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Abstract
During neurosurgery, nonrigid brain deformation prevents preoperatively-acquired images from
accurately depicting the intraoperative brain. Stereo vision systems can be used to track
intraoperative cortical surface deformation and update preoperative brain images in conjunction
with a biomechanical model. However, these stereo systems are often plagued with calibration
error, which can corrupt the deformation estimation. In order to decouple the effects of camera
calibration from the surface deformation estimation, a framework that can solve for disparate and
often competing variables is needed. Game theory, which was developed to handle decision
making in this type of competitive environment, has been applied to various fields from
economics to biology. In this paper, game theory is applied to cortical surface tracking during
neocortical epilepsy surgery and used to infer information about the physical processes of brain
surface deformation and image acquisition. The method is successfully applied to eight in vivo
cases, resulting in an 81% decrease in mean surface displacement error. This includes a case in
which some of the initial camera calibration parameters had errors of 70%. Additionally, the
advantages of using a game theoretic approach in neocortical epilepsy surgery are clearly
demonstrated in its robustness to initial conditions.
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I. Introduction
PRIOR to brain surgery, neurosurgeons may acquire images of different modalities to
delineate pathologic regions requiring resection. One of the most challenging aspects during
neurosurgery is the localization of these pathologic targets within the brain anatomy. The
challenge is exacerbated when the pathologic structures, which are often visually
indistinguishable from healthy tissue, lie within functionally eloquent areas [64]. Because of
this, neurosurgeons have sought methods that allow visualization of underlying brain tissue
or relay preoperative image information to the operating field [6], [31], [41], [48], [51].
Surgical navigation systems (SNS) aid target localization by providing neurosurgeons with
preoperative brain images registered to the patient in the operating room (OR). Though these
registrations are often performed with submillimeter accuracy [27], the alignment is rigid
and therefore, movement of the soft tissue (brain shift) during surgery can cause a
discrepancy between the displayed preoperative images and the current state of the brain,
rendering the SNS unreliable from that point forward.

In addition to commercially-available SNS, some institutions have developed methods based
on augmented reality to fuse intraoperative scenes with preoperatively-acquired images [14],
[27], [45]. Such systems can match preoperative information with the operating field, as
reconstructed from stereo images or captured by video. Even with these research systems,
however, brain shift can prevent accurate visualization once the dura is opened [45].

Due to the complexity of the factors causing brain shift such as gravity, fluid loss and
swelling [13], [23], [46], it is nearly impossible to predict the exact pattern of deformation
preoperatively. Therefore, much research in this field has focused on acquiring
intraoperative information to aid surgical guidance. Intraoperative volumetric images
provide visualization of deformation throughout the entire brain; however, these methods
suffer from potential drawbacks. For example, few groups consider using intraoperative
computed tomography (iCT) for volumetric imaging, most likely due to the expense of the
equipment, radiation exposure, necessary lead protection and poor soft tissue contrast [23],
[28], [40], [57].

Since radiation exposure is not a problem with intraoperative ultrasound (iUS), an
inexpensive modality in which volumetric images of the intraoperative brain are obtained by
positioning a transducer on the exposed brain surface, some groups have focused on
developing methods to register iUS images with preoperative magnetic resonance images
(MRIs) [5], [7], [25], [34]. However, due to the different image characteristics (intensities,
noise, contrast, field of view, dimensionality, etc.) of ultrasound and MRI, this type of
intermodality registration can be challenging [46]. Because of this, Reinertsen et al. [46]
avoided the intermodality registration and instead matched blood vessels from preoperative
MR angiograms or gadolinium-enhanced MRIs with intraoperative blood vessels found by
Doppler US. This method improved the registration implementation, although it required an
extra (and possibly contrast-enhanced) set of images.

While the use of iUS is faster and less expensive, intraoperative magnetic resonance
imaging (iMRI) has the added advantages of avoiding contact with the brain surface,
producing high contrast images with better clarity and having imaging parameters that can
be optimized depending on the image target [28], [40]. For this reason, information derived
from iMRI is sometimes preferred [24], [28], [64]. Intraoperative MR implementation is
either achieved using low-field MR scanners designed for the OR, which may result in
suboptimal resolution [46], or adapting standard high field MRIs for OR use [42]. In either
case, the cost of iMRI may be prohibitive for many hospitals. Additionally, each iMRI
acquisition disrupts the surgery, lengthening total surgical time. This is not ideal because the
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longer the patient is kept under anesthesia with the brain exposed, the higher the incidence
of surgical complications, possibly from reactions to medications, bleeding or infection.

Since each volumetric imaging modality is either suboptimal or should be used sparingly,
research has been performed on noninvasively tracking intraoperative cortical surface
movement. If the cortical surface deformation is detected, this information can be used in
conjunction with a biomechanical model to update preoperative brain images and reflect the
intraoperative brain. Tracking of the cortical surface may not require volumetric imaging
and can be accomplished with simple equipment such as a laser range scanner (LRS) or
digital cameras. In addition, if intraoperative volumetric imaging is available, surface
tracking can aid in the decision to perform volumetric imaging and can be used to monitor
deformation between lengthier volumetric image acquisitions.

LRS measurements can be used directly to warp a preoperative image or indirectly as part of
a deformation model [2], [10], [21], [40], [49], [50], [51]. The literature on LRS indicates
that it has the potential to provide an alternative to the costly and restrictive modality of
iMRI. It also has the advantages of not requiring brain surface contact, as with iUS, or the
dose exposure of iCT. And, if LRS is used in conjunction with a digital camera, even more
registration options are available [50]. However, the modality suffers from some resolution
issues. It may be necessary to better calibrate the range data to achieve submillimeter
accuracy. And, the subject of outliers, which tend to occur on the periphery of the images
must be addressed [49].

Due to their portability and low cost, stereo camera imaging systems offer a viable option
for intraoperative cortical surface detection [52], [53], [54], [56], [59]. The research on
stereo vision, like that of LRS, indicates a promising non-invasive method of surface
detection, which may also be subject to resolution errors. To characterize these errors, Sun et
al. [57], [58] tested the accuracy of a rigid registration based on stereo-reconstructed
features. Using a previously-constructed phantom [59], after a rigid transformation, the
position of features extracted from CT images compared to those reconstructed from stereo
imaging differed by up to 2.96 mm. These discrepancies (which often stem from
inaccuracies in the stereo camera calibration) propagated through the nonrigid surface
detection as well.

