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Abstract
Determining the susceptibility distribution from the magnetic field measured in a magnetic
resonance (MR) scanner is an ill-posed inverse problem, because of the presence of zeroes in the
convolution kernel in the forward problem. An algorithm called morphology enabled dipole
inversion (MEDI), which incorporates spatial prior information, has been proposed to generate a
quantitative susceptibility map (QSM). The accuracy of QSM can be validated experimentally.
However, there is not yet a rigorous mathematical demonstration of accuracy for a general
regularized approach or for MEDI specifically. The error in the susceptibility map reconstructed
by MEDI is expressed in terms of the acquisition noise and the error in the spatial prior
information. A detailed analysis demonstrates that the error in the susceptibility map reconstructed
by MEDI is bounded by a linear function of these two error sources. Numerical analysis confirms
that the error of the susceptibility map reconstructed by MEDI is on the same order of the noise in
the original MRI data, and comprehensive edge detection will lead to reduced model error in
MEDI. Additional phantom validation and human brain imaging demonstrated the practicality of
the MEDI method.
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I. Introduction
Magnetic susceptibility is an important physical property of tissue, emerging as a new
contrast mechanism in magnetic resonance imaging (MRI) [1]–[6]. The susceptibility of
nonferromagnetic biomaterial generates a local field in the MR scanner, whose component
along the main magnetic field is equal to the convolution of the volume susceptibility
distribution with the magnetic field generated by a unit dipole, which will be referred to in
the following as the unit dipole kernel. The convolution can be expressed as a pointwise
multiplication of the susceptibility distribution and the unit dipole kernel in Fourier space for
fast calculation [7]–[9]. The field is recorded in the MR signal phase. By solving the inverse
problem, i.e., calculating the susceptibility source from the magnetic field, the tissue
susceptibility can be determined quantitatively. However, because of the presence of zeroes
at the magic angle (54.7) in the Fourier representation of the unit dipole kernel, a
straightforward inversion would incur a division by zero, leading to meaningless
susceptibility results.

A number of methods have been proposed to improve the stability of the inversion. The
COSMOS [2], [4] method is model-free, but requires repeating the data acquisition at
multiple orientations, severely limiting the practicality of this method. A single angle
orientation reconstruction method is more practical but requires regularization in either
Fourier space or image space. Several regularization methods have been investigated.
Computationally, the simplest regularization may be the truncated k-space division method
[3], [4] that works in k-space by selectively modifying the small values in the dipole kernel
to avoid division by zero. Another weighted k-space division method [10] assumes that the
susceptibility in Fourier domain is first-order differentiable and applies a modified
L'Hospital's rule to interpolate susceptibility values near the magic angle. Computationally
more complex regularization methods use spatial priors that assume the susceptibility
distribution is smooth [11], sparse [11], or piece-wise constant [12]. Although these
regularization methods are more practical than COSMOS in terms of using a single
orientation data acquisition, there can be discrepancies between these mathematical models
and the physical reality, causing errors in the susceptibility reconstruction. In general, these
algorithmic biases have not been systematically analyzed and measured.

An advantage of MRI is its capability to simultaneously acquire structural and functional
information. Previous experimental studies have shown that by properly incorporating
additional morphological information from the MR magnitude image, the lack of
measureable field data at the magic angle can be overcome, and a susceptibility map can be
reconstructed with high quantitative accuracy [13], [14] in numerical simulations as well as
in controlled experiments. The purpose of this work is to investigate the theoretical basis for
this method, called morphology enabled dipole inversion (MEDI). Here we provide a
detailed analytical and numerical investigation to demonstrate that this MEDI approach
provides a unique and accurate solution under ideal conditions, and that the reconstruction
error is tightly bounded by a linear function of the error in the gradient echo image in the
presence of noise.

II. Theory
Accurate Solution in the Error-Free Case and Linearly Bounded Error in the General Case

In this section, we demonstrate that in the absence of noise and model error, the MEDI
solution is unique and accurate, and we provide linear bounds for the worst-case
reconstruction in the presence of error. Notations used in the following derivation are
summarized in Table I.
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The original inverse problem of calculating the susceptibility χ from the measured local
field δφ is formulated as a weighted least square minimization problem

(1)

where W is a N × N (N being the number of voxels in χ) weighting matrix compensating for
the nonuniform phase noise, which can be derived from the magnitude of the complex MRI
data [11]; FD is FD = F–1 DF with F being the 3-D Fourier transform; D is the Fourier
domain representation of the unit dipole kernel and is a N × N diagonal matrix with diagonal

elements equal to , where k denotes the Fourier space coordinates and kz denotes
the Fourier space coordinate in the direction parallel to the main magnetic field. This
minimization problem does not have a unique solution because FD has a non-trivial null
space, allowing different χ to generate a same local field.

