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Abstract—Extraordinary optical transmission of light or electro-
magnetic waves through metal plates periodically perforated with
subwavelength holes has been exhaustively analyzed in the last ten
years. The study of this phenomenon has attracted the attention
of many scientists working in the fields of optics and condensed
matter physics. This confluence of scientists has given rise to dif-
ferent theories, some of them controversial. The first theoretical
explanation was based on the excitation of surface plasmons along
the metal–air interfaces. However, since periodically perforated di-
electric (and perfect conductor) slabs also exhibit extraordinary
transmission, diffraction by a periodic array of scatterers was later
considered as the underlying physical phenomenon. From a mi-
crowave engineering point of view, periodic structures exhibiting
extraordinary optical transmission are very closely related to fre-
quency-selective surfaces. In this paper, we use simple concepts
from the theory of frequency-selective surfaces, waveguides, and
transmission lines to explain extraordinary transmission for both
thin and thick periodically perforated perfect conductor screens.
It will be shown that a simple transmission-line equivalent circuit
satisfactorily accounts for extraordinary transmission, explaining
all of the details of the observed transmission spectra, and easily
gives predictions on many features of the phenomenon. Although
the equivalent circuit is developed for perfect conductor screens,
its extension to dielectric perforated slabs and/or penetrable con-
ductors at optical frequencies is almost straightforward. Our cir-
cuit model also predicts extraordinary transmission in nonperiodic
systems for which this phenomenon has not yet been reported.

Index Terms—Extraordinary transmission, frequency-selective
surfaces (FSSs), surface plasmon polaritons.

I. INTRODUCTION

P ARTIAL transparency of opaque slabs (metal slabs) pe-
riodically perforated with electrically small holes was re-

ported some years ago by Ebbesen et al. [1] (see also the pop-
ular article [2] in the same issue). This phenomenon, in apparent
contradiction with Bethe’s theory for small apertures [3], was
called extraordinary optical transmission. Since this seminal
work, hundreds of scientific papers have been published giving
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explanations and reporting details about this (or related) phe-
nomenon. The phenomenon refers to the appearance, around
a certain frequency, of a narrow and strong peak of transmis-
sion through an opaque screen perforated with small holes. The
surprising fact was that the diameters of the holes were sig-
nificantly smaller than the corresponding wavelength (Bethe’s
theory for small holes predicted much less transmitted power
than observed). The cylindrical holes of the original experi-
mental device were arranged into a two-dimensional (2-D) pe-
riodic square lattice whose unit cell had dimensions close to the
wavelength of the “extraordinary” transmitted beam. This key
feature strongly suggests that periodicity should play a crucial
role in the phenomenon. However, the first theoretical explana-
tions relied basically on the behavior of metals at optical fre-
quencies. At those high frequencies, metals are described by a
complex permittivity with a large negative real part (plasma be-
havior). Metals are thus penetrable materials that can support a
special kind of surface waves, the so-called surface plasmons.
The excitation of such waves due to the scattering of the im-
pinging planar transverse electromagnetic (TEM) wave by the
periodic structure was then assumed to be the physical fact be-
hind extraordinary transmission (see [4]–[6], among others). In
this interpretation, apart from periodicity, the behavior of the
metal as an imperfect conductor (more precisely, as a lossy solid
plasma) seems to be essential to the phenomenon. Nevertheless,
extraordinary transmission has also been found in metal struc-
tures at millimeter-wave frequencies (see, for instance, the pa-
pers by Beruete et al. [7], [8]). At these frequencies, metals are
described by a real conductivity and penetration of electromag-
netic fields (skin effect) is marginal. In this situation, surface
plasmons are not supported by the metal–air interfaces. More-
over, enhanced transmission of electromagnetic waves has also
been reported in periodically perforated perfect dielectric slabs
[9], [10]. Genuine surface plasmons (i.e., surface waves sup-
ported by a uniform metal–air interface at optical frequencies)
do not appear to be always required to explain extraordinary
transmission phenomena, although they can still play some role
in modifying the frequency value at which the transmission peak
is expected to occur.

Fortunately, all of the above facts can be explained by means
of full-wave diffraction models, which account for both prop-
agating and evanescent fields around the periodic structure.
The diffraction model was first used for one-dimensional (1-D)
periodic arrays of infinitely long slits [11], [12] (diffraction
gratings). However, the slits problem is slightly different from
the 2-D array of holes. TEM modes without cutoff frequency
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are possible in the slit structure but not in the 2-D array of
holes. Thus, the experimental situation treated in [1] is better
accounted for by the diffraction models specifically developed
for 2-D arrays of subwavelength holes [6], [9], [10], [13], [14].
In these latter models, periodicity, diffraction, and interference
are the relevant concepts while surface plasmons would play
a secondary role modulating the main physical reason behind
extraordinary optical transmission. Nevertheless, the concept
of surface plasmon was rescued in this context by Pendry et
al. in [15]. Although the model in [15] is not accurate (see,
for instance, [16]), its underlying qualitative idea is worthy:
periodically structured perfect conductor surfaces can support
surface waves that mimic surface plasmons (some researchers
call these waves spoof plasmons). A comprehensive review of
this type of wave for the 1-D periodic case (slits on a metal
surface) was given previously in [17]. Nevertheless, to the best
of our knowledge, these are the same type of surface waves
supported by perfectly conducting periodic structures that are
well known by the microwave community since the 1950s or
even before. In order to give proper credit to pioneering works,
it should be mentioned that surface modes guided by open
corrugated surfaces were reported in a classified memorandum
by Cutler in the 1940s [18]; see also the historical review paper
by the same author in [19]. (A corrugated surface is basically
the same type of electromagnetic system as that involved in
extraordinary optical transmission.) A thorough analysis of
corrugated surfaces based on the Floquet–Lucke method was
reported as early as 1954 [20], and an in-depth experimental
study of various periodic open waveguides was carried out in
[21]. The similarity between the model proposed in the recent
paper by Pendry et al. [15] for 2-D structured surfaces and
the model suggested in a note published almost 50 years ago
by Goldstone and Oliner [22] for 1-D structured surfaces is
notorious. Many more antecedents could be given, although it
is enough to mention that the well-known classical textbook by
Collin [23] includes the topic in the chapter devoted to surface
waves.