To obtain precise quantitative information from any imaging system, some type of
calibration is usually necessary. In many real world situations, however, accurate camera
calibrations are not possible [38]. This is especially true in the operating room, where
extreme time and space constraints limit the calibration procedure possibilities. The
resulting inaccurate camera calibrations compound the difficulty of image-derived
deformation estimation. Consider Figure 1, which shows a single image of the intraoperative
cortical surface. The imaged sulci are shown highlighted in black. Projected onto the images
in green, by means of the camera calibration parameters (see Section II-D), are sulci
extracted from the 3D intraoperative brain surface. To generate the left side of Figure 1, the
3D preoperative sulci were deformed to their correct intraoperative locations and then
projected to image space, using inaccurate calibration parameters. The mismatch between
these projected sulci and the outlined sulci is thus purely due to the effects of the camera
calibration parameters. On the right side of Figure 1, the calibration parameters are correct,
but the 3D preoperative (rather than intraoperative) sulci locations were projected to the
image. This figure shows that the effects of calibration inaccuracies are not easily
distinguishable from surface deformation. Therefore, in order to track a deforming cortical
surface, a framework with the ability to solve for competing variables (surface displacement
field and camera calibration parameters) is needed.
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Game theory is the study of multiperson decision making [3]. It has historically been of
great interest in fields such as business and economics in which decisions are made in a
competitive environment [39]; however, it has been applied to disciplines ranging from
philosophy to biology. Game theory has also made forays into the field of image analysis
[9], [11], though, to our knowledge, its use has been restricted to image segmentation. In this
work, a game theoretic framework is used to determine cortical surface displacement during
neocortical epilepsy surgeries, based on intraoperative stereo image information.

Aside from the application of game theory to image registration, another considerable
distinction between this and previous works is that the variables being updated (surface
displacement/camera calibration parameters) are not explicitly contained in the images. That
is, the images (preoperative MRI and intraoperative stereo camera images) are used to infer
information about two physical processes (brain deformation/image acquisition), not image
content. Thus, the contributions of this paper not only include extending the use of game
theory to image registration, but also, the novel way in which game theory is applied to
estimate deformation.

II. Method
The deformation estimation problem is modeled in a game theoretic formulation, in which
the players are computational modules in a noncooperative game. In noncooperative games,
collusion between players is prevented and the players pursue their own interests, which are
partly conflicting with the others’ [3]. Though the players of noncooperative games have
competing objectives, the game may still reach an equilibrium state. In game theory, this
state is referred to as the Nash equilibrium and it occurs when there is no incentive for any
of the players to deviate from their current positions [11].

In this formulation of intraoperative neurosurgical guidance, the players are 1) Udense, the
dense displacement field applied to the preoperative cortical surface, representing
intraoperative deformation, and 2) A = [A0, A1], the camera calibration parameters from two
views of the camera, which are used to transform points from the 3D intraoperative field
into stereo image space (see Section II-D). Since changing the values of the camera
calibration parameters can confound the search for the displacement field (see Figure 1), the
most natural formulation of the intraoperative surface tracking problem is as a
noncooperative game.

The game will terminate when the Nash equilibrium is reached, as this is the most rational

compromise for each player. In this case, a particular instance of Udense, , within the
set of all possible dense displacement fields, Udense*, and a particular instance of A, Aj,
within the set of all possible calibration parameters, A*, is said to be at Nash equilibrium if
[11]:

(1)

where C1, C2 are the cost functions corresponding to the decisions (values) for the dense
displacement field and camera calibration parameters, respectively. These functions are
described in more detail below.

It has been shown [11] that if the cost functions are of the form:
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(2)

and the constants, α and β, are chosen so that equation (3) is less than one:

(3)

then the Nash equilibrium exists. (The subscript for Udense was dropped in equation (3) for
simplicity.)

Because equation (3) is an inequality, a range of values for α and β will satisfy this
constraint. As long as the values of these constants are small, the constraints should be met,
allowing the algorithm to converge. Though the range of acceptable values has been
previously formally derived, it has also been shown that these values can be chosen
empirically [11]. Preliminary tests revealed that when the algorithm converged, the results
were not strongly sensitive to variations in α and β. Therefore, in this work, small values of
α and β, which allowed successful convergence of the algorithm, were readily chosen
empirically.

A Bayesian Approach to Surface Tracking
Cost functions for Udense and A were designed using Bayesian analysis based on posterior
probabilities given the information extracted from intraoperative stereo camera images and a
preoperative MRI. (See Figure 2.)

(4)

where I = [I0, I1], the stereo camera images and K = [K0, K1], the locations of the sulci in
those images. Since the sulci can be detected in both the preoperative MRI and the stereo
images, they are an important component of this analysis. At this point, the imaged sulci are
manually extracted using an in-house graphical user interface and stored as 2D curves. This
was easily implemented since the algorithm was tested off-line, post surgery. In the future,
this extraction will be performed automatically. (See note below.) SU is the undeformed
preoperative brain surface, extracted from the MRI, and C are the sulci on surface SU. The
3D extraction of sulci is currently performed semiautomatically [18]. However, accurate
sulcal segmentation has been accomplished by many groups using, for example, brain
surface geometry, atlas-matching, or machine learning/neural networks [26], [35], [47], [60],
[63], [66].

In words, equation (4) states that the model will determine the most likely surface
displacement (from C1) and camera calibration parameters (from C2) given all the
information obtainable from the preoperative MRI and the intraoperative stereo camera
images.
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A note on automatic sulci extraction from stereo images—Although an expert
user can outline sulci of interest from a digital image in less than one minute, the application
of any surface tracking algorithm is simpler when automated. Though automated sulci
extraction does not fall within the scope of this work, there are several possibilities for
decreasing the user input required for this step. If initial brain surface images are acquired at
the beginning of surgery, the neurosurgeon (or other expert user) could easily outline the
sulci of interest on these images using a graphical user interface. This would only have to be
performed on the initial set of images. Segmentations of subsequent sulci could be
performed automatically by nonlinearly warping the first set of images to the future
corresponding stereo images, and thus determining the deformation of the sulci. The
nonlinear warping of cortical surface images using an adaptive bases algorithm was
extensively tested and has been successfully implemented by Sinha et al. [21], [49]. Besides
nonlinear warping, sulci can also be tracked between images sets automatically using
sophisticated contour/object tracking techniques from computer vision [12], [15], [16], [62].
In this case, if the initial camera calibration is accurate enough (as in the top row of Figure
6) the process can be completely automated, as the initial projections of the intraoperative
sulci to the stereo image space can serve as shape priors for the contour matching. In order
to automate this process without relying on the initial calibration, curve or edge-finding
techniques can be used to extract the sulci. Such techniques are continually being developed
and improved [4], [30], [33].

