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For wavelets on the interval (when� > 1 and the number of van-
ishing moments isN = d�e), there are never more than2N wavelets
that overlap (for a givenj). Indeed, in the above sums we have for each
j and eachx: 0 � 2jx� k � 2N � 1. (Other values ofk would place
the argument2jx � k of the wavelet functions outside of the support
and would hence only produce zero-terms in the sums.) Hence,k only
needs to range fromd2jxe�2N+1 throughd2jxe, which corresponds
to 2N values ofk.

Therefore, the same calculation as for Haar wavelets applies, except
that the constantsC1,C2,C3, c01, andc02 need to be multiplied by2N .
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A New Metric for Probability Distributions

Dominik M. Endres and Johannes E. Schindelin

Abstract—We introduce a metric for probability distributions, which is
bounded, information-theoretically motivated, and has a natural Bayesian
interpretation. The square root of the well-known distance is an asymp-
totic approximation to it. Moreover, it is a close relative of the capacitory
discrimination and Jensen–Shannon divergence.

Index Terms—Capacitory discrimination, distance, Jensen–Shannon
divergence, metric, triangle inequality.

I. INTRODUCTION

This correspondence is the result of the authors’ search for a proba-
bility metric that is bounded and can be easily interpreted in terms of
both information-theoretical and probabilistic concepts. Metric prop-
erties are the prerequisites for several important convergence theorems
for iterative algorithms, i.e., Banach’s fixed point theorem [2], which
is the basis of several pattern-matching algorithms. Boundedness is a
valuable property, too, when numerical applications are considered.

We will limit the following discussion to discrete probability
distributions, but the result can be generalized to probability density
functions.

II. M OTIVATION

The motivation we are presenting in this section is aimed at pro-
viding the reader with an idea of the meaning of the metric. As such,
it is not to be understood as a derivation in a strict mathematical sense.
However, we will observe mathematical rigor in the following section,
which contains the actual proof of the metric properties.

LetX be a discrete random variable which can take onN different
values2 
N = f!1; . . . ; !Ng. We now draw an independent and
identically distributed (i.i.d.) sample~X, where each observation is
drawn from one of two known distributions,P andQ. Each of those
is used with equal probability. However, we do not know which one
is used when. Now we wish to find the coding strategy that gives the
shortest average code length for the representation of the data. In other
words, we are looking for the mostefficientdistributionR.

Let us call this code�. The code lengths are�i = � log ri, where
i 2 f1; . . . ; Ng and ri is the probability ofX = !i underR.
Denoting the expectation of� with respect to (w.r.t.)P by E(�; P ),
the average code lengthh�i is then 1

2
E(�; P ) + 1

2
E(�; Q). By the

very definition of the entropy, theminimumh�i is obtained by setting
R = 1

2
(P + Q), i.e.,h�i = H(R).

An ideal observer, i.e., one who knows which distribution is used
to generate the individual data, could reach an even shorter average
code length 1

2
H(P ) + 1

2
H(Q). Hence, the redundancy of� is

H(R) � 1

2
H(P ) � 1

2
H(Q). The distance measure we studied is

twice that redundancy

D
2

PQ =2H(R)�H(P )�H(Q)

=D (PkR) +D (QkR)

=

N

i=1

pi log
2pi

pi + qi
+ qi log

2qi
pi + qi

: (1)
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Since the Kullback divergenceD (PkR) can be interpreted as the
inefficiency of assuming that the true distribution isR when it really is
P , D2

PQ could be seen as a minimum inefficiency distance.
We are not the first ones to introduce this distance measure. Topsøe,

in [9], called it capacitory discriminationand introduced it from an
information-transmission point of view. In that paper, its properties are
studied in depth. We will relate his results to ours in the discussion.
Now D2

PQ is obviously symmetric and vanishes forP = Q, but it
does not fulfill the triangle inequality. However, its square rootDPQ

does. The proof of the metric properties ofDPQ is the subject of the
next section.

III. PROOF OFMETRIC PROPERTIES OFDPQ

In the following,IR+ includes0.

Definition 1: Let the functionL(p; q): IR+ � IR+ ! IR+ be de-
fined by

L(p; q) := p log
2p

p+ q
+ q log

2q

p+ q
: (2)

This function can be taken to be any one of the summands ofD2
PQ

(see (1)). By standard inequalities we realize thatL(p; q) � 0 with
equality only forp = q.

Theorem 1 uses some properties of the partial derivative ofL(p; q)
and to show these we introduce the functiong: IR+nf1g ! IR defined
by

g(x) :=
log 2

x+1

L(x; 1)
:

Lemma 1: Let g be defined as above. Then

2) limx!1 g(x) = �1, i.e.,g jumps from+1 to�1 atx = 1.

3) The derivatived
dx

g is positive forx 2 IR+nf1g.

A consequence of this lemma is thatjg(x)j � 1 with equality only
atx = 1. Also, it is easy to see thatjgj is continuous, but notg.

Proof: First note thatg changes sign atx = 1.
A straightforward application of l’Hôspital’s rule (differentiate

twice) yieldslimx!1 g
2(x) = 1.

By differentiation, one finds thatd
dx

g is positive if and only iff < 0
wheref is given by

f(x) = log
2

1 + x
+ log

2x

1 + x
:

Straightforward differentiation shows thatf(1) = f 0(1) = 0 and
that

f
00(x) =

�1
x2(1 + x)

log
2

1 + x
+ x

2 log
2x

1 + x
:

Using the standard inequalitylog a � 1� 1

a
, we find thatf 00 < 0,

hencef is concave. Combined with the first found facts,f < 0 for
x 6= 1.