In MEDI, the inverse problem is formulated as a constrained minimization problem by
incorporating spatial priors

(2)

Here, M is a 3N × 3N binary weighting diagonal matrix generated from the gradient of a
morphological image such as the magnitude image by assigning zero to gradients
representing substantial edges and one to all other gradients. Thus, M splits the gradients
into two categories: edge gradients and nonedge gradients. Subscript p denotes Lp norm. ε is
equal to the expected noise level.

If we denote χ’ = ∇χ, then the problem can be reformulated in terms of the susceptibility
gradients:

(3)

where the constraint curl(χ’) = 0 is added to ensure that χ’ represents a gradient field. The

true gradient field is denoted as . The Helmholtz theorem states ∀χ’, curl(χ’) = 0 ⇔ χ’
∈ CS(∇). The Moore–Penrose pseudo-inverse of ∇ is denoted ∇+ and it is determined at all
points in the Fourier expression, except at the origin where it is set to zero, meaning the
susceptibility map will be determined up to a constant.

We denote  as model error. The model error is expected to be small because the

locations of most of the large elements in the true susceptibility gradients  are expected to
coincide with edge gradients in the morphological image as both kinds of edge arise from
the same tissue interfaces. The model error is reducible by increasing zM denoting the

number of diagonal zeros in M, and  becomes zero when zM = 3N. The observation

 is contaminated by noise e and the weighted L2 norm of the noise is ∥We∥2 =

ε. The solution to (2) and (3) are respectively denoted as  and .

Lemma 1: The gradient reconstruction error  satisfies ∥WFD∇+ζ’∥2 ≤ 2ε and

.

Proof: By applying variable substitution and the triangle inequality, we have
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Because both  and  are in the feasible set of the constraint, and  is also the solution to

the minimization problem, . By applying variable substitution and the
triangle inequality

The use of spatial prior M allows the definition of a reduced problem in which the Euclidean
distance between the measured local field and the field generated by edge gradients needs to
be minimized

(4)

where I is an identity matrix. If zero spatial prior is provided (M = 0), then the reduced
problem is equivalent to the original ill-posed inverse problem in (1). This reduced problem
has a unique solution if and only if the column space of (I – M)∇ only intersects with
ker(WFD∇+) at ζ’ = 0. Thus, we define the smallest eigenvalue of WFD∇+ over the
restricted subspace CS((I – M)∇) as

(5)

The utility of these definitions will be clear in the following theorem proof. The condition
for r1 to be strictly positive is the same as the condition for the reduced problem to have a
unique solution, i.e., the column space of (I – M)∇ only intersects with ker(WFD∇+) at ζ’ =
0.

Theorem 1: If the reduced problem has a unique solution, then the solution to the original
inverse problem of calculating susceptibility from magnetic field has bounded error. The
norm of the error of the reconstructed susceptibility  is bounded by a linear function

of the input error, which consists of the input model error defined as  and the input
noise defined as ε. If additionally there is no input error, the solution is unique and accurate.

Proof: We decompose the gradient reconstruction error ζ’ into two parts: the error in the
nonedge gradients or Mζ’ and those in the edge gradients or (I – M)ζ’. Note that ∥ζ’∥2 = ∥(I

– M + M)ζ’∥2 ≤ ∥(I – M)ζ’∥2 + ∥Mζ’∥2, and that  according to Lemma 1.