In a game theoretic framework, the objective is to minimize each player’s cost function,
which is the same as maximizing the negative of the cost function. Therefore, the
expressions developed in this section can be written as maximizations, in which each
objective function is maximized relative to one player while keeping the other fixed at each
iteration.

Maximizing the expressions in equation (4) is equivalent to maximizing the log of the
posterior probabilities:

(5)

(6)

where Ûdense and Â are the updated values of the variables obtained at each iteration. For the
first iteration, the value of Ûdense is based on the distance between C and the 3D
reconstruction of K (using the function Φ, defined in Appendix B-6) and the value of Â is
based on the initial camera calibration (Section II-D).

A. Displacement Field Optimization: Applying Bayes’ Rule to equation (5) yields:
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(7)

The Displacement Term may be rewritten as:

(8)

Assuming the independence of the sulci from the surface and images, equation (8) can be
further developed.

(9)

Combining equations (7)-(9) yields:

(10)

The terms of equation (10) are developed in Appendix A.

B. Camera Calibration Calculation: The expansion of the camera calibration term can
proceed in the same fashion as the dense displacement field. Applying Bayes’ Rule to
equation (6) yields
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(11)

The terms of equation (11) are developed in Appendix B.

C. Model Reformulation: Using the Bayesian analysis outlined in Appendices A and B
(equations 22 and 26), the model for determining cortical surface displacement and camera
calibration can be expressed in same form as equation (2):

(12)

where TU is a prior on the deformation field, TF and TI match the features and intensities,
respectively, of the deformed cortical surface to the intraoperative stereo images, TA is a
prior on the camera calibration and TC matches the stereo-reconstructed sulci to the
deformed cortical sulci.

D. Camera Calibration Parameters: For simplicity, the camera calibration parameters
were initially represented as matrices [17], [20]. However, since a simple projection matrix
cannot entirely capture the image acquisition process, these matrices are not physically
meaningful. Even the rotation component of the transformation matrix is an approximation
[61]. While this may be suitable for many stereo applications, tracking intraoperative brain
shift requires extremely high accuracy. To account for this, a new model was developed
which includes parameters for rotation, translation, focal length, principal point, lens
distortion and skew, based on the internal camera model by Heikkilä [29]. Using these
calibration parameters, the projection of any 3D point to an image can easily be calculated
with standard stereo vision methods [29] or even from commercial software packages [8].
This projection process, adapted from [8], is outlined below.

First, a 3D point in the camera reference frame, (Xc, Yc, Zc), is projected to an image using a
pinhole camera projection model, where xn(1) = Xc/Zc and xn(2) = Yc/Zc. In this case, xn is
the normalized pinhole projection. Next, point coordinates which account for lens distortion
are calculated, xd. This formulation models lens distortion using sixth order polynomial
terms as a function of the distance from the optical axis. These coordinates, xd, are equal to
(1 + kc(1)r2 + kc(2)r4 + kc(5)r6)xn + dx, where r2 = xn(1)2 + xn(2)2 and kc is the 5×1 vector
of image distortion coefficients. The tangential distortion vector, dx, is equal to
[2kc(3)xn(1)xn(2) + kc(4)(r2 + 2xn(1)2)kc(3)(r + 2xn(2)2) + 2kc(4)xn(1)xn(2)]T. Once the
distortion is applied, the final pixel coordinates can be found by setting [x y 1]T equal to
Kcamera * [xd(1) xd(2) 1]T, where Kcamera is referred to as the camera matrix and is defined
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as [fx αcfx ox; 0 fy oy; 0 0 1]. In this matrix, (fx, fy) is the focal length in pixels, (ox, oy) is
the principal point and αc is the skew coefficient.

Once determined, calibration parameters are used to transform points from registered patient
space (preoperative MRI space - see Section II-E) to stereo image space. These parameters
will more reliably perform the projections and backprojections required for the game
theoretic algorithm than a simplified projection matrix. (Backprojection is a method of
assigning intensity values from an image to a surface. See Appendix A.) It is possible to
calculate the expanded model parameters directly from images of a calibration pattern in
different poses [8]. This could be accomplished in the OR, for example, by locating the
corners of the calibration object in each position using a tracking tool. Unfortunately, this
unwieldy and time consuming calibration process is often not feasible in the OR due to time
constraints. There is usually only enough time to calibrate the system using one tracked pose
of the calibration pattern.

Since the calibration parameters will be updated at every iteration (equation (6)), though,
only a rough estimate of these parameters is needed to initialize the algorithm. Most of these
parameter estimates can be extracted from the projection matrices obtained from a standard
calibration procedure using one tracked pose [61]. (See Section II-E for the calibration
procedure.) Any parameters not directly estimated from those projection matrices can be
initialized to zero and determined by the algorithm. In this way, using a game theoretic
approach provides all of the advantages of an expanded calibration model without the
necessity of an expanded calibration technique.

E. OR Protocol: Two transformations are needed in order to warp the preoperative brain
image to the deformed intraoperative brain. The first is a rigid transformation between the
preoperative MRI, acquired on a Siemens 1.5 Tesla Sonata system (Siemens AG, Munich,
Germany), and the patient in the OR. The second is the nonrigid transformation calculated
using the game theoretic algorithm.

1) Rigid Registration: This transformation is calculated immediately before surgery begins,
as part of the standard procedure required for SNS use. It is performed by locating facial
landmarks on the patient, either manually or using a laser striping technique. These
landmarks are then matched to the patient’s preoperative images and the rigid
transformation relating the two point sets is calculated. In this work, a BrainLAB Surgical
Navigation Station (BrainLAB AG, Feldkirchen, Germany) with BrainLAB’s VectorVision
(VV) navigation software was used for rigid patient registration [43].

Once the rigid registration is performed, markers can be placed on surgical tools, allowing
them to be detected by BrainLAB infrared cameras and displayed on a monitor relative to
the patient’s preoperative MRI. In the same way, a pointer tool can be used to touch any
location visible to the infrared cameras and the 3D coordinates of the pointer tip will be
transformed into the space of the preoperative image (using the calculated rigid
transformation matrix) and recorded. Recorded 3D locations can be exported to any
computer by connecting to the BrainLAB SNS through the VV Link interface [43] using the
Yale BioImage Suite software package [44].