Despite being a case of “rediscovering,” the analysis of ex-
traordinary optical transmission in terms of the coupling of the
impinging TEM wave to spoof plasmons is actually appealing
(see the excellent review papers by Genet et al. [24] and García
de Abajo [25]). Nevertheless, in our opinion, the theory based
on surface plasmons is not easy to use since its predictions
are basically attained in the form of numerical solutions to
very intensive computational problems. Moreover, there are
still some unclear points as well as some situations that this
model cannot explain (for instance, situations where extraordi-
nary transmission is possible and plasmons—including spoof
plasmons—are not present). These drawbacks have been the
motivation of the present work. Our proposal in this paper is to
provide a much simpler perspective and theory, at least for those
familiar with microwave field and circuit theories, founded on
waveguide and impedance matching concepts. A preliminary
work based on these ideas was reported by the authors in [26].
Our present paper will extend considerably the above work and
will present detailed explanations for more general problems.
In particular, we will show how relatively simple “textbook”
waveguide theory concepts provide a complete account of the

observed extraordinary transmission phenomena in a wide
variety of situations. Moreover, some new systems exhibiting
extraordinary transmission (which, to the authors’ knowledge,
have not yet been reported) will be briefly discussed. This
paper will be organized as follows. Section II will show our
proposed model to study extraordinary transmission. Section III
will present the basics of our theory through the analysis of
the simplest 2-D periodic structure exhibiting extraordinary
transmission (a periodically perforated zero thickness screen).
Section IV will introduce a modification of the model to ac-
count for finite thickness screens, and Section V will describe
a more general model explaining some additional details of the
dependence of the transmission spectrum with respect some
geometrical dimensions. In Section VI, we will give some
insight and qualitative explanations about the details of the
transmission spectrum at frequencies above the onset of the first
grating lobes. Also, we will discuss other possible structures
exhibiting some kind of extraordinary transmission. Finally,
some concluding remarks will be summarized in Section VII.

II. MODELING OF EXTRAORDINARY TRANSMISSION

The starting point of our modeling of extraordinary transmis-
sion at optical and lower frequencies will be the key role played
by periodicity, rather than any other consideration about the
material properties. (In this sense, the diffraction model stand-
point is very close to our point of view on the phenomenon.)
Any microwave or antenna practitioner can readily appreciate
the similarity between the periodic structures exhibiting ex-
traordinary optical transmission and the frequency-selective
surfaces (FSSs). As it is well known, FSSs are 2-D arrays of
planar metallic scatterers (stopband FSS) or slots practiced
in a metal plate (passband FSS). The shape and size of the
planar scatterers/slots are tailored to control the frequency
dependence of the transmission and/or reflection coefficients
[27]. The slots, usually with complex shapes, are designed to
resonate at a certain frequency to give a total transmission peak
at this frequency, provided that material losses are neglected.
In the theoretical and experimental works on extraordinary
optical transmission, the geometry of the holes is commonly
very simple: circular/cylindrical or rectangular/prism. Thus,
one question that is immediately raised is why extraordinary
transmission was not previously reported by FSS practitioners.
Before giving a possible explanation to this fact, it should be
pointed out that extraordinary transmission always appears at
frequencies very close to the onset frequency of the first grating
lobe and that, at this onset frequency, slot-like FSS always
exhibit a zero transmission point known as Wood–Rayleigh
anomaly [28]–[30]. For FSS practitioners, the range of frequen-
cies close to the Wood–Rayleigh anomaly is not of practical
interest because of the presence of undesired grating lobes,
and, actually, it has only been explored as a limitation factor
of the operation of FSS. Moreover, for the very thin metal
screens commonly employed in FSS, the transmission peak
is extremely narrow—as it will become apparent later—and
typical ohmic losses might seriously mask the phenomenon. On
the contrary, extraordinary transmission experiments at optical
frequencies were carried out with electrically thick screens,
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Fig. 1. Perfect conductor screen perforated with rectangular holes: (a) front
view and (b) two lateral cuts and (c) front and (d) lateral views of the struc-
ture unit cell (parallel-plate transmission line with diaphragm discontinuity with
thickness �).

giving place to wider transmission peaks that could be detected
by the human eye (the always-present appropriate “detector”).

Thus, assuming that FSSs and extraordinary transmission
structures are the same thing, we will apply the FSS analysis
methodology to the study of structures exhibiting extraordinary
transmission. As is well known, the analysis of an infinite FSS
can be reduced to the analysis of a single unit cell. This concept
is illustrated in Fig. 1, where the original periodic structure
and the equivalent unit cell are depicted. For normal incidence
and linear polarization (along the -direction, in our case),
the unit cell is a parallel-plate transmission line with a thin or
thick (depending on the value of ) rectangular iris diaphragm
placed transversely to the axis of the transmission line [see
Fig. 1(c) and (d)]. This way of thinking is not new for FSS
practitioners [27] and microwave field theory researchers. For
instance, a thorough analysis of 1-D zero-thickness periodic
structures was carried out more than 40 years ago using equiv-
alent network analysis [31]. Two comprehensive papers about
the diffraction by an array of strips printed on a dielectric sub-
strate using circuit modeling were published almost 20 years
ago [32], [33]. More recently, and in close connection with the
topic treated in this paper, circuit models have been used in the
analysis of stacked perforated screens (each of them exhibiting
extraordinary transmission) for left-handed electromagnetic

Fig. 2. Circuit model for zero-thickness diaphragm in parallel-plate waveguide.

wave propagation [34], [35]. Our contribution in the present
paper is to show how extraordinary transmission can be ex-
plained in all its details by means of equivalent circuit models.
The main advantage of this approach is that qualitative and
semiquantitative predictions can be done without performing
heavy numerical computations (or limiting such computations
to a few frequency points). This will allow us to give easy ex-
planations for most of the observed features of the phenomenon
and even to predict novel situations exhibiting extraordinary
transmission. Detailed derivation of increasingly complex
circuit models will be given in the forthcoming sections.

