the
assumption of rigid bunch. From this reason, we can compute
only the fields over the space-time volume surrounded by the
head and the end of the window (marked in Fig. 1). By taking
into account this fact and (5), the S-TDBEM system matrix
equation (5) can be reduced for the time domain simulation of
boundary value inside the moving window, as shown in Fig. 2.
The reduced matrix equation has many small system matrices

determined by the numbers of the boundary value vector
elements inside the moving window at each time step . Ac-
cordingly, the size of a small system matrix depends only
on the size of moving window, and does not depend on the total
size of a structure. Because it is necessary for this scheme to
reconstruct all of the small system matrices at each time
step and the matrix is always diagonal (explicit scheme),
storing the matrices in memory is not needed any more.
Therefore, the required memory size of this scheme becomes
quite smaller than that of the original TDBEM scheme. This
enables us to apply the S-TDBEM(w) for practical accelerator
structures as shown in Section VI.
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Fig. 3. Parallelization algorithms. In (a), a set of matrix-vector multiplications is executed in each of slave CPUs, and then the resulting vectors from the mul-
tiplications are transferred to the master CPU. In (b), the reduced system matrix equation of Fig. 2 is sliced into rows, and a set of sliced multiplication parts is
executed in slave CPUs. Therefore only small parts of a vector are communicated between the master CPU and slave CPU in (b). (a) Conventional scheme [7]; (b)
proposed scheme for the moving window.

Fig. 4. Contours for wake potential calculation in TDBEM. (i) NCZ method
with the contour � along the boundary cross section of a accelerator structure,
(ii) NCZ modified indirect integration (line integral � �� ), (iii) 3D indirect
integration (line integral� ��� Poisson’s equation for pipe cross section area
�).

Fig. 5. Numerical model of the TESLA 9cell cavity.

IV. PARALLELIZATION OF MOVING WINDOW TECHNIQUE

As we mentioned in the previous section, the S-TDBEM(w)
scheme is almost free from the problems of memory require-
ments. However, in the case of very long accelerator structures
the calculation time becomes the most significant problem be-
cause the number of the system matrices still depends lin-
early on the total length of an accelerator structure (in realistic
accelerator problems the transverse dimension of a structure is
usually much smaller compared to the longitudinal size). The
number of the time steps increases linearly as well. Hence, the
computational effort scales quadratically with the total length.
This quadratic scaling law is a main drawback of the developed
moving window technique compared to the moving window im-
plementation in FDTD because in FDTD method with moving
window technique the scaling is only linear.

For this problem, we consider here a parallelization algorithm
suitable for the S-TDBEM(w) scheme.

Fig. 6. Comparison of the wake potentials calculated by different methods for
the TESLA 9cell cavity excited by a Gaussian bunch with � � � ��.

In the parallelization scheme for the conventional TDBEM in
[7], since all of the system matrices are stored in memory and
the matrix construction is performed once before time domain
calculation, the matrix-vector multiplications in the right-hand
side of system matrix equation (5) are most time-consuming and
to be parallelized. Fig. 3(a) shows the parallelization of the con-
ventional TDBEM scheme on distributed memory computing
environment. A set of the system matrices is almost equally as-
signed and stored on the distributed memories and each CPU
executes the matrix-vector multiplication of (5), and then a set
of the calculation result vectors is transferred to the
master CPU. After that, the master CPU executes inversion of
the matrix to calculate the newest time step unknown vector

. Finally, the newest boundary value vector is broadcast
to the slave CPUs for the next time step calculation.

By contrast, when the moving window technique is incorpo-
rated in the S-TDBEM scheme, since the construction of the ma-
trices is performed at every time step, the calculation of
the system matrices is the most time-consuming part in the
S-TDBEM scheme and this should be parallelized. In this work
the S-TDBEM(w) matrix calculation process is parallelized so
that the system matrix equation is sliced into rows. Fig. 3(b)
gives a schematic picture of this parallelization algorithm. This
approach is also corresponding to longitudinally dividing the
moving window. The advantage of the proposed parallelization

Authorized licensed use limited to: HOKKAIDO DAIGAKU KOHGAKUBU. Downloaded on September 7, 2009 at 03:09 from IEEE Xplore.  Restrictions apply. 



2588 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 55, NO. 5, OCTOBER 2008

Fig. 7. Comparison of the wake potentials calculated by two dispersion-free methods for the TESLA 9cell cavity excited by a Gaussian bunch with � � �����.
(a) ��� � � � ��; (b) ����� � � � ����.