By applying the triangle inequality, we have
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According to Lemma 1, we have ∥WFD∇+)ζ’∥2 ≤ 2ε. Additionally ∥WFD∇+)Mζ’∥2 is
bounded by R∥Mζ’∥2, where R is defined as

(6)

Evoking the definition of r1, r1∥(I – M)ζ’∥2 ≤ ∥WFD∇+)(I – M)ζ’∥2. If r1 is strictly positive,
the L2 norm of the gradient error in the edge gradients has the following bound:

This shows that the error on the reconstructed gradient  is linearly bounded by model error
and noise. For the reconstructed susceptibility distribution , if the constant term is omitted
because only relative susceptibility is of interest, then the error ζ is also bounded by ∥ζ∥2 ≤
∥ζ’∥2/r2, where r2 = min∇χ≠0,χ≠0∥∇χ∥2/∥χ∥2 > 0. When the central difference is used for

calculating the gradient, , which only depends
on image dimension Nx, Ny, Nz [15]. In the absence of input error, i.e., model error

 and noise ε = 0, then ∥ζ∥2 = 0, the solution is unique and accurate to the unknown
susceptibility.

III. Materials and Methods
The theory section states that the norm of the reconstruction error ∥ζ∥ is bounded by

(7)

To study the influence of image content and spatial prior information on the reconstruction
error, a series of numerical simulations were carried out. Specifically, the relationship
between and the error amplification bound, the effect of different regularization parameter
and the error propagation due to noise or model error in the data.

A. Numerical Simulation
1) Numerical Phantom Construction—A numerical phantom was constructed
consisting of cylinders, a sphere and a shell to mimic the geometry of common structures
found in the human brain (Fig. 1). The image dimension was Nx × Ny × Nz voxels. The
diameters of the cylinders, sphere and shell were chosen to be the smallest integer larger
than Nx/32, Nx/12 and Nx/6, respectively. Uniform susceptibility values of 0.01, 0.02, and
0.05 ppm were assigned to the sphere, the shell, and the oblique cylinder, respectively. The
susceptibility value in the horizontal cylinder linearly transitioned along its length from 0 to
0.04 ppm, and similarly from 0 to 0.03 ppm in the vertical cylinder. The range 0.01–0.05
ppm is representative of the range of susceptibilities found in the cortical gray matter and
deep brain nuclei such as caudate nuclei or putamen in a young population [14]. A phase
image was calculated using the forward equation based on the assumed susceptibility
distribution [7]–[9]. Additionally, a corresponding magnitude image was also constructed
using the same elements, with intensities 2, 1.3, and 1.6 for the lines, sphere, and shell,
respectively. Complex zero mean Gaussian noise with a standard deviation, depending on
the desired SNR of the lines, was added to the complex image formed by combining the
phase and magnitude.
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2) Influence of M on the Error Bound—It is desirable to have a small 1/r1 and a small
R, both of which depend on the number of zeros on the diagonal of M, which has been
denote by zM. Therefore, we plotted the values of R, r1, the noise amplification bound 2/
(r1r2), and the model error amplification bound 2/r2 · (R/r1 + 1) against zM. For a
predetermined zM, the weighting matrix M was determined as follows. The gradient of the
magnitude images was calculated using the central difference. In an iterative process, a
threshold was adjusted and applied to this gradient image by assigning zeroes to those
voxels whose gradient is larger than the selected threshold. The iteration was stopped when
the difference between number of zeroes thus obtained and the desired number of zeroes
(zM) was smaller than 5% of N = NxNyNz,the total number of voxels in the original image.
The resulting weighting matrix M was subsequently used for the calculation of R and r1.

The value of R and r1 in (5) and (6) can be found by calculating the largest and smallest
eigenvalues over a restricted subspace, but this is different from the canonical definition of
eigenvalue. Therefore, variable substitutions were performed to transform the problem. The
calculation of r1 is elaborated in the Appendix, and the same principle can be applied to
calculate R. To ensure a finite bound exists, r1 has to be strictly positive. This condition can
be satisfied as long as the column space of (I – M)∇ does not intersect with the null space of
WFD∇+ anywhere besides 0. In this numerical analysis of the error bound, W was set to the
identity matrix to simplify matters. Because the calculation of r1 and R requires forming N ×
N matrices explicitly in memory, Nx = Ny = Nz = 16 with a corresponding r2 = 0.66 was
used for this section.