2) Nonrigid Registration: This is the transformation computed by the game theoretic
algorithm, requiring the following intraoperative information: the brain surface intensities
from two camera positions (stereo camera images), the locations of fiducial markers in each
camera position, and the corresponding 3D locations of the imaged fiducial markers. (See
Figure 2.) Obtaining this information was the only change to the surgical work flow
normally implemented for these surgeries.
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Fiducial markers are used to calculate the initial camera calibration parameters and to guide
the calibration optimization routine. Any calibration target (sterile object with discrete
identifiable features and known dimensions) can be used for this procedure; however, in this
work, a sterile grid of electrodes was used. Since the electrodes are numbered, they are
easily found by the neurosurgeon using the BrainLAB pointer tool and distinguished in the
stereo camera images. These types of electrodes may be used for epilepsy monitoring and
are sometimes placed around suspected epileptogenic regions to record the origin and spread
of electrical signals associated with the patient’s seizures. However, most of the electrode
grids used in this work were unrelated to the surgery and specifically used for the calibration
procedure. The grids were placed on the brain surface during the image acquisitions and
then removed, not implanted for patient monitoring. In this way, it is possible to use these
grids for calibration during surgical procedures other than electrode implantation.

A single camera embedded in one of the OR light fixtures (standard OR equipment for
documenting surgeries) was used for cortical surface imaging. Each fixture has an attached
handle, allowing the surgeon (or OR staff) to quickly move the light and camera into an
appropriate position. The camera’s view was displayed on a monitor in real time, providing
a preview of each image before it is saved. If necessary, the camera could also be rotated
and its zoom factor changed remotely.

Although two cameras are often used for stereo imaging, positioning a fixed stereo camera
system within the crowded (with people and equipment) and busy OR is difficult. The
advantages of using a single camera set up are: (1) a single camera can be easily positioned
by the neurosurgeon to obtain an unobstructed view of the surgical field (Figure 3 Left) no
matter which direction the patient is oriented and (2) this setup does not increase the amount
of OR equipment needed.

To acquire stereo images, the calibration/imaging procedure outlined on right side of Figure
3 was used. Note that the camera is calibrated each time it is repositioned. An alternative to
this procedure would be to calibrate the camera once and then track its position in 3D space,
as in [57]. However, since the entire repositioning/recalibration procedure took less than five
minutes to complete and did not require the purchase of additional equipment, it is a feasible
option.

The surface tracking technique was performed during electrode implantations or ictal tissue
resections associated with neocortical epilepsy, as summarized in Table I.

III. Results
A. In Vivo Surface Tracking with Game Theory

Game theoretic cortical surface tracking was used in five separate surgeries for a total of
eight data sets. Two of these data sets were from a bilateral craniotomy performed on one
patient. (Data set #2 was obtained from the left dural opening and data set #3 from the right.
See Table I.) Since the surgeries were performed simultaneously, the patient had to be
oriented so that both hemispheres were accessible. Because of this, the direction of gravity
was parallel to the plane of the dural openings rather than perpendicular to them, as is
normally the case, providing two excellent test cases for the robustness of the algorithm.

The algorithm results for all cases are shown in Figure 4. Since the positions and sizes of the
craniotomies varied as well as the time into surgery in which the algorithm was applied
(Table I), the amount of cortical deformation also varied. Therefore, on the left side of
Figure 4, the calculated mean average displacement of the cortical surface as predicted by
the game theoretic algorithm is shown for reference (blue bars). Mean residual error of the
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algorithm (red bars) is calculated by averaging the closest distances between the predicted
surface and sparse (between five and twenty-one, depending on dural opening size) cortical
surface points touched with a 3D locator intraoperatively. Five out of eight of the cases
(62.5%) resulted in a mean algorithm error of less than 1.0 mm, and the mean error never
exceeded 1.70 mm. These results indicate accurate cortical tracking and an 81%
improvement over uncompensated error.

While the mean errors were quite low, it is also important to examine the maximum error of
the algorithm in each case. The right side of Figure 4 indicates the decrease in maximum
error using the game theoretic algorithm. For half the cases, the maximum error was under
1.6 mm, despite surface displacements greater than 14 mm. And, overall, there was a 76%
decrease in the maximum errors using model guidance. This finding is very important
because it indicates that the algorithm not only decreases the mean error, but it never
increases the maximum surface error. Thus, for all eight cases, the cortical surface was more
accurately located with the tracking algorithm then by relying on the preoperative surface
views as derived from the MRI.

B. In Vivo Sample Cases
The results of the in vivo studies in aggregate were very encouraging, revealing that the
algorithm provided surface tracking advantages in all eight cases. In order to further
examine the usefulness of the calibration correction and displacement tracking, a
representative sample of the in vivo cases is described in detail below.

1) Data Sets 4 and 5—Data sets 4 and 5 are interesting because they were acquired from
two time points of the same surgery. Stereo images for data set #4 were taken approximately
two hours into surgery and the images for data set #5 were taken seventy-five minutes later.
Since no surgical manipulations were performed in that period, the deformation observed
during that time was the result of gravity. The calculated deformations from these two data
sets were consistent not only with surface points used for validation, but also, with each
other, though they were computed independently. (See Figure 5.)

The mean surface deformation of data set #4 was 4.48 mm. The accuracy in tracking this
deformation is shown both quantitatively, in Figure 4, which reveals the mean surface error
was reduced to under 1 mm, and qualitatively in Figure 6, which shows the agreement of
intensity and feature positions using algorithm results. The top left row of Figure 6 shows
that, initially, sulci projected from the preoperative brain surface (green) were not aligned
with features extracted from the stereo images (black), due to a combination of
intraoperative brain shift and possible camera calibration errors. Using the game theoretic
surface tracking algorithm, updated camera calibration parameters and a cortical surface
displacement field were calculated. The displacement field was then applied to the
preoperative brain surface and the deformed positions of the sulci were projected to the
stereo images using the updated camera parameters. As shown in the bottom row of Figure
6, using the calculated deformation and calibration, the features are better aligned.

The intensities are also better matched, as can be seen on the right side of Figure 6. The
intensities that are backprojected from camera position 0 better match the intensities
backprojected from camera position 1 when the surface is in its predicted location and the
updated calibration parameters are used. Additionally, the updated deformation and camera
parameters better align the backprojected sulci with the sulci extracted from the surface.

However, the more interesting case is data set #5 because the initial calibration performed in
camera position 1 was so poor that the projected features were not contained within the
image. This can easily occur when the procedure is rushed, resulting in either few fiducial
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locations to guide the calibration or errors in locating the centers of the fiducial markers (the
Li in equation (25)). Though a more accurate initial calibration could have been performed
by using a more extensive calibration procedure, there was not enough time to perform this
type of lengthy procedure in the OR.

Because of the calibration inaccuracies, the right stereo camera image of Figure 7 shows two
highly distorted green lines instead of the expected curved sulci. The effect is also seen in
the backprojected images of Figure 7, in which the top right surface is mostly out of the
view of the camera and therefore is not assigned intensity values. In order to correct these
errors, the calibration parameters needed to be drastically changed. (See Table II.)