Fig. 8. Scalability of the parallelization algorithm proposed for the moving
window implementation.

algorithm is that the interprocess communication between the
master CPU and slave CPUs is much smaller than that of the
original TDBEM scheme because only small parts of the calcu-
lated vector are transferred to the master PC.

V. WAKE POTENTIAL CALCULATION

The wake potential [1], [24] is one of important physical
quantities for quantitatively evaluating the wake field effects in
the design of an accelerator. In this section we briefly summarize
how to compute wake potentials in the framework of TDBEM.

The longitudinal and transverse wake potentials are defined
as an normalized integral over the electromagnetic field along a
test particle with unit charge following the exciting bunch
with total charge traversing an accelerator structure with the
same velocity parallel to the -axis and the transversal coor-
dinates , at a distance behind the bunch [24]:

(6)

(7)

The transverse wake potential (7) can be obtained from the lon-
gitudinal one by applying the Panofsky-Wenzel theorem [25].

To obtain the short-range wake potential of a short bunch in
long accelerator structures, direct time domain calculations of
wake field are commonly made with the moving window tech-
nique and indirect integration methods [8]–[11] are often used in
order to dramatically reduce the calculation time in a computer
code. In the following, we shall review the implementation of
indirect methods for wake potential integration.

For axis-symmetric structures, the infinite integration of wake
potential can be replaced by a finite range of integration with
the Napoly-Chin-Zotter (NCZ) indirect integration method [11].
Especially, selecting the integration path along the boundary
surface of a structure as the path (i) shown in Fig. 4 leads to the
simple calculation of the wake potentials from the total electro-
magnetic fields on the boundary surface, i.e., directly from the
boundary values solved [3], [26]. The advantage of this path se-
lection is that it is unnecessary to calculate the fields inside the
structure. Although a modification of the NCZ indirect method
[21], whose integration path is shown as the path (ii) in Fig. 4,
can be also applied for S-TDBEM, additional computation of
the inside fields is required. Therefore, the method (i) in Fig. 4
is quite suitable for the S-TDBEM.

For general 3-D structures, the recently developed indirect
wake potential integration method [10], [11] can be also applied
for the S-TDBEM. The 3-D indirect method needs a direct 1-D
integration with finite length and a solution of the 2-D Poisson
equation (for details, see [10], [11]) over cross-section of the
outgoing beam tube as in Fig. 4. In the framework of TDBEM,
the finite direct integration is made by computing the scattered
fields along the beam path inside an analytical region using the
field integral representations (1) and (2), and the 2-D Poisson
equation can be easily solved by a standard 2-D boundary ele-
ment solver.
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Fig. 9. Comparison of longitudinal wake potentials calculated by two different dispersion-free methods for the TESLA accelerating cryomodule excited by a
Gaussian bunch with � � � ��. (a) Cross section of the TESLA accelerating cryomodule which consists of eight of the TESLA 9cell cavities, (b) Longitudinal
wake potential.

Fig. 10. Numerical model of tapered collimator and its geometry parameter. (a) 3D model; (b) cross section geometry.

Fig. 11. Comparison of convergence properties of loss factor of a Gaussian
bunch �� � � ��� traversing the round tapered collimator computed by the
S-TDBEM(w) and the code ECHO. The geometry parameters are: � � ����,
� � ��� ��, � � � ��, � � 	� �� and � � 

	���
 in Fig. 10(b).

VI. NUMERICAL EXAMPLES

A. TESLA 9cell Cavity

Fig. 5 shows a numerical model of the TESLA 9cell cavity
[27] as an example of long accelerator structures. The total
length of the cavity is about 1 m and the numerical model is
assumed to be axisymmetric.

Fig. 6 shows the comparison of wake potentials of the on-axis
Gaussian line bunch with RMS length calculated
with the S-TDBEM(w) scheme and by a simple square mesh
calculation based on a FIT scheme in cylindrical coordinates
[20]. In the standard FDTD simulation oscillations are observed
while in the S-TDBEM(w) simulation there is no oscillation be-
cause of the grid dispersion-free property of the S-TDBEM.

Fig. 7 shows the comparison of wake potentials computed
by the proposed scheme and the code ROCOCO [23] for ultra
short bunch with . The ROCOCO result for

is regarded as the reference solution. Even for course mesh
the proposed scheme gives more accurate result than

the ROCOCO result with .
In order to check the performance of this parallelization algo-

rithm, wake field excited by a Gaussian bunch passing through
the TESLA 9cell cavity is simulated for the two cases of

and 10 mm. Fig. 8 demonstrates reduction rate of calcu-
lation time to the number of PCs used in the simulations. The
average of the rates for the two cases is 0.95. We can confirm
that the scalability is almost ideal ( 1).