3) Influence of λ and M on the Image Quality—In this study, we chose p = 2 in the
constrained minimization to demonstrate the propagation of the various error sources in the
reconstruction. The solution of the constrained minimization problem in (2) reduced to an
unconstrained Lagrangian problem with a properly chosen parameter λ

(8)

This inverse problem was then solved using a conjugate gradient method. A distribution χ =
0 was chosen as the initial solution, and the iteration stopped when the norm of the residual
was less than 1% of the initial residual norm or when the number of iterations exceeded 200.
The reconstruction was performed on a personal computer equipped with Intel core i7 and 8
GB of memory using MATLAB (MathWorks, Natick, MA). Reconstruction time was
recorded, and the reconstruction error was measured by the L2 norm of the difference
between the reconstructed susceptibility map χ* and the known susceptibility map χ0. The
discrepancy principle [16] was used to determine an optimal λ.

To investigate the effect of the edge weighting matrix M and regularization parameter λ on
the reconstruction quality (Nx = Ny = Nz = 64), we increased the number of zeroes in M or
zM linearly from 0.1 N to 1.3 N with a step size equal to 0.4 N, and varied λ from 10–2 to
102 with a constant 2.31 multiplier. For a given M and l, reconstruction error was plotted
against streaking artifact, which was calculated as the standard deviation of χ* in the
background region where χ0 = 0. This is essentially a 3-D extension of the 2-D
measurement of streaking artifact proposed in [3]. Different λs imposed different degrees of
penalization of the spurious streaking artifacts often seen in susceptibility reconstructions.
So streaking artifact, reconstruction error, and the norm of the residual of the data fidelity
term normalized by the expected noise level ε were plotted against λ. Imaging parameters
commonly used in practice—B0 = 3T and TE = 40 ms [14]—were used when simulating the
phase image.
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4) Influence of Noise and Model Error on the Reconstruction Error—To gauge
the influence of acquisition noise ε on the reconstruction error, numerical phantoms (Nx =
Ny = Nz = 64) were repeatedly generated with various SNR ranging from 5:1 to 95:1 with a
step size of 10, from which the susceptibility distribution was estimated using the optimal λ
determined from the previous experiment and a perfect gradient weighting matrix ∥M0∇χ0∥
= 0. B0 = 3T and TE = 40 ms were used when simulating the phase image. Reconstruction
error was then plotted against ε.

To isolate the effect of model error on the reconstruction error, a second sphere with
susceptibility equal to 0.04 ppm and radius equal to Nx/10 was added to χ0 on a slice close
to the existing structures such that it intersected with the original sphere. To simulate errors
in the available edge information, the edge of the second sphere was gradually included in
M from 0% (its edge was absent in M) to 100% (where the edge of the sphere was perfectly
known in M). In addition, the edge of this second sphere was intentionally positioned on the
wrong side of the existing sphere to further evaluate the influence of inaccurate edge
information on the reconstruction. The acquisition noise level was set to zero in this
simulation. B0 = 3T and TE = 40 ms were used when simulating the phase image, and the
optimal λ were used for the reconstruction. Reconstruction error was then plotted against
∥M∇χ0∥.

B. Phantom Validation
A 2% agarose gel phantom containing five balloons of gadolinium solution (Magnevist,
Berlex Labrotories, Wayne, NJ) was constructed. The highest concentration of the
gadolinium was 0.5% followed by two-fold dilutions, leading to susceptibility values of 0.8,
0.4, 0.2, 0.1, and 0.05 ppm [12], [13]. This phantom was scanned on a 3T scanner (HDx, GE
healthcare, Waukesha, WI) using a multi-echo gradient echo sequence with the following
parameters: 8 TEs evenly spaced between 5 and 40 ms; TR = 70 ms; acquisition matrix =
130 × 130 × 86; voxel size = 1 × 1 × 1 mm3; flip angle = 15°; bandwidth = 480 Hz/pixel,
scan time = 13 min.

The field map was estimated from the phase images across all the echoes on a voxel-by-
voxel basis by performing a temporal phase unwrapping followed by a weighted linear least
square fitting [11]. Frequency aliasing on the field map was resolved using a magnitude
image guided spatial plane unwrapping algorithm. The background field caused by the
phantom–air interface was removed through a projection onto dipole fields method [17] to
obtain the local field map for inversion. Three susceptibility maps were generated, each
using a different value for the parameter zM : 3N (zero edge weighting), 0 (uniform edge
weighting) and the optimal zM determined from the numerical simulation. The
regularization parameter λ used in each setting was determined iteratively using the
discrepancy principle [16].