Even in the presence of both this large calibration error and a greater surface deformation
(6.59 mm mean displacement), the algorithm was able to correct the camera calibration
distortion and align the cortical features, reducing the mean surface error to 0.39 mm. The
bottom row of Figure 7 shows the positions of the projected sulci using the updated
displacement field and calibration parameters (yellow). These features are much better
aligned with their intraoperatively imaged counterparts (black). Additionally, the predicted
surface location (bottom right surface of Figure 7) is not only in the camera view, but also,
its backprojected intensities are aligned with the surface features. There is some residual
distortion on the lower part of the right backprojected image (bottom right of Figure 7),
outside of the calibration region; however, it is minimal.

2) Data Set #8—Aside from examining the cases in which the game theoretic algorithm
performs well, it is also important to understand when it performs suboptimally. The initial
camera calibration of data set #5 produced inaccurate values of the calibration parameters.
However, these parameters were corrected with equations (24) and (25). In the case of data
set #8, it is likely that the camera calibration failed for a different reason, leading to a mean
residual error of greater than 1.5 mm. (See Figure 8.)

In this surgery, the shape of the cortical surface made it difficult to position the electrode
grid used for the initial calibration. (See Figure 9.) Because the grid did not sit well on the
brain, it is possible that the grid was moved each time it was touched for fiducial locations.
Since the error was due to the offset of the grid and not random localization error, the
assumption of Gaussian error in the prior term may not have been valid in this case. (See
Appendix B-7.) However, overall, the mean surface error was still improved using the game
theoretic result, as seen in Figure 4. This is most likely because the reconstructed sulci
matching term of equation (12) also updated the camera calibration parameters and was able
to correct some of the error.

C. Algorithm Robustness Comparison
In order to further examine the advantages of using a game theoretic framework, it was
compared to three other surface tracking algorithms: (1) A single objective function in
which, at each iteration, the camera calibration parameters and the dense displacement field
are optimized together. The single objective function, SO(Udense, A) = TU(Udense) +
α[TF(Udense, A) + TI(Udense, A)]+TA(Udense)+βTC(Udense, A), is comprised of all the
unique terms in the objective functions C1 and C2 (equation 12). It is therefore based on the
same Bayesian analysis used to develop the game theoretic algorithm; however, the dense
displacement field and camera calibration optimization are performed in a single step. (2)
The cost function, C1, solved without calibration compensation. Although the expression for
C1 contains calibration dependent terms, the optimization is only performed over the dense
displacement field, using the initial calibration. And, (3) an iterative scheme in which the
single objective function, SO(Udense, A), is iteratively updated over Udense and A. This
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method was the original framework developed to account for camera calibration
inaccuracies [20]. Optimization by gradient descent was used in all three cases.

The use of (1) and (3) allow one to determine the advantages, if any, of using a game
theoretic framework to solve the tracking problem as a noncooperative game. This
comparison will show whether the Nash equilibrium is a better solution than the minimum
of a single objective function, updated over Udense and A either jointly or iteratively. The
comparison to (2) will show whether calibration compensation improves or degrades a
displacement-only deformation estimation. To make this a fair comparison, a data set was
chosen in which the initial calibration yielded accurate results even without calibration
correction.

Figure 10 shows the robustness of each algorithm to initialization for an in vivo case (data
set #2 in Figure 4). The plot on the left was generated by adding a range of offsets to the
initial surface position. The single objective function, both solved jointly (red) and
iteratively (green), is more sensitive to the offsets because it cannot resolve whether the
initial error is a result of calibration error or deformation. Using a single objective function,
the camera calibration parameters could be distorted so much that they will minimize the
cost, even with an incorrect displacement field, or vice versa. Accurate tracking could only
be performed when the camera calibration parameters were forced to stay fixed (black) or
when game theory was used to distinguish between the two types of errors (blue).

As expected, the main difference between using a game theoretic approach and a pure
displacement algorithm is revealed in the presence of camera calibration error. The right
side of Figure 10 was generated by offsetting the translation component of the calibration
parameters by increasing percentages. This offset prevents 3D points from being accurately
transformed into the camera coordinate system, and they will therefore be improperly
projected into image space. (In other words, the (Xc, Yc, Zc) coordinates of Section II-D will
be offset.) The cortical intensities from the stereo images will also be improperly
backprojected onto the 3D surface. Without proper compensation for the calibration
parameters (black), the mean algorithm error increases dramatically as calibration error
increases. As before, a single objective function (red/green) cannot resolve the source of the
error, regardless of the way in which it was optimized (jointly/iteratively). The mean error of
all algorithms, with the exception of the game theoretic approach, rises above 4 mm once the
calibration error reaches 5%. Even at 15% calibration error, it is better to use the game
theoretic framework than to rely on the uncompensated preoperative surface for surgical
guidance.

IV. Summary and Conclusions
The game theoretic algorithm developed in this paper was proven to be robust in both
simulations and in vivo neocortical epilepsy surgeries. However, there are some limitations
to the system that will need to be addressed.

A. System Limitations and Future Work
1) Volumetric Results—The game theoretic algorithm only provides deformation
estimates at, or near, the brain surface. Though no method can predict deformation
completely, biomechanical models can produce deformation estimates within the brain
volume. Sophisticated models have been developed for this purpose and one such model has
already been used in conjunction with game theoretic surface tracking [18]. When used in
this way, deformation accuracy within the brain volume is a combination of the game
theoretic and volumetric model accuracy. Though this accuracy may worsen for structures
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lying deeper within the brain, the combination of surface and volume based deformation
estimation may be one method of providing surgical navigation to the entire brain.

In surgeries in which large amounts of tissue are removed, such as temporal lobectomies or
tumor resections, a biomechanical model based on the preoperative brain would no longer
be valid. In this case, some type of intraoperative volumetric imaging would be necessary.
To avoid the long acquisition times of multiple intraoperative volume scans, a system could
be developed in which game theory is used to update the preoperative images and guide the
surgery until tissue is removed. At that point, a volume image from iMRI/iCT/iUS could be
acquired to establish the updated brain volume. A new mesh of the brain could then be
created and process can resume with the updated brain mesh. This type of application would
most likely also require a more detailed biomechanical model. Such models are currently in
development [1], [13], [22], [23], [32], [36], [37], [55], [65] and, as shown in [18], could
easily be applied in conjunction with the game theoretic surface detection. These solution
possibilities can be tested in phantom experiments or on ex vivo tissue.