III. BASIC THEORY FOR EXTRAORDINARY TRANSMISSION

THROUGH ZERO-THICKNESS SCREENS

Let us consider the periodically perforated perfect conductor
screen in Fig. 1 for the particular case of infinitesimal thickness

. Since the underlying physics is not affected by the
shape of the slots, we will consider rectangular holes in order to
keep the computations as easy as possible. Using a detailed ana-
lytical/numerical approach [13], it has been established that this
structure exhibits a single peak of extraordinary transmission (it
was carried out for circular holes but the shape is not relevant).
The unit cell under consideration is a parallel-plate transmission
line formed by two vertical magnetic walls separated by a dis-
tance and two horizontal perfect electric walls separated by
a distance . More precisely, due to symmetries of the struc-
ture and the excitation, the plane AA’ in Fig. 1(c) is an electric
wall and the plane BB’ is a magnetic wall. Thus, apart from
the TEM mode (TEM to ) representing the incident, reflected,
and transmitted waves in the periodic structure, the transmis-
sion line can support (to ) and (to ) modes
( , are integer numbers). If the structure is used as an FSS,
TE and TM modes are always at cutoff. In common FSS appli-
cations, the size of the slots is chosen in such a way that they
resonate well below the frequency of the first Wood–Rayleigh
anomaly. For the structure under study, this frequency is given
by ; note that this frequency is also the cutoff
frequency of the mode of the waveguide, (the
first subindex 0 corresponds to variations along the -direction
and the second subindex, 2, corresponds to variations along the

-direction).
The original problem is then reduced to the scattering of the

incident TEM mode by a rectangular iris diaphragm practiced
in a transverse metal sheet of zero thickness. This is a classical
problem of discontinuities in waveguide theory and, as is well
known [36], a simple equivalent circuit can account for the most
important features of such discontinuity (see Fig. 2). The reso-
nance of the LC tank circuit obviously corresponds to a peak of
total transmission. From a physical point of view, is related
to the electrical energy in excess associated with below-cutoff
TM modes excited at the discontinuity plane. Equivalently, is
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associated with the excess magnetic energy of the below-cutoff
TE modes excited at this same plane. The values of and can
be estimated from the geometrical dimensions of the structure
using some approximations reported in [36]. These values are
considered to be weakly dependent on frequency in normal FSS
operation. The resonance (total transmission) frequency can be
obtained by considering the rectangular hole as a short-circuited
section of a slot line. In order to obtain very accurate results,
end effects should be added, especially for short slits (small

). From this perspective, would be close to a half wave-
length of the slot mode at the desired total transmission fre-
quency ( should satisfy such a condition for -polarized elec-
tric field). Higher order resonances are also possible, but they
appear above the onset frequency of the first grating lobe .
Roughly speaking, if the resonance (transmission) frequency
has to be lower than , should be chosen larger
than . (It is worth mentioning here that and not is
the relevant dimension because of the polarization of the im-
pinging electric field.) This is the typical scenario for regular
FSS operation. However, extraordinary optical transmission in
zero-thickness perfect conductor screens has been reported for
very small apertures [13]. From a naive perspective, very small
apertures should resonate at frequencies well above and
no transmission peaks would then be obtained below . The
main fault of the above reasoning is to forget that in Fig. 2
is not a smooth function of frequency for frequencies near .
As a matter of fact, it is well known that the input impedance
corresponding to a TM mode below cutoff excited in an infin-
itely long waveguide is given by

(1)

where is the characteristic impedance of vacuum, is the
cutoff frequency of the TM mode, and is the operation fre-
quency. It is then clear that the equivalent capacitance associ-
ated with this mode is

(2)

where is a coefficient accounting for the relative degree
of excitation of this particular TM mode (in comparison with
the other higher order TM modes). For simplicity in the forth-
coming discussion, the frequency dependence of will
be ignored. (Although it has been verified that this coefficient
shows a significant increase around the extraordinary transmis-
sion frequency, this fact is hardly relevant for the following
qualitative considerations). The overall capacitance in the
circuit model in Fig. 2 is the result of the parallel connection
of an infinite number of elementary contributions such as that
in (2). For a working frequency below , the
contribution of higher order TM modes different from to

is a weakly depending function on frequency (because
is well below their corresponding cutoff frequencies). Hence,
for our purposes, this contribution to the total capacitance can
be considered to be constant and will be denoted as . The
frequency-dependent contribution is assumed to be given by

the TM mode with the smallest cutoff frequency ( in our
case). The overall capacitance can then be written as follows:

(3)

The important point here is that, since as
, our model predicts that one transmission peak is

always present below the first Wood–Rayleigh anomaly for any
value of . For small apertures, is also small, and then
has to reach very high values to fulfill the resonance condition.
This is the reason to find extraordinary transmission only close
(but below) to the Wood–Rayleigh anomaly for this situation.
An interesting test of this point of view is the comparison of the
extraordinary transmission frequencies for two identical rect-
angular slots but with perpendicular orientations. In this case,
numerical simulations say that the total transmission peak cor-
responding to the horizontal orientation appears at a lower fre-
quency. The equivalent circuit theory gives an easy explanation
for this fact. The horizontally oriented rectangular slot will per-
turb more strongly the surface currents (with respect to the non-
perforated screen case) than the vertically oriented one. The cor-
responding higher value of the inductance for the horizontally
oriented slot requires a lower capacitance to satisfy the reso-
nance condition, which will then occur at a lower frequency.

The simplicity of the geometry under study has allowed
us to implement a relatively easy computer code based on
the mode matching technique [37] to accurately compute the
transmission and reflection coefficients. (In our mode-matching
computations for the zero-thickness case, we introduce a very
small screen thickness and use many modes to reach con-
vergence. A more efficient numerical procedure for this case
would have been the solution of an integral equation for the
unknown equivalent magnetic current in the aperture [38], but
this numerical fact is not relevant for the purposes of the present
paper). The unknown parameters of the circuit model in Fig. 2,

, , and , can be easily computed from a few low-fre-
quency values of the transmission coefficient and from
the value of the total transmission frequency. This information
is generated using the mode-matching code. For instance, for
the equivalent circuit in Fig. 2, can be obtained from

(4)

where is the angular frequency and is
the characteristic admittance of the input and output transmis-
sion lines. For low frequencies (in comparison with ),
and are constants and (4) is just a polynomial whose coef-
ficients can be properly fitted from a few low-frequency data.
The parameter is obtained by adding the information of
the resonance frequency. With this reduced set of parameters,
we should be able to reproduce the whole transmission spec-
trum. It is worth mentioning that the equivalent circuit with the
single-mode frequency-dependent capacitance contribution in
(2) perfectly accounts for the Wood–Rayleigh anomaly. Cer-
tainly, at , the capacitance is infinity and
the diaphragm will behave as a short circuit. This has been nu-
merically checked verifying total reflection and that the phase
of the reflected wave at that frequency is .
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Fig. 3. Transmission coefficient �� � through a zero-thickness perfect con-
ductor screen with rectangular holes of various sizes. The unit cell is square:
� � � � 5 mm, which corresponds to a Wood–Rayleigh anomaly frequency
of � � 59.9585 GHz. For large slot size (� � 3 mm, � � 2.5 mm;
� � 0.5 mm), we have normal FSS operation, and the passband is wide
and well below the Wood–Rayleigh anomaly. For small slots (� � 2 mm,
� � 1.5 mm; � � 0.5 mm), with intrinsic resonance frequency above
� , the periodicity of the structure is responsible for extraordinary transmis-
sion near but below � with narrow bandwidths.