C. Human Brain Imaging
To illustrate that QSM is applicable to human brain imaging, we performed QSM on a
healthy volunteer scanned on the same scanner using the same sequence as the phantom
scan. This study was approved by our institutional review board. Imaging parameters were
as follows: 11 TEs evenly spaced between 3 to 33 ms; TR = 37 ms; acquisition matrix = 240
× 240 × 150; voxel size = 1 × 1 × 1 mm3; flip angle = 15°; bandwidth = 520 Hz/pixel; a
SENSE [18] based parallel imaging method, array spatial sensitivity encoding technique
(ASSET), was enabled with a reduction factor of 2, resulting in a total scan time = 11min.
The susceptibility map was reconstructed using the same method as described in the
phantom section using zM = 3N, zM = 0 as well as the optimal zM.
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IV. Results
Fig. 2(a) shows that r1 monotonically decreases from 0.04 to 0 as zM (or the number of edge
gradients) increases. It became zero at 1.53 N voxels. Fig. 2(b) shows that R is also
monotonically decreasing from 1.8 to 1.0 over the same range but at a slower rate. Thus, the
noise amplification bound, which is a function of 1/r1, monotonically increased from 80 to
4596 when zM increased from 0.04 to 1.53. Meanwhile, the model error amplification
bound, which is dominated by the diminishing r1, also increased from 143 to 5878.

In Fig. 3, the global minimum was found at zM = 0.9N and λ = 3.51. For different M or zM,
the local minima of reconstruction error consistently occurred at around λ ≈ 5. It was found
that streaking artifact decreased with a decreasing λ, and that there was an optimal λ that
led to the minimum reconstruction error. Additionally, for this value of λ, the residual of the
solution matched the expected noise level. The reconstruction time was on average 50 s for
each zM and λ.

Fig. 4(a)–(f) shows the susceptibility map reconstruction for two simulations with two
different noise levels. When acquisition noise is the only source of error, the L2 norm of the
reconstruction error was linearly correlated with acquisition noise ε(r2 = 0.997) and had a
noise amplification factor 1.27 [slope = 1.27 in Fig. 3(e)], indicating the reconstruction error
is on the same order of the input noise.

Fig. 5(a)–(c) and (e)–(g) demonstrated that the streaking artifact gradually diminished as the
edge information of the susceptibility source became more and more complete. In the case
where the edge information is inaccurate, streaking artifact remained visible on the
reconstruction [Fig. 5(d) and (h)]. In general, in the ideal case of zero noise ε = 0,

reconstruction error was linearly correlated with model error  and had a
model error amplification factor 0.86 [slope = 0.86 in Fig. 5(k)], indicating the
reconstruction error is on the same order of the model error.

In the phantom result, the solution without edge weighting was severely corrupted by
streaking artifact [Fig. 6(c)]. The solution with uniform edge weighting demonstrated
blurring and residual streaking artifacts [Fig. 6(d)]. The solution with appropriate edge
weighting showed suppressed streaking and well-delineated boundaries between gadolinium
balloons and the background agarose gel [Fig. 6(e)]. The estimated susceptibility also
showed the highest accuracy when compared to the prepared susceptibility. The
reconstruction time was approximately 90 s for each zM and λ.

In the human brain imaging, we observed similar patterns as in the phantom experiment.
The solution without edge weighting [Fig. 7(d)] was severely corrupted by streaking artifact,
while the solution with uniform edge weighting [Fig. 7(e)] demonstrated blurring and
residual streaking artifacts. With appropriate edge weighting, the solution showed
suppressed streaking and well-discernable deep brain nuclei such as the globus pallidus
[arrow in Fig. 7(f)]. The reconstruction time was approximately 120 s for each zM and λ.

V. Discussion
In this study, an analysis was performed on the error of the susceptibility map estimated by
the MEDI algorithm. It was found that this error was bounded by a linear function of both
the acquisition noise and model error. This error propagation was confirmed in a simplified
but representative numerical example. Specifically, in the absence of these sources of errors,
the susceptibility solution is unique and accurate. The error analysis for various gradient
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weighting matrices M and regularization parameters λ may help to select the parameters for
a robust MEDI reconstruction.