2) Surface Visibility—As with any system that tracks a visible surface, stereo vision is
dependent on surface visibility. Therefore, if the brain surface is significantly disrupted
during surgery (due to, for example, bleeding or tissue resection), it may be difficult to
determine the locations of the sulci. The algorithm would then have to rely mostly or
entirely on the matching of intensities, which could lead to inaccuracies. In the worst case,
surface disruptions can significantly change the surface intensities, violating the image
similarity assumption in the intensity term of equation (10), possibly preventing the
effectiveness of this term. If these effects are due to bleeding, neurosurgeons would need to
irrigate the area, to clear as much blood as possible before acquiring the stereo images. If the
effects are due to tissue resection or they cannot be cleared, it may still be possible to use
this algorithm; however, instead of using stereo cameras to detect the sulci, sulcal positions
would have to be manually located using the 3D pointer tool. In this way, stereo
reconstruction would not be needed since 3D sulcal locations would be used as inputs. Still,
this will only be valid if most of the surface geometry were preserved. Effects of tissue
resection remain an open problem for most surgical guidance systems.

3) Algorithm Optimization—Although this study showed that results based on a game
theoretic approach are highly accurate in vivo, further optimization of the algorithm could
lead to higher accuracy or aid in situations similar to that explained above in which one term
of the model becomes unreliable. In this work, weighting constants for feature, intensity and
prior terms were chosen empirically and fixed for all cases. It may be more advantageous,
however, to adapt the weighting constants to each case. For example, if the intensities in one
set of intraoperative images were fairly constant, those intensities may not aid the surface
tracking. In this case, a better result could be obtained by decreasing the intensity term
weight or increasing the weight assigned to the feature term. As another example, the
smoothness constraint could be weighted less if tissue resection causes the surface to
become jagged.

In order to determine how to vary the weights, a systematic approach for measuring the
quality of each variable must be developed. This could be accomplished by assessing each
parameter’s attributes. For example, to determine the reliability of the intensity term, image
histograms can be evaluated. For the feature term, weights could be determined based on the
number of features present and their coverage of the exposed surgical field. Similarly,
assessing the sources of initial calibration error and basing the prior distribution on this
assessment could improve the algorithm solution accuracy in cases like data set #8.
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4) Algorithm Validation—To save time in the operating room, fiducial points on the
brain surface were used both as part of the camera calibration and as validation points to
calculate algorithm accuracy. There is no reason to believe that this would bias the results
since, as mentioned, the final calibration parameters are not based exclusively on fiducial
locations but instead result from the iterative game theoretic optimization. A leave-one-out
strategy was employed to test this assumption for two cases (data sets 4 and 5 from Section
III-B). The game theoretic algorithm applied to each combination of N-1 fiducial markers
(where N is the total number of fiducial markers) to update the calibration parameters, and
the residual algorithm error was calculated from the marker that was excluded from use. The
mean algorithm error using this leave-one-out strategy was 0.52 mm for data set #4
(maximum = 1.52 mm) and 0.46 mm for data set #5 (maximum = 0.78 mm). Using a paired
t-test to compare the residual algorithm error at each fiducial marker when it was excluded
versus included in the game theoretic algorithm analysis revealed no statistical differences,
at a 5% significance level, for both data sets (data set 4: p-value = 0.11, 95% CI =
−0.18:0.02; case 5: p-value = 0.53, 95% CI = −0.17:0.31). Though this helps to confirm the
assumption that using fiducial markers as validation points does not affect the algorithm
result, further testing will be performed in the future.

5) Fiducial Marker Localization—Lastly, manual location of fiducial markers can also
be a source of error. Though SNS can achieve submillimeter accuracy [27], this accuracy is
only measured between the actual location of the 3D pointer and the detected location of the
3D pointer; it does not account for the user’s repeatability in touching the desired target with
the pointer. To independently measure this, an expert user was asked to touch four
electrodes on the grid three times each. To create a realistic recreation of what occurs in the
OR, the electrode grid was placed on top of a silicone brain phantom [19] so that, depending
on the amount of force applied, the pointer could depress the electrode along with the
surface underneath that electrode (as could happen in the OR with the brain surface). The
localization error was calculated as the distance between each of the three trials and mean
location (of the three trials). The mean localization error for all four electrodes was 1.19 mm
(standard deviation: 0.50 mm; range: 0.33 mm - 3.10 mm). This indicates that, in some
cases, the points used for validation may be inaccurately located. However, on average,
fiducial localization is within 1.2 mm of the target. In future studies, calibration targets will
be designed to minimize fiducial localization error, for example, by being more rigid.

B. Conclusions
The results outlined in Section III-A indicate that the developed game theoretic algorithm
can accurately track a deforming surface in vivo. Figure 4, showing the algorithm results for
all eight intraoperative neocortical epilepsy cases, reveals the algorithm’s tracking potential
over a range of cases. Large deformations (up to 14 mm) and varying patient orientations,
including one patient with bilateral craniotomies (data sets 2 and 3) did not affect the
algorithm error, which never rose above 1.7 mm.

The illustrations from data sets 4 and 5, which provide visual validation of the algorithm
solution, show that the game theoretic result aligns both the feature and intensity
information from the stereo camera images. The results are consistent with validation points
acquired by the neurosurgeon and make intuitive sense relative to each other. Data set #5 is
particularly interesting due to its initial large amount of calibration error, which the
algorithm is able to correct. Examination of data set #8 shows a similar effect, in that the
feature and intensity matching is improved using the updated calibration parameters and
displacement field. However, this case shows the reliance of the algorithm on the
distribution of the initial calibration error. Regardless of this reliance, using the tracking
algorithm in this case, as in all of the cases tested, still produced an advantage over relying
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solely on preoperative images. These results are very encouraging and indicate the potential
of a surface tracking algorithm posed with game theory to improve surgical navigation.

The robustness comparison shows that, in the absence of calibration error, the algorithm
based on game theory performs at least as well as a pure displacement cost function and that
the addition of the camera calibration optimization did not decrease the surface tracking
accuracy. With the other paradigms tested, camera calibration optimization interfered with
displacement field detection and led to a suboptimal result. This does not mean that it is
impossible to achieve accurate results in these paradigms. However, it does reveal the
problems that may arise from solving for competing variables in a single objective
framework.

The robustness comparison also clearly shows the deleterious effects that camera calibration
error can have on the ability to track a moving surface. Since most algorithm terms rely on
the calibration parameters in some way, and because calibration errors are difficult to
distinguish from surface deformation effects (see Figure 1), it is no surprise that calibration
error can propagate through the algorithm solution. The algorithm based on game theory
outperforms all the other methods tested in this context, thus proving its ability to separate
calibration and deformation effects and demonstrating its robustness to a range of initial
calibration inaccuracies.