In order to validate the above proposals, we have computed
the transmission coefficient for various slots keeping
the same spatial periodicity. The “exact” mode-matching results
(the number of modes has been increased until reach good con-
vergence) and the predictions of the circuit model are given in
Fig. 3. The first apparent conclusion is that the equivalent cir-
cuit model matches very well the computed full-wave results in
the whole frequency range. This is a significant hint of the va-
lidity of our model. In Fig. 3, it can also be observed that large
slots yield wideband resonances far away from and below ,
as it is qualitatively expected since this corresponds to normal
FSS operation. For very small slots of subwavelength size, the
resonance (transmission) peaks move up to the proximities of

and their corresponding bandwidths become smaller and
smaller as the slot size is reduced. This is consistent with the
qualitatively expected behavior of our equivalent circuit. When
the holes are very small and the inductances are correspondingly
small, resonance must be very close to the singularity of the ca-
pacitance at . Note that the bandwidth of resonators with
high and small is small. Moreover, due to the fast variation
of near , a small variation of frequency around the res-
onance frequency makes the circuit far from resonance condi-
tions. Thus, very narrow bandwidths are qualitatively expected
if the transmission peak is near (which is clear from the
results reported in Fig. 3).

Previously it has been shown that total transmission is pre-
dicted by simple waveguide theory arguments in the case of pe-
riodically perforated perfect conductor zero-thickness screens
with arbitrarily sized holes. Some additional interesting theo-
retical conclusions can also be deduced from the equivalent cir-
cuit model. For example, it is the behavior of the mode
near cutoff that is more relevant to the extraordinary transmis-
sion phenomenon. Note that the mode is also near cutoff
( for the considered square lattice). This

mode also contributes with a singular inductance near its cutoff
frequency (which could reach very high values). However, this
fact does not affect our previous conclusions about the domi-
nant role of the mode in the extraordinary transmission
occurrence. It is only the shunt-connected large capacitance that
yields noticeable variations in the transmission coefficient, since
large in parallel with and other ’s coming from other TE
modes will not affect the resonance condition and frequency re-
sponse. In summary, only the overall capacitance (and not the
overall inductance) becomes singular at . Incidentally, this
also explains that it is the periodicity along the direction of the
polarized electric field ( -direction) that actually determines the
value of the extraordinary transmission frequency. The peri-
odicity is not relevant at all. Indeed, periodicity along the -di-
rection is not required for the observation of enhanced trans-
mission peaks. For instance, in [39], it has been demonstrated
that a single row of holes (1-D periodicity) exhibits extraordi-
nary transmission peaks. In this case, extraordinary transmis-
sion refers to transmitting much more power than the power im-
pinging on the area of each individual hole (total transmission
has no sense in this case, obviously). This qualitative prediction
of our model is an additional validation of its physical sound-
ness as well as its predictive potential.

Ohmic losses were neglected in our previous discussion, but it
is expected that their presence leads to a reduction of transmitted
power at the critical frequencies of otherwise perfect transmis-
sion systems. Following our equivalent circuit model, we can
qualitatively advance that losses will be more significant for
the case of small holes (extraordinary transmission) than for the
case of large holes (regular FSS operation). In the circuit model,
losses would be modeled as a resistance connected in series
with . Taking into account that the values of involved in ex-
traordinary transmission peaks are typically much smaller than
those involved in common FSS transmission peaks, the effect
of the losses on the quality factor of the peaks would be more
pronounced for extraordinary transmission operation than for
usual FSS operation. Thus, practical application of narrowband
spatial filters and polarizers based on extraordinary transmis-
sion could be seriously affected by ohmic losses at microwave
and millimeter-wave frequencies. In optical applications, metals
are not characterized by a real conductivity but rather by a fre-
quency-dependent complex permittivity with a large and nega-
tive real part. Maybe, in this case, the phenomenon of extraor-
dinary optical transmission could be fruitfully exploited in the
design of new devices such as those reported in [40].

IV. EXTENDING THE MODEL TO THICK SCREENS

Most of the experiments and numerical simulations of extra-
ordinary transmission systems have been carried out with rela-
tively thick screens. Numerical simulations and some simplified
analytical models predict that two instead of just one transmis-
sion peaks should be observed; see, for instance [7, Fig. 2], [6,
Figs. 3 and 4], [25, Fig. 8], [41, Fig. 2], and [42, Fig. 2]. Nev-
ertheless, losses and experimental limitations can make difficult
the observation of two separate peaks. It is clear that the equiv-
alent circuit in Fig. 2 cannot account for such a pair of peaks.
The physical reason is that the reactive energy stored inside the
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Fig. 4. (a) Lumped-elements circuit model for thick diaphragm in parallel-plate
waveguide. (b) Even- and odd-mode circuits used to obtain scattering parame-
ters and critical transmission frequencies. The equivalence between parameters
of the model in (a) and the even-/odd-mode model in (b) is included in the figure.

hole was neglected in that simple equivalent circuit (only valid
for zero-thickness screens).

For subwavelength holes, the dominant evanescent mode in-
side the hole is the mode. The hole can then be viewed as a
rectangular waveguide section operating well below the cutoff
of the first propagating mode. From a microwave engineering
point of view, the problem corresponds to the scattering by a fi-
nite thickness diaphragm. For diaphragms that are not too thick,
the introduction of a series inductance [ in the circuit model
depicted in Fig. 4(a)] is an appropriate manner of accounting
for the modification introduced by the nonnegligible thickness
of the metal screen [36]. For thin screens, it is relatively ob-
vious that should be proportional to the thickness . The in-
clusion of just this single series inductor will already provide
two resonance peaks. Unfortunately, this simple model (com-
monly used to model practical thin diaphragms in closed wave-
guides [36]) would not account for subtle details of the trans-
mission spectrum obtained from numerical simulations. Due to
this, we propose the slightly more sophisticated -network of
inductances shown in Fig. 4(a). The idea underlying this -cir-
cuit is that the equivalent circuit for a TE mode below cutoff is
a ladder network whose elements are infinitesimal inductances.
The distributed network is here replaced by a single cell with fi-
nite inductance values. Alternatively, the above -circuit can be
reached by noting the presence of a vertical symmetry plane at
the middle of the hole. For even excitation from the two sides of
the screen, this plane is a magnetic wall, and, for odd excitation,
it is an electric wall. The corresponding equivalent circuits for
these two situations are depicted in Fig. 4(b), where the induc-
tances and are related to the magnetic energy stored inside
the hole under even (e) and odd (o) mode conditions. The rela-
tionship between and with the inductances of the -cir-
cuit is obvious and has been explicitly shown in Fig. 4(b).