In the image reconstruction stage, the edge-weighting matrix M determines the type of
regularization. It allows a trade-off between an unregularized solution and an over-

regularized solution. When M is completely zero (zM = 3N), the model error  is
eliminated but the reconstruction error in this scenario is mathematically unbounded due to
the lack of regularization and division by zero incurred at the magic angle. Severe streaking
artifacts are usually seen in the unregularized solution [Fig.6(c) and Fig.7(d)]. When M is an
identity matrix (zM = 0), (8) is the conventional Tikhonov regularization applied on the
gradient, which promotes global smoothness. With this regularization, streaking artifact is
suppressed but at the expense of underestimating the true susceptibility contrast [Fig. 6(d)
and (f)] because the algorithm cannot differentiate between these two types of signal
variation. As a result, both residual streaking artifact and image smoothing may be observed
simultaneously in the solution [Fig. 5(h), Fig. 6(d), and Fig. 7(e)]. However, when accurate
edge information is provided on M, streaking artifact can be eliminated while preserving the
susceptibility contrast [Fig. 5(g) and Fig. 6(e)]. The zeroes in M allow susceptibility changes
at the edges without incurring any penalty to preserve the contrast. However, edge
information does not necessarily create corresponding edges in the susceptibility distribution
if the local field δφ indicates that no such susceptibility variations are present. In fact, the
edge information provides a more realistic model for explaining observed data compared to
Tikhonov regularization. Therefore, in our experiments, insufficient edge information
resulted in residual streaking artifact [Fig. 5(b) and (f)], while a superfluous edge did not
lead to artificial susceptibility contrast [Fig. 5(d) and (h)].

According to (7), to obtain a small bound on the total reconstruction error, it is desirable to

have both a small model error  as well as a small 1/r1 in the amplification bound, both
of which depend on the number of edge gradients zM. Thus, zM provides a trade-off between
model error and the amplification bound. Decreasing zM will decrease the rank of (I – M)
and reduce the range of (I – M)∇χ, where ∥(WFD∇+)(I – M)∇χ∥/∥(I – M)∇χ∥ is minimized
for calculating r1. Accordingly, decreasing zM will lead to a non-increasing amplification
bound as demonstrated in Fig. 2(c) and (d), and zM = 0 (uniform edge weighting) seems to
be preferable. However, we empirically [Fig. 3(a) and Figs. 6 and 7] found that the final
susceptibility error is less influenced by the error amplification bound 1/r1 than the model

error . For example in Fig. 6(c) and Fig. 7(d), although theoretically the error
amplification was unbounded, which allows arbitrarily large error in the final reconstruction,
the worst case (infinitely large error) was not reached in practice. Therefore, a relatively
large zM ≈ N proved to be beneficial because it led to the global optimum in our simulation
[Fig. 3(a)], and also kept r1 greater than zero to ensure a bounded error amplification. This
choice zM ≈ N is applicable to reconstructions of phantom (Fig. 6) and human data (Fig. 7),
as well as demonstrated in another study [14]. For a typical 200 × 200 × 50 3-D human brain
image with N = 2 × 106 voxels, the number of edge gradients (the surface area of organ or
lesion) is on the order of N2/3(~ 1.6 × 105), which is much smaller than N. Thus, the choice
zM = N may be sufficient to catch all tissue boundaries such that an adequate edge
characterization and minimal model error becomes feasible. For this reason, a multiple echo
MRI sequence is preferred for the data acquisition to allow a better edge detection: the
magnitude contrast varies as the TE increases, decreasing the chances of missing edges
when heterogeneous susceptibilities combined with accidental combinations of relaxation
times T1, T2 and imaging parameters TR resulting in uniform signal.

In the theoretical derivation of the error bound, no assumption was made on the noise
distribution, so the provided amplification factor 1/r1 indicates the worst-case error
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amplification. When additive Gaussian noise is present on the complex image from a MRI
acquisition and the image reflects physical objects, the reconstruction error increased almost
linearly with the noise level in the phase image (Fig. 4) and the model error (Fig. 5). The
linear relationship between reconstruction error and model acquisition noise suggests that a
noise reduction in the MRI data will directly translate to a noise reduction in the
reconstruction. Higher field strength and a longer echo time also contributes to the
dephasing effect that provides a better contrast on the measured phase image. Although a
single long TE often leads to signal loss due to T2* effect, which translates to higher phase
noise, a multi-echo sampling strategy including early echoes can be used to circumvent this
limitation [11].