B. TESLA Accelerating Cryomodule

Here we demonstrate an application of the parallelized
STDBEM code to very large-scale wake field analysis. As a test
example, the TESLA accelerating cryomodule which consists
of eight of the TESLA 9cell cavities is simulated as in Fig. 9(a).
The total length of the structure is about 11 m, the RMS length
of a Gaussian bunch is 1 mm, and the grid resolution is taken
to be . The number of total time step is about 140000.
The simulation is done with 256 CPUs on a supercomputer, the
HITACHI SR-11000. The calculation time is about 19 hours.

In this case the high frequency field excited by a short
bunch can propagate in the cavity, and therefore the zero grid
dispersion property is very important in order to accurately
compute wake potentials. As expected, the S-TDBEM(w) cal-
culation shows no oscillation due to the numerical dispersion
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Fig. 12. Comparisons of wake potentials of a short Gaussian bunch �� � ��� ��� traversing the long tapered collimator computed by the S-TDBEM(w) and
the code ECHO. The geometry parameters are: � � �� ��, � � ��� ��, � � � ��, and � � 	�� �� in Fig. 10(b).

error in Fig. 9(b). We can see excellent agreement between the
S-TDBEM (w) and the ECHO [21] codes.

C. Tapered Collimator

Finally we deal with an axially symmetric tapered collimator
with geometry parameters , ,

, and as shown in Fig. 10.
The geometric parameters are similar to the ones of the colli-
mator that was tested in the SLAC linac [28]. The convergence
property of the proposed scheme is tested for this axisymmetric
model. Fig. 11 shows the results of loss factor calculated by the
S-TDBEM and the code ECHO. The loss factor is defined by

,where the shape distribution of a bunch. A good conver-
gence of the S-TDBEM is demonstrated in the comparison of
the computed loss factors. A Gaussian bunch with
is used in this simulation. For the mesh resolution
of almost same accuracy in Fig. 11, the calculation time of
our code is about 80 sec with single CPU operation in Intel(R)
Core(TM)2 CPU 6400 2.13 GHz while that of ECHO(con-
formal) is a few sec with single CPU operation in Intel(R)
Core(TM)2 CPU T5500 1.66 GHz/1.67 GHz.

Fig. 12 shows the results of longitudinal wake potential of a
short Gaussian bunch traversing an axially sym-
metric tapered collimator with longitudinally longer dimensions
( , , , ). It is
found again that the calculation by the S-TDBEM shows faster
convergence than the ECHO calculations. We can conclude that
even for long tapered structures the S-TDBEM works well as a
conformal scheme for dispersion-free wake field calculations.

VII. CONCLUSION

An explicit S-TDBEM scheme with the moving window
technique (S-TDBEM(w)) has been proposed for disper-
sion-free wake field simulations of long accelerator structures.
The moving window implementation in the framework of

TDBEM has been discussed, and the S-TDBEM(w) code has
been applied for the TESLA 9cell cavity, the TESLA acceler-
ating cryomodule and the tapered collimators. The numerical
examples show good agreement between the numerical results
calculated by the presented code and by several FIT codes such
as ROCOCO and ECHO.

The simulations by the 2-D S-TDBEM(w) code are done in
order to test the developed moving window technique, and only
longitudinal monopole wake field calculations are shown in the
numerical results. However, this is not a limitation of the de-
veloped technique, and the presented method can be applied
to transverse dipole and three dimensional wake field calcu-
lations as well. A 2.5-D/general 3-D TDBEM code with this
moving window technique is indeed being developed for trans-
verse dipole and three dimensional wake field simulations.

In addition, the presented approach is available even if a
bunch has curved trajectories when the bunch has very high en-
ergies and always moves inside a moving window. That is, the
application of this approach is independent of the selection of
wake potential integration path. Transient analysis of coherent
synchrotron radiation (CSR) shielded by arbitrary 3-D vacuum
chambers is another important application of S-TDBEM(w).
This application will be presented in near future.

As is mentioned in Section IV, the quadratic scaling law is a
main drawback of the developed technique. We are now working
in development of an accelerating technique for achieving the
linear scaling law of calculation time as in the moving window
implementation of FDTD method.
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