Keeping in the circuit model only (i.e., taking ) is
equivalent to neglecting the magnetic energy stored inside the
hole by the below-cutoff TE modes in the case of even exci-
tation. If we want to accurately account for nonzero thickness
effects, this latter contribution must be taken into account, and
a finite value of has to be used in the model. For very thin
screens, it is found that (note that accounts for TE
modes in the external waveguides, not in the hole). In this case,

the effect of is predominant since and are shunt-con-
nected. For infinitesimally thin screens, it is additionally found
that , giving place to a short circuit in such a way that the
results of the zero-thickness screens of previous section are re-
covered. However, for appreciably thick screens, is not small
and can be of the same order of magnitude as . The circuit
model in Fig. 4(a) predicts two total transmission peaks at fre-
quencies below and, moreover, it can give some qualitative
insight about the evolution of those peaks as a function of the
screen thickness . A simple even–odd excitation analysis of
this circuit leads to the following transmission coefficient:

(5)

where the reflection coefficients for even and odd excitations are
given by

(6)

with the following values of the equivalent inductances for even
and odd excitations:

(7)

These are the equivalent inductances of the shunt associations
of inductances loading the transmission lines in Fig. 4(b).

The inductances and depend on the screen thickness
but, provided that the electrical thickness of the screen is not
too large, they only slightly depend on frequency. The values
of and are related to the fields outside the hole, and they
are almost independent of . Equation (5)–(7), together with the
frequency dependence of in (2), predict the following two
total transmission frequencies:

(8)

provided the following condition is fulfilled:
. Fortunately, this last condition is

always satisfied. The equations in (8) are a set of implicit
equations that determine the resonance (total transmission)
frequencies using the capacitance in (3) and the inductances in
(7). Equivalently, if the resonance frequencies are known from a
mode-matching analysis, (8) would provide a method to obtain
the inductances in (7). The frequencies in (8) are always below

(onset of the first grating lobe) due to the singular behavior
of at . Note that each of the transmission peaks can
be related to the resonance of the reactive load associated
with each of the excitation modes [even or odd, see Fig. 4(b)].
Since , this implies that and, therefore, the
bandwidth around will be smaller than that around . The
above features coincide with the reported behavior for thick
screens in many previous papers based on purely numerical
approaches or cumbersome analytical developments; see, for
instance, [6, Fig. 3] or [25, Fig. 8].

A different situation is found if the slot width is suffi-
ciently large (typically when ) to allow transmission
of the mode inside the hole at frequencies below .
While the equivalent circuit in Fig. 4 is still valid below the onset
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of this mode, , a different circuit model
should be used for the even excitation mode in Fig. 4(b) for fre-
quencies . In this latter case, the contribution of the

mode fields inside the hole is a capacitance that should
be added to , while the relevant inductance is only the ex-
ternal inductance . This is because a short section of wave-
guide above cutoff terminated with a magnetic wall (open cir-
cuit) is equivalent to a capacitance. The resonance associated
with and the sum of this capacitance plus in Fig. 4(b)
yields the typical wide transmission peak observed in common
FSS operation. In the case of the odd mode, the circuit model
in Fig. 4(b) is still valid above because a short section
of waveguide above the cutoff terminated with an electric wall
(short circuit) is equivalent to a lumped inductance . This
lumped inductance is expected to be much lower than , and
its effect will prevail over the effect of . This small value of
the overall inductance together with the frequency behavior of

will lead to a second narrow resonance very close to .
This resonance has been unnoticed in the past because is
extremely small for the electrically very thin screens used in
FSS applications. Its associated transmission peak would then
be extremely narrow and, in practice, possibly masked by ohmic
losses.

Let us now discuss in detail the two different situations pre-
viously mentioned using some examples.

A. Screens With Large Holes

For relatively large slots (say ), the lower fre-
quency in (8), associated with the case of even excitation reso-
nance , corresponds to conventional FSS operation. (Note
that the value of is not relevant because of the orientation
of the impinging electric field). This frequency is mainly
controlled by and in Fig. 4, although should be
slightly increased with the value of the capacitance coming from
the contribution of the mode under even excitation con-
ditions for frequencies above . As a consequence, the
position of this transmission peak mainly depends on ,
and nothing “extraordinary” happens in such a case (regular FSS
operation). This transmission peak has been called elsewhere
localized waveguide resonance; see, for instance, [41] among
others. With this terminology, the authors of [41] seem to refer
to a situation where the transmission frequency roughly matches
the cutoff frequency of the first mode launched above cutoff
in the hole ( in our case). However, this terminology is
misleading because the propagation of a waveguide mode in-
side the hole does not necessarily imply strong transmission.
In fact, strong transmission is only observed around a specific
frequency, although the mode propagates for all of the
frequencies above . The circumstance actually required
for total transmission is impedance matching, and this condi-
tion is only reached when average electric and magnetic ener-
gies stored around the holes are identical. This condition only
tangentially might be related to the onset of a waveguide mode
inside the hole. Surprisingly, this point seems to be systemati-
cally ignored in most of the physical explanations reported in
many (if not all) of the published papers on the topic. In Fig. 5,
we have plotted transmittance results for several slots
with different values of . These results have been obtained

Fig. 5. Transmission spectrum �� � of a perforated perfect conductor finite-
thickness plate for several widths of the rectangular holes. Data from [41] (black
circles) have been included for comparison purposes. Vertical arrows mark the
positions of the first maximum derived from a simple reasoning based on short-
circuited slot resonance. Slight shifts of these theoretical resonances with re-
spect to numerical data is due to the neglected end effects. Dimensions: � �

� , � � ���� , and � � ���� .

using our mode-matching code. The finite-difference time-do-
main (FDTD) results reported in [41] for are in-
cluded for comparison purposes (our data reproduced accurately
all of the results in [41]). Actually, the accurate mode-matching
computation of the lower transmission peak frequency reveals
that the maximum transmission occurs at frequencies clearly
below the onset frequency of the mode (see, for instance,
the case corresponding to in Fig. 5). This fact can
be explained in terms of the apparent larger length of the slot
resonator due to end effects. As stated in the analysis of the
zero-thickness case, the ordinary transmission peak can be in-
terpreted in terms of the resonance of the fundamental mode
of the short-circuited finite-length section of slot line, in our
case, slot width , slot length , metallization thickness ,
and with the resonance condition given by , where

is the propagation constant of the slot mode. In Fig. 5
some arrows have been included to mark the above “theoret-
ical” total transmission frequencies derived from the resonant
slot model neglecting end effects and taking as the vacuum
wavenumber . Note that, in this way, the above arrows
also account for the cutoff frequency of the mode inside
the hole. Since , the shift to lower frequencies of the
transmission peak (when compared with the onset frequency of
the mode in the hole) that can be appreciated in Fig. 5 is
mainly due to end effects at the two short-circuited ends of the
slot resonator. This shift to lower frequencies is more evident
for shorter slots because of the larger relative weight of the end
effect. The shift is also more pronounced when the screen thick-
ness is small because is no longer so close to (see, for
instance, the case 3 mm shown in Fig. 3).