Future work on this algorithm could further enhance its accuracy by allowing dynamic
choices of the weighting terms based on assessments of the algorithm inputs. In addition, the
application of this algorithm can be expanded beyond procedures relating to epilepsy.
Although particularly useful in neocortical epilepsy surgeries due to the great need for
surface deformation information during epilepsy monitoring and tissue resection, this
intraoperative deformation compensation algorithm could be applied to many neurosurgical
procedures (since dural openings ≥ 4 cm in diameter, which normally occur when the patient
undergoes a craniotomy, will allow for adequate intensity/feature detection). And, when
used in conjunction with a biomechanical model and/or volumetric imaging, the range of
neurosurgical procedures that would benefit from this tracking technique becomes even
larger; although, surgeries in which the brain surface is significantly disrupted may still
present a problem.

Surgical Navigation Systems (SNS) have already proven to be a beneficial addition to
neurosurgery. The aid that SNS provide in localizing pathologic tissue is invaluable.
However, due to brain deformation, SNS use is limited to guidance before the brain has
shifted or providing limited information after the shift. Overall, this work shows that game
theory can be used as an image processing tool to infer information about physical processes
(brain deformation/camera calibration). Incorporating this system into current SNS guidance
systems will provide more accurate surgical guidance for many procedures, leading to better
detection of pathologic tissue and decreased surgical complications.
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Appendix A

Derivation of the Displacement Field Optimization
In this appendix, Bayesian analysis is used to develop the four terms of equation (10). The
result is a complete cost function used to estimate surface displacement.

1) Intensity Term
The intensity matching is performed on backprojected surfaces. A backprojected surface is

defined as  [53]. (See right side of Figure 6.) Here, S is the deformed
surface, SU + Udense, P is the projection function from the surface to the images (as defined
in Section II-D) and i represents the camera number (0 or 1).

The intensity term ensures that intensities backprojected from camera 0 onto the deformed
surface match the intensities backprojected from camera 1 to that surface and it is written as:

(13)

This formulation emphasizes that there is a single projection function, P, that projects 3D
points from the cortical surface into stereo camera space.

The use of normalized cross correlation (NCC) as a match metric follows naturally from this
formulation. Assuming the noise in each backprojected image, Ψi, is additive, Gaussian

distributed and independent with zero mean; i.e.,  where Ψi, i = 0,1, the perceived
backprojection, is the true projection,  plus zero mean Gaussian noise, ni, i = 0,1, it follows

that ,  where nt = n0+n1 and is therefore also Gaussian
distributed, leading to:

(14)

where σ is the standard deviation of the backprojected image intensities and n is the number
of surface elements in the image overlap region, in which the sum is also taken.

Taking the log of both sides of equation (14) yields:

(15)

This model only accounts for additive noise in each backprojected image. However, if the
aperture of each camera is set differently, there may not be an identity transformation

between the two images. Using the original variables, in this case,  may equal ,
where g is a constant gain factor. This indicates that one image is brighter than the other. To
account for this possible affine transformation, the backprojections can be normalized by
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subtracting out the mean intensity, . Substituting  back into equation (15)
yields:

(16)

Since the image intensities in the scene will not change substantially throughout the entire

surgery, for all Udense, the square of the normalized images, , should be
essentially constant. This is the same as saying that a single camera’s intensity histogram
will not vary throughout the surgical procedure. In addition, it is assumed that the area of
overlap between the two backprojected images will remain fairly constant.

Using the above assumptions and neglecting all the constant terms in equations (14) - (16)
yields the probability between the two backprojected images:

(17)

In equation (17), the divisor, , is a constant that is used to normalize the
output between 0 and 1. The result is the familiar formulation for NCC.

Equations (13) and (17) can be combined to yield the intensity term:

(18)

where η is a normalizing constant. These constants ensure that all terms have similar orders
of magnitude.

2) Prior
Since the deformation is smooth, the second derivative of the deformation field should be
small, and the displacement at one point should be similar to its neighboring points. Because
of this, the displacement field can be modeled as a Markov Random Field, thus implying
that Udense is sampled from a Gibbs probability density function. This can be expressed in
the prior term as:

(19)

where ρ is a normalizing constant and  is the second derivative of the dense
displacement field.
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3) Constants
The stereo camera images, I, the sulci in those images, K, the preoperative surface, SU, and
sulci on that surface, C, are all constants in this framework because they comprise the
information supplied to the algorithm. Additionally, while solving for the dense
displacement field, the camera calibration parameters from the previous iteration, Â, are also
held fixed. Though all of these variables are given, the probabilities of these variables as
expressed in the constant terms of equation (10) may not be fixed. While it may be possible
to find exact probabilistic definitions for these terms, the process is non-trivial and not easily
validated. The added information supplied by the probability of the given constants could
possibly enhance the surface tracking algorithm, however, it is not necessary to solve the
model. Because of this, the probabilistic definitions defined above are used to motivate the
algorithm development rather than exactly define it. To indicate this, matching terms, which
incorporate the goals of the conditional probability terms into an intuitive framework are
used. The model can then be reformulated by combining equations (5), (10), (18) and (19)
as:

(20)

where M represents a matching procedure, rather than a formal probability.

4) Feature Term
The feature matching term from equation (20), log [M(K, C, Â|Udense]), can be simplified
by considering the sulci outlined in the two camera images K0 and K1 separately. The
matching can then be performed in intraoperative stereo image space. Intuitively, the correct
displacement field, when applied to the preoperative sulci, will deform those sulci to the
same location they were in when imaged by the stereo cameras. If these deformed sulci are
projected to the images, by means of accurate camera calibration parameters, they should be
exactly aligned with imaged intraoperative sulci. The matching term, therefore, penalizes
displacement fields which do not align the imaged sulci with the projected sulci. (See Figure
11 for a pictorial description.)

The feature matching term can therefore be written as:

(21)

where  is the dense displacement field restricted to the sulci and d is a mean Euclidean

distance metric, defined as , in which W and V have the
components (wx1...N, wy1...N, wz1...N) and (vx1...N, vy1...N, vz1...N) respectively.

5) Displacement Field Cost Function
The displacement field cost function, C1(Udense, A), is thus:
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(22)

Appendix B

Derivation of the Camera Calibration Optimization
The cost function for the camera calibration parameters is developed in the following
section. As in Appendix A in which the cost function for the displacement field is
developed, intuitive matching metrics are used. Equation (11) can thus be written as:

(23)

where M represents the matching procedure described in Appendix A.