In the theory section where the error bound was derived, we mainly used the triangle
inequality for the derivation, which is a general property for norms. Therefore, the constraint
in (2) may be formulated with an L1 norm instead, and the same error bound derivation
would still hold. Results in human brain imaging suggested that choosing p = 1 in the
constraint is more effective than p = 2 in suppressing streaking artifacts [14], [19]. This may
be explained by the theory that weighted L1 norm minimization tends to sparsify the edges
in the susceptibility map that do not correspond to edges in the magnitude image [20]. A
systematic analysis is part of an ongoing research and is beyond the scope of this
manuscript.

The optimal choice of the regularization parameter λ is an open question. When the
regularization term is formulated in L 2 norm, the choice of λ offers a trade-off between
image piece-wise smoothness and data fidelity. We found that the discrepancy principle
provides a reliable guideline for choosing λ, i.e., the residual of the data fidelity term
produced by the final solution should match the expected noise level estimated from the MR
image phase noise [Fig. 3(d)]. In practice, the choice of λ can be determined iteratively as
implemented in a previous study [13]. Additionally, once the imaging acquisition protocol
for a specific organ is established, it is our experience that the same λ can be applied across
subjects due to the similarity in imaging content and noise level as shown in [14].

In this manuscript, we focused only on the error propagation in the dipole inversion stage.
We acknowledge that the susceptibility measured using MRI is subject to various other error
sources. Especially, image distortion, partial volume effect and finite resolution of the image
may cause erroneous edge definition. In this study, experimental data were acquired with a
multi-echo spoiled gradient echo sequence which is not susceptible to the potentially
substantial geometric distortions seen with echo planar imaging. Partial volume effects and
the point spread function indeed influenced the data, which can be seen on Fig. 6(a) and (b),
where the edges of the balloons were generally wider than just 1 voxel. A wider edge
introduced more zeros in the edge weighting M, reducing the model error and increasing the
upper bound of model error amplification. However, it does not prevent the incorporation of
the edge information in the MEDI algorithm. Fat signal is another challenge for imaging
organs such as liver or breast. In this situation, water–fat separation techniques such as
iterative decomposition of water and fat with echo asymmetry and least-squares estimation
(IDEAL) [21] can be incorporated in the postprocessing to estimate the field map. From our
experience and from the literature [4], [22], fat signal is a much smaller issue in the brain,
which is a large area of focus for susceptibility mapping.

Image reconstruction constrained by spatial prior information was previously used in
positron emission tomography (PET), electroencephalography (EEG), or
magnetoencephalography (MEG) [23]–[25], where anatomical information from an
additional high resolution MRI and CT was incorporated to localize signals. However, the
source of structural information in MRI or CT is not directly related to the source of the
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detected signal in PET, EEG, or MEG. Consequently, MRI or CT structural constraints may
have substantial model errors as investigated in Fig. 5. In the MEDI method, both
morphology and field information are more fundamentally linked as they have the same
physical origin, which includes the tissue susceptibility. They both naturally coexist as
magnitude and phase in the complex MRI data, eliminating any spatial registration issue.
This structural agreement between magnitude image and tissue susceptibility distribution
provides a faithful spatial prior and accuracy for MEDI reconstructed susceptibility map.

VI. Conclusion
The error in a susceptibility reconstruction method using MEDI has two sources: data noise
and error in the spatial prior. We demonstrated that 1) MEDI approach provides a unique
and accurate solution under ideal conditions; 2) the error of the MEDI reconstructed
susceptibility in general is bounded linearly by these two error sources; 3) when additive
Gaussian noise is present on the complex image and the image reflects physical objects, the
reconstruction error is on the same order of magnitude of the noise and the model error.
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Appendix
The definition of r1 is

By variable substitution

we have

(A1)

where A is N × 3N matrix, B is a 3N × N matrix and can be factorized using singular value
decomposition B = UΣVH with U being a 3N × 3N unitary matrix, Σ being a 3N ×
Ndiagonal matrix with nonnegative real diagonal number listed in descending order, and V
being a N × N unitary matrix. If the rank of B is NB, then the matrix ΣNB formed by the first
NB columns of Σ has full rank.