After the discussion in the previous paragraph, it is clear that
the first transmission peak cannot be considered “extraordinary”
in any sense. The important observation concerning extraor-
dinary transmission through nonzero-thickness screens is that,
apart from that FSS-like peak, a second narrow transmission
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Fig. 6. Transmission coefficient �� � through small holes practiced in several
nonzero thickness screens (solid lines). The peaks approach to each other as
the screen thickness increases. For large thickness, the two peaks collapse into
a single peak, and, finally, transmission disappears for very thick screens. For
those cases where the two peaks are clearly noticeable, the circuit model pre-
diction is included (dashed lines). The dimensions are � � � � 5 mm;
� � 1.5 mm, and � � 0.5 mm.

peak always appears below and close to the onset frequency of
the first grating lobe [41]. This is the transmission peak that can
be properly called “extraordinary” because, to the best of the
authors’ knowledge, it has not been reported and discussed be-
fore the paper by Ebbesen [1]. From Fig. 5, it is apparent that
the ordinary peak position (i.e., the FSS-like peak with large
bandwidth) depends on the size of the hole along the -direction

, but the extraordinary peak is always close to . This
observation is in perfect agreement with our previous theoret-
ical discussion. The extraordinary transmission peak has been
related to surface plasmons in previous literature (genuine plas-
mons, spoof plasmons, or both). However, in our theory, or-
dinary and extraordinary transmission peaks are both related
to impedance matching due to cancellation of reactive energy
(imaginary part of the Poynting vector flux) by proper balance of
electric and magnetic energy stored in the cutoff modes involved
in the discontinuity problem. This condition can be fulfilled in
the proximity of the onset of spoof plasmons but, in our opinion,
it is the impedance matching that should be considered as the
relevant cause. As will be briefly discussed in Section VI, this
kind of impedance matching can also be attained in closed wave-
guide systems where surface plasmons are absent or simply have
no sense.

B. Screens With Small Holes

Next, the case of a thick screen with small (subwavelength)
holes (true extraordinary transmission situation) will be consid-
ered. In Fig. 6, we plot for the same small rectangular holes
practiced on various screens with different thickness. Since the
holes are small, the two perfect transmission peaks are close to

, as expected from our theory. Also, we can see that the
larger the thickness of the screen is, the closer the two peaks
are located. How does our model account for this fact? If
is ignored in the model in Fig. 4(a) (as is typical in the mod-
eling of thin diaphragms in waveguides), it would be possible
to account for the thickness dependence of the odd-excitation
peak closer to but not for the thickness dependence of the

Fig. 7. Inductances � and � accounting for the reactive fields inside the
rectangular hole as a function of screen thickness ���. These inductances are
the inductances in parallel with � and � in Fig. 4(b). (�, ): Data extracted
from the numerical mode-matching analysis. Solid/dashed lines: theoretical data
following the discussion in Section V. The dimensions are the same as in Fig. 6.

even-excitation peak. In the latter case, the peak frequency
would be controlled exclusively by and , which are not de-
pendent on the thickness of the screen. Thus, must be in-
cluded in the model to account for the displacement of the lower
frequency peak when the hole thickness varies. Qualitatively,
it is expected an increase of with (for small values of ,
should be proportional to ) and that decreases monotoni-
cally with starting from at . From our circuit model
and the assumed frequency dependence of the various involved
parameters ( , , , , and are frequency-indepen-
dent, while in (2) is the only frequency-dependent pa-
rameter), it is possible to extract the values of all of the param-
eters of the equivalent circuit from a few data computed with
mode matching. Using reasonable approximations, the function

can be approximated by a third-order polynomial
function (something similar to (4) for zero-thickness screens)
at low frequencies. The coefficients of this polynomial and the
values of the resonance (transmission) frequencies determine all
of the parameters of the circuit model in Fig. 4(a). Using this
simple fitting scheme, we have obtained the values of the in-
ductances appearing in parallel with and in Fig. 4(b), i.e.,

and , for several thick-
nesses of the screen. These results have been plotted in Fig. 7
(discrete circles and rhombuses). Our previous qualitative dis-
cussion about the dependence of inductances with respect to
is clearly supported by these results. As we can see from Fig. 7,

is large (and goes to infinity) for very thin screens while
becomes small and proportional to for thin screens. However,
as the thickness of the screen increases, and tend to ap-
proach each other, as they are identical for electrically very thick
screens. The evolution of the pair of peaks in Fig. 6 with re-
spect to the screen thickness can be easily explained in terms
of the results for and in Fig. 7. As the values of and

approach each other, the transmission peaks are closer and
closer. Note that the predictions of our equivalent circuit have
also been plotted in Fig. 6 (dashed lines). These predictions are
very accurate for the two-peak cases. However, it can be seen
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that the two transmission peaks collapse into a single peak when
the hole thickness is sufficiently large, i.e., when and are
almost identical. (For this single-peak case, the circuit model
in Fig. 4 does not provide good results.) It is expected that the
transmission peaks disappear for very thick screens due to the
evanescent behavior of the fields inside the hole (the fields of the
below-cutoff modes excited at the left side of the screen cannot
reach the second interface due to strong reactive attenuation).
This would be in perfect agreement with the numerical results
reported in [25, Fig. 8] for circular shaped holes in thick screens.