6) Calibration Term
The calibration term measures the accuracy with which the camera parameters can transform
a 3D point to its correct 2D image location. It is difficult to determine calibration accuracy
using the backprojected intensities because of ambiguities in correspondence; i.e., a window
of backprojected intensity values from one stereo image may have equal correlation with
more than one window of backprojected intensities from the other image. The sulci,
however, provide accurate feature information from which correspondence is more reliably
calculated. Because of this, the sulci on the 3D surface, C, can provide all the necessary
information from the surface itself, SU. Additionally, since the imaged sulci are the only
features of interest, K can be used to represent the rest of the image, I. Thus, the calibration
term reduces to log [M(K, C, Ûdense)|A)].

To further evaluate this term, a stereo reconstruction function that gives the 3D location of
corresponding points in the stereo images, Φ, is defined. It can be calculated from the initial
camera calibration, A, by determining the rigidtransformation between cameras 0 and 1. If
this transformation is represented by a rotation, R01, and translation, T01, the 3D
reconstruction of a set of corresponding points m0i...n in image 0 and m1i...n in image 1, can
be found through the equation Mxim0i − MyiR01

Tm1i + Mzi(m0i × R01
Tm1i) = T01, where Mi

= [Mxi, Myi, Mzi] is the reconstructed 3D location of corresponding points m0i and m1i [61].

Using the above equations, reconstruction of each of the outlined sulci in K can be
performed and the mean Euclidean distance between these and the 3D deformed sulci can be
found.

(24)
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7) Prior Term
The initial camera calibration is performed by locating fiducial points on the cortical surface
(using a 3D locator) and the stereo images and determining the optimized best fit
transformation between the two fiducial point sets [61]. (See Section II-D.) The prior on the
camera calibration, TA(A), states that as the camera parameters are updated, the projection
of the n fiducial points, L0...n, onto the stereo camera images should be close to imaged
fiducial points in cameras 0 and 1, m0i...n and m1i...n, respectively. Assuming Gaussian-
distributed errors in selecting fiducial and image locations, the prior term can be expressed
as:

(25)

8) Camera Calibration Cost Function
The camera calibration cost function, C2(Udense, A), is thus:

(26)
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Fig. 1.
Intraoperative image indicating the misalignment of the projected sulci (green) with the
intraoperative imaged sulci positions (black), due to either camera calibration errors (left) or
cortical surface deformation (right).
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Fig. 2.
The game theoretic algorithm uses intraoperative information to guide the estimation of
cortical surface deformation and update camera calibration parameters. This algorithm was
developed using a Bayesian approach.

DeLorenzo et al. Page 27

IEEE Trans Med Imaging. Author manuscript; available in PMC 2010 February 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3.
Left: A view of the surgical camera embedded in the OR light fixture during a phantom
experiment. The overall setup is the same for surgical applications. Right: The method of
acquiring fiducial points in the OR and an example of typically-acquired images.
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Fig. 4.
Mean and maximum displacement (blue) with mean and maximum residual error (red) for
eight intraoperative neocortical epilepsy data sets. The algorithm was implemented with α =
4, β = 0.83, ν = 0.1, and η = 25 for all cases. (See Appendices A and B for algorithm
equations.)
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Fig. 5.
A: Preoperative Surface of Data Sets 4 and 5, Acquired from MRI. The region that deforms
during surgery is highlighted in yellow and features used to aid the algorithm are shown in
black. B: Cortical Surface Deformation Results at Two Time Points. The purple and blue
surfaces represent the algorithm tracking results for data sets 4 (2 hours into surgery) and 5
(3.25 hours into surgery), respectively. The distance between the two surfaces shows the
cortical shift in that time, as calculated by the game theoretic algorithm. Sulci used as
features are again highlighted in black. The surfaces mainly deformed in the direction of
gravity, as indicated by the arrow.
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Fig. 6.
Data Set #4, Two Hours into Surgery. Left: Intraoperative Stereo Images of the Cortical
Surface. The projected predicted features (yellow) are better aligned with the features
outlined from the intraoperative images (black) than the projected preoperative features
(green). Right: Intraoperative Cortical Surface with Backprojected Intensities.
Backprojection is achieved by using the calibration parameters to project each element of
the surface to one of the stereo images and assigning the corresponding image intensities to
the surface elements. (See Appendix A.) The stereo images were manually cropped to
include only brain surface intensities. Therefore, each of the surface elements was either
assigned one of these image intensities or appears black, meaning no intensity was assigned.
The predicted cortical surface reduces the mismatch, shown by the red arrows, between the
backprojected sulci and the sulci lying on the surface (green/yellow).
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Fig. 7.
Data Set #5, 3.25 Hours into Surgery Left: Intraoperative Stereo Images of the Cortical
Surface. The initial calibration of the camera 1 (right) is so inaccurate, that the features
(green) do not project to the image field of view. The algorithm is able to correct this error
and predict the cortical surface to within 1 mm. Right: Intraoperative Cortical Surface with
Backprojected Intensities. Most of the right stereo image backprojected intensities do not
fall on the preoperative surface due to calibration inaccuracies and the surface position. With
the updated calibration and deformation parameters, intensities and features from both
images are better aligned, though there is still some distortion outside the calibration region.
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Fig. 8.
Data Set #8 Left: Intraoperative Stereo Images of the Cortical Surface. Preoperative sulci
projected with initial calibration parameters are shown in green. The algorithm is able to
correct some mismatch between these and the imaged sulcal locations (black). The residual
misalignment of predicted projected features (yellow) is most likely due to the poor
positioning of the electrode grid. Right: Intraoperative Cortical Surface with Backprojected
Intensities. Overall, the game theoretic result for data set #8 decreased the tracking error and
improved the deformation estimation. Evidence of this can be seen in the reduction of
feature-matching error shown by the red arrows. However, some feature mismatch (blue
arrows) is still evident in the backprojected images from the algorithm-predicted surfaces.
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Fig. 9.
Electrode Grid Used for Calibration of Data Set #8. The shape of the brain and the size of
the dural opening prevented the grid from lying flat on the brain surface.
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Fig. 10.
Algorithm Robustness Comparison. Left: Sensitivity to Initial Surface Position. Right:
Sensitivity to Initial Camera Calibration Errors.
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Fig. 11.
Pictorial Description of the Feature Term. The far left image shows the brain surface as
extracted from the preoperative MRI and the region of that surface (surface patch) that
deforms during surgery. Using a projection function, 3D sulci from the surface patch are
projected onto the 2D stereo camera images. Assuming an accurate camera calibration, the
mismatch between the projected features (cyan) and the imaged features (red) is due to
surface deformation. The right orange boxes show the effects of various displacement fields
applied to the surface patch. The distance between the projected sulci from those patches
(yellow) and the imaged sulci (red) is measured for each applied displacement. In this case,
the displacement field applied to the patch on the far right is the most likely because it best
aligns the two sets of features.
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