We construct a matrix BNB = UΣN B, then for any χ ∈ RN, we can find a w ∈ RNB by
taking the first NB elements of VHχ, such that B N Bw = Bχ; for any w ∈ RN

B, there is a χ
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= V[w0]T ∈ RN, such that Bχ = B N Bw. Therefore, the column space of  is identical

to that of B H B, and  has full rank. With further variable substitution

(A2)

The ratio expressed in (A2) is in form of the square root of a generalized Rayleigh quotient
[26], whose minimum is the square root of the minimum generalized eigenvalue of

(AB N B)H AB N B and . This can be calculated efficiently using generalized Schur
decomposition [27].
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Fig. 1.
Numerical simulation phantom. Shown here are its (a) susceptibility distribution, (b) the
corresponding phase, and (c) magnitude with SNR = 50 : 1.
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Fig. 2.
Relationship between zeros in M(zM) and the error bound in the reconstruction. a) r1
decreases with increasing zM. b) R gradually decreases with increasing zM. c) Noise
amplification bound increases with zM. d) Model error amplification bound increases with
zM.
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Fig. 3.
The influence of λ and M on streaking artifact and reconstruction error. a) For a given
gradient weighting matrix M, the streaking artifact decreased as λ decreased while the
reconstruction error showed a “V” shape pattern. For different zM, the local minima of
reconstruction error consistently occurred at around λ ≈ 5. b) The amount of streaking
artifact monotonically decreased as λ decreased. c) An optimal λ was found at λ = 3.51
(circle) where the reconstruction error reached a minimum. d) The optimal λ also led to a
solution whose residual matched the expected noise level.
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Fig. 4.
Relationship between noise and reconstruction error. When SNR = 15 : 1 and 95:1, the
corresponding magnitude image (a and d), phase image (b and e), and reconstructed QSM (c
and f) are shown. g) A linear relationship was observed between acquisition noise and
reconstruction error.

Liu et al. Page 17

IEEE Trans Med Imaging. Author manuscript; available in PMC 2013 April 02.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 5.
Relationship between model error and reconstruction error. As the edge information of a
sphere emerges from 0% (a), 50% (b) to 100% (c) in the gradient weighting M, the streaking
artifact from the same sphere on the reconstructed QSM gradually diminishes (e–g).
Erroneous edge information (d) does not necessarily lead to artificial susceptibility edges
(h). i) A linear relationship was observed between model error and reconstruction error.
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Fig. 6.
Phantom experiment. Magnitude image is shown in a). The edge weighting derived from the
predetermined optimal zM = 0.9N is shown in (b) with gradients along x, y, z directions
summed together for visualization. QSMs reconstructed using zero edge weighting (zM =
3N) (c), uniform edge weighting (zM = 0) (d), and magnitude derived edge weighting (zM =
0.9N) (e) are shown. The solution (e) with magnitude-derived edge weighting (b) also led to
the best quantitative accuracy (f).
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Fig. 7.
Human brain QSM. Magnitude image from TE = 27 ms and the local field map are shown in
a) and b). The edge weighting derived from the predetermined optimal zM = 0.9N is shown
in (c) with gradients along x, y, z directions summed together for visualization. QSMs
reconstructed using zero edge weighting (zM = 3N) (d), uniform edge weighting (zM = 0)
(e), and magnitude derived edge weighting (zM = 0.9N) (f) are shown. Streaking artifacts
seen in (d) and (e) are well-suppressed in (f). The arrow in f indicates the globus pallidus.
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TABLE I

Notations

Symbol Meaning

v a column vector representation of a NxNyNz scalar field elements of v are denoted as voxels

∥ v ∥ p Lp norm of v define as (∑i=1
n ∣ vi ∣

p)1∕p
. p=2 if p is not specified

v’ a column vector representation of the gradient field of v containing 3NxNyNz elements elements of v’ are denoted as gradients

A Matrix

AH Hermitian transpose of A

A + Moore-Penrose pseudo-inverse of A: A+ =(AH A)-1 AH

CS(A) the column space of matrix A defined as the space spanned by the column vectors of A

ker(A) The null space of matrix A defined as the space spanned by all vectors x fulfilling Ax=0

χ General susceptibility distribution

χ 0 True susceptibility distribution

χ* Estimated susceptibility distribution

δ φ Local field

W Data fidelity weighting matrix

FD Matrix representation of dipole convolution

M Edge weighting matrix

I Identity matrix

ε Expected noise level

zM Number of diagonal zeros in M

λ Regularization parameter
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