The single peak curves in Fig. 6 reveal a limitation of the
lumped equivalent circuit shown in Fig. 4. When the two res-
onance frequencies collapse into a single one, it is found that

, and then the equivalent circuit in Fig. 4 predicts
no transmission at all. Therefore, in spite of the success of our
model up to this point to explain extraordinary transmission re-
sults, it would be convenient to have a more sophisticated model
of the diaphragm discontinuity that can account more accurately
for the actual dependence of and with . With this modi-
fication, the equivalent circuit model is expected to give appro-
priate results even when the two peaks collapse. As we will show
in Section V, this can be done, but the lumped-element circuit
model should be abandoned in favor of a distributed model.

V. SIMPLIFIED DISTRIBUTED MODEL FOR

EXTRAORDINARY TRANSMISSION

The complex dependence of the transmission peak frequen-
cies in terms of the screen thickness has been considered in the
literature using a model that uses electric and magnetic dipoles
to account for the effects of small holes [25]. A sophisticated
explanation of this behavior based on the formation of a “sur-
face plasmon molecule” was provided years ago in [6]. It is then
an interesting challenge for our equivalent circuit model to ac-
count for this complex dependence on the screen thickness using
simple arguments. We have found a relatively simple solution
based again on well-known waveguide concepts. The key point
is that changing the thickness of the screen does not appre-
ciably affect what happens outside the hole (i.e., and are not
dependent on ). Therefore, the parameter affects transmission
frequencies through the values of and (or, equivalently,

and ). Although we already have a qualitative idea about
the dependence of these parameters on from the discussions in
connection with Fig. 7, a much more accurate estimation of the
dependence of and with can be achieved after consid-
ering that, for thick screens, the distance can be comparable
to the longitudinal variation of electromagnetic fields inside the
hole. This means that electromagnetic fields inside the hole de-
pend on in the specific manner given by waveguide theory, and
this specific variation rate can be easily included in the model.
In particular, since the dominant mode (below cutoff for extra-
ordinary transmission conditions) inside the hole is the
mode, we propose the approximate distributed equivalent circuit
shown in Fig. 8. In this equivalent circuit, the hole is substituted
by a section of an evanescent transmission line of length . This
transmission line is characterized by the known imaginary char-
acteristic impedance and the attenuation factor
corresponding to the mode of the small rectangular wave-
guide of dimensions and . The parameter in Fig. 8(a)

Fig. 8. (a) New circuit model accounting for distributed effects inside the hole
for nonzero-thickness screens. (b) Even- and odd-mode equivalent circuits. The
values of � and � are given in the text.

corresponds to the excitation factor of the mode, which will be
obtained here from mode-matching simulation (although it can
be roughly estimated from the geometries of the large and small
waveguides involved in the problem). A simple even/odd exci-
tation analysis of the structure in Fig. 8 yields

(9)

(10)

Note that the distributed model provides the explicit dependence
on of the parameters of the model in Fig. 4(b).

The circuit parameters of Fig. 8 ( , , and ) can be obtained
from a few mode-matching simulations, as was done with pre-
vious equivalent circuit models. Using (9) and (10), we have
obtained the data corresponding to the solid and dashed lines
plotted in Fig. 7. As the dependence of and with is ex-
plicitly known a priori, the values of and have to be com-
puted only for a single value of . If we choose a large value of

so that , it is found that

(11)

(12)

This means that the frequency response for any screen thickness
can be known without performing mode-matching simulations
for different thicknesses. It should be highlighted that the perfect
matching of the curves in Fig. 7 with the discrete points (circles
and rhombuses) confirms all of our assumptions (for instance,
that the only relevant mode inside the hole is the mode).

The use of the distributed model adds another significant
advantage when compared with the lumped model. The avail-
ability of the explicit expressions in (9) and (10) allows the
equivalent-circuit model to account for what happens when
the two peaks of extraordinary transmission collapse. Thus, in
Fig. 9, we compare the full-wave mode-matching results (lines)
with the distributed equivalent circuit predictions (circles) for
several cases of thick screens. Now, our equivalent circuit
model shows an excellent agreement with the numerical results
even when a single peak occurs and only partial transmission
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Fig. 9. Detail of the transmission frequency region for a thick perforated
screen with sub-wavelength holes. For progressive increasing of thickness the
two peaks collapse into a single one whose height decreases to zero for very
thick screens. Mode-matching numerical results of �� � (lines) are compared
with circuit model predictions (circles) using the model in Fig. 8 with the
parameters in (9) and (10). The dimensions are the same as in Fig. 6.

is possible. This new validation is an additional hint of the
suitability of the point of view on extraordinary transmission
proposed in this paper.

VI. ADDITIONAL FEATURES OF THE PROPOSED MODELS

The waveguide and circuit models proposed in previous
sections have been used to explain the extraordinary trans-
mission phenomenon up to the onset of the first grating lobe
(first Wood–Rayleigh anomaly). However, it is evident that
the full-wave numerical scheme based on mode matching
must still be valid for higher frequencies. The implemented
computer code allows for the computation of, for instance,
the reflected and transmitted power traveling in each of the
secondary spots arising from diffraction. The angles of each
grating lobe can be easily obtained from the knowledge of
the propagation constants of each above-cutoff higher order
mode of the parallel-plate waveguide in Fig. 1. However, the
equivalent circuit models have been developed to be used up
to the frequency of the first grating lobe. These models do not
account for multiple mode operation (frequencies above ).
In order to account for that regime, more sophisticated models
similar to the ones reported in [32] and [33] should be adapted
to the case of 2-D periodic structures having nonzero-thickness
screens. Nevertheless, the physics behind our circuit models
can still explain some qualitative details of the transmission
spectrum at higher frequencies.

Our models can predict, for instance, if a peak of enhanced
transmission will appear or not near a particular Wood–Rayleigh
anomaly of order higher than one. Let us consider a structure
having a very thin screen. It has been shown that the bottom
line of extraordinary transmission is the increase of the value of
the equivalent capacitance of TM modes just below their cutoff
frequencies. This increase makes it possible to cancel the re-
active part of the input impedance seen from the input trans-
mission line before the hole array. For single-mode operation,

Fig. 10. Wideband transmission spectra �� � of thin screens with rectangular
holes of three different sizes. The “theoretical” resonance frequencies are, re-
spectively, 75 GHz �� � 2.0 mm�, 100 GHz �� � 1.5 mm�, and 150 GHz
�� � 1.0 mm�. Note that enhanced transmission peaks appear near the Wood-
Rayleigh frequencies occurring below theoretical resonances but not above. Di-
mensions: � � � � 5 mm, � � 0.5 mm, � � 0.2 mm.

that means total transmission due to perfect matching. How-
ever, once a second mode is launched into the parallel-plate
transmission lines (operation frequency above ), no perfect
matching is possible for the impinging TEM mode. However,
cancellation of reactive energy is still possible, and this would
yield a peak of enhanced transmission near and below some
of the Wood–Rayleigh anomalies (the amplitude of such peak
would be of course far from unity). In order to illustrate these
comments, wideband transmission spectra for three structures
having the same periodicity 5 mm but different
hole sizes are shown in Fig. 10. The solid line corresponds to a
rectangular hole with 2 mm and 0.5 mm. It can
be seen that a total transmission peak appears below the first
Wood–Rayleigh anomaly (about 60 GHz) but no peaks are vis-
ible near the second (at about 85 GHz, the cutoff frequency of
the mode) and third (about 120 GHz, the cutoff frequency
of the mode) anomalies. The reason is that the considered
hole has a “theoretical” slot-line resonance frequency around
75 GHz (see the wideband maximum of the transmission curve
around that frequency). Adding more capacitance coming from
terms such as that in (2) cannot produce additional resonances.

However, if the “theoretical” resonance of the slot is above
85 GHz but below 120 GHz, the singular behavior of the
capacitance associated with Wood–Rayleigh anomalies should
produce total-transmission resonance peaks near 60 GHz

and partial-transmission resonance peaks around
85 GHz . This is what happens if 1.5 mm
(theoretical slot-line resonance frequency near 100 GHz). The
dashed line in Fig. 10 confirms this prediction. The dotted line
in Fig. 10 corresponds to 1.0 mm (theoretical reso-
nance frequency around 150 GHz). In this case, our reasoning
predicts transmission peaks before the first, second, and third
Wood–Rayleigh anomalies, and this is what we obtain with
mode-matching computations in Fig. 10.

Let us finally comment on some of the advantages of our
models and point of view. As has been previously mentioned,
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Fig. 11. Enhanced transmission peaks, �� �, through a subwavelength
diaphragm in a circular waveguide. Dimensions: � � � mm, � � ��� mm,
� � ��� mm. The impinging mode is the fundamental �� mode and the
higher order mode involved in extraordinary transmission is �	 .

currently accepted theories about extraordinary optical trans-
mission are based on the existence of surface waves that can be
excited in the periodically structured surface by an impinging
planar TEM wave. Our equivalent-circuit interpretation of the
phenomenon also accounts for the same experiments and sim-
ulated results. It is plausible to say that our approach, based on
the impedance-matching concept, is in some extent equivalent to
the theory founded on surface plasmons. Indeed, using the trans-
verse resonance concept as in [22], our impedance-matching
condition could be close to the condition for the onset of spoof
plasmons in the periodic structure. However, it should not be
inferred that both approaches are completely equivalent. This
can be corroborated by noting, for example, that impedance-
matching conditions can be achieved in structures where trans-
verse surface waves are not possible. In this way, our proposed
theory anticipates the possibility of having extraordinary trans-
mission in structures without periodicity and without the pos-
sibility of existence of surface plasmons. As it has been ex-
haustively discussed in this paper, extraordinary transmission is
here basically associated with the excitation of TM modes near
cutoff. Certainly, this situation is also possible if the diaphragm
is practiced in a simple metallic rectangular or cylindrical wave-
guide. (The parallel-plate transmission line in Fig. 1 associated
with the periodic structure is just a particular example.) Our
model states that a total transmission peak can be observed, in-
dependently of the size of the hole, near the onset frequency of
the first TM mode launched in the structure (provided the thick-
ness of the diaphragm is not too large and material losses are ne-
glected). This has been verified by using a commercial software
(CST Microwave Studio). In Fig. 11, we show a typical extra-
ordinary transmission situation in a cylindrical waveguide with
a diaphragm. In this situation, the impinging mode is the fun-
damental mode with a cutoff frequency of approximately
35.14 GHz. The first higher order TM mode involved in the ex-
traordinary transmission is the mode with a cutoff fre-
quency of approximately 73.14 GHz (the discrepancy observed
in Fig. 11 between the zero-transmission frequency or Wood’s
anomaly and this cutoff frequency is due to the polygonal nature

of the simulated circular waveguide). The mode, having
a lower cutoff frequency, does not play any role in this structure
because it is not excited due to the symmetries of both excita-
tion and geometry. Note that the lowest modal cutoff frequency
in the cylindrical hole is 125.5 GHz, which corresponds to the

mode.
It is obvious that the above closed structure cannot support

any kind of surface waves, in particular plasmons. Clearly, the
cylindrical waveguide cannot be associated with any sort of
equivalent periodic structure. That means that, although surface
plasmons could be an alternative explanation to that offered in
this paper to extraordinary transmission in periodic planar struc-
tures, the concept of a surface plasmon hardly can be considered
as a possible explanation in the case of diaphragms in closed
waveguides of arbitrary transverse cross section.

Additionally, it is worth mentioning that our model would
provide a complementary physical explanation of the tunneling
of electromagnetic energy through subwavelength channels and
bends reported in [43], but this is beyond of the scope of this
paper and will be the object of a forthcoming work.

VII. CONCLUSION

The phenomenon of extraordinary transmission of electro-
magnetic waves through metal screens periodically perforated
with small holes has been interpreted in terms of the scattering
by a thin or thick diaphragm of a TEM mode traveling along
a parallel-plate transmission line. This is a classical problem
in the microwaves area where powerful numerical methods and
suitable equivalent circuits are available. In this paper, we have
implemented the mode-matching method to solve the corre-
sponding electromagnetic problem in an efficient way. The nu-
merical results obtained with this method match perfectly those
given by other cumbersome techniques previously reported in
the literature. However, a more important advantage of our ap-
proach is that the problem has been posed in such a way that it
is amenable to simple equivalent circuit models with just a few
parameters to be determined. Since the proposed circuit models
perfectly capture the physics of the problem, we can account
for all of the fine details of extraordinary transmission phe-
nomena. The equivalent circuit models allows us to give an in-
terpretation of the extraordinary transmission problem in terms
of impedance matching. This point of view could be, in some
cases, equivalent to the currently accepted theory founded on
the excitation of spoof surface plasmons. However, it has the ad-
vantage of being simpler (at least for microwave engineers) and
allows for the easy predictions of many features of the expected
behavior of the analyzed system. An additional and relevant ad-
vantage of our point of view is the anticipation of new systems
exhibiting extraordinary transmission without the presence of
surface plasmons (or any other class of surface waves). The pro-
posed equivalent circuit models could also be used as easy com-
puter-aided design tools for designing practical devices based
on extraordinary transmission.
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