We will now prove the following.

Theorem 1: Let FN be the set of all discrete probability distribu-
tions over
N , N 2 . The functionDPQ: FN � FN ! IR+ is a
metric.

Proof: To show this, we recall thatD (PkQ) is0 for P = Q and
strictly positive otherwise (see, e.g., [3]). In addition,D2

PQ is sym-
metric inP; Q and so isDPQ. Therefore, we only have to show that
the triangle inequality holds.

Lemma 2: Let p; q; r 2 IR+. Then

L(p; q) � L(p; r) + L(r; q):

Proof: It is easy to see that this holds if any ofp; q; r are zero.
Now we assumep � q, denote byrhs the right-hand side as a function
of r, and show that

2) rhs has two minima, namely, one atr = p and one atr = q and
3) only one maximum somewhere betweenp andq.
We show this by way of the derivative

@rhs

@r
=

log 2r
p+r

2 � L(p; r)
+

log 2r
q+r

2 � L(q; r)
: (3)

With g as in Lemma 1 andx := p

r
and� � x := q

r
(� > 1), we find

that

2 � pr � @rhs
@r

= g(x) + g(�x):

With jg(x)j � 1 with equality only atx = 1, and the fact thatg
jumps from+1 to �1 at x = 1 (see Lemma 1), the derivative@rhs

@r

indeed changes sign atr = p, because thenx = 1 and jg(x)j >
jg(�x)j, and likewise atr = q. Those extrema are minima becauser

is reciprocal tox.
Also, d

dx
g(x) � 0, therefore, betweenx = 1

�
andx = 1, g(x) +

g(�x) is monotonic increasing and as a consequence has at most one
sign change.

Applying Minkowski’s inequality to the square root of the sum
which definesDPQ, we see that the triangle inequality is fulfilled.

WhenceDPQ is a metric.

The generalization of this result to continuous random variables is
straightforward. LetP andQ be probability measures defined on a
measurable space(
; A) and letp = dP

d�
, q = dQ

d�
be their Radon-

Nikodym derivatives w.r.t. a dominating�-finite measure�. Then

DPQ =



p log
2p

p+ q
+ q log

2q

p+ q
d� (4)

is a metric as well.
An alternative proof could be constructed using results presented in

[4]. SinceD2
PQ is an instance of a class of distances known asf -di-

vergences (cf. [1]) (letf(t) = t log 2t

1+t
+ log 2

1+t
, thenD2

PQ =
N

i=1
qif(

p

q
)), the theorems proven in [4] apply.

Now we will look at the maxima and minima ofDPQ. Its minimum
is, of course, located atP = Q, whereDPQ = 0. To find its maximum,
rewrite (2) in the form

L(p; q) = (p+ q) log 2

�0

+ p log
p

p+ q

�0

+ q log
q

p+ q

�0

: (5)

It follows that whenP andQ are two distinct deterministic distribu-
tions,DPQ assumes its maximum value

p
2 log 2.

IV. A SYMPTOTIC APPROXIMATION

Next, we shall investigate the limit

lim
P!Q

D
2
PQ: (6)

A term-by-term expansion ofDPQ to second order inpj yields

D
2
PQ �

N

j=1

1

4qj
(pj � qj)

2 =
1

4
�
2(P; Q) (7)

where�2(P; Q) is the well-known�2-distance (see, e.g., [5]).

V. DISCUSSION

TheDPQ metric can also be interpreted as the square root of an en-
tropy approximation to the logarithm of an evidence ratio when testing
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if two (equally long) samples have been drawn from the same under-
lying distribution [6]. In that paper, it is also argued that1

2
D2
PQ should

be named Jensen–Shannon divergence, or rather, a special instance of
that divergence, which is defined as

D�(P; Q) =�D (PkR) + (1� �)D (QkR)

R =�P + (1� �)Q

and, therefore,

1
2
D
2
PQ = D (P; Q):

Topsøe [9] has interpreted capacitory discrimination as twice an in-
formation transmission rate and related it to a variety of other distance
measures, such as the Kullback divergence, triangular discrimination,
variational distance, and Hellinger distance. Many of the inequalities
found by him can now be rewritten to become relationships between
metrics.

Österreicher, in [7], proved the triangle inequality for square roots
of f� divergences defined by the functions

f�(t) =
(1 + t�) � 2 (1 + t)

1� 1
�

(8)

for � > 1. Since thef� divergence one obtains by taking the limit
� ! 1 isD2

PQ (a fact pointed out to us by one of the reviewers), our
result extends the theorem proven in [7] to include the case� = 1.

Another way of looking atD2
PQ is from the viewpoint of Bayesian

inference. Consider the following scenario: We draw a sample~X1 =
fx1g of length1 from an unknown distributionR. What we do know
about the distribution is that it is eitherP or Q, hence assigning each
distribution the prior probability1

2
. We now use Bayesian inference to

calculate the posterior probabilitiesP (R = P j ~X1), P (R = Qj ~X1)
of each distribution given the observation~X1

P (R = P j ~X1) =
1
2
P (x1)

1
2
P (x1) +

1
2
Q(x1)

P (R = Qj ~X1) =
1
2
Q(x1)

1
2
P (x1) +

1
2
Q(x1)

: (9)

The information gain�I(x1) resulting from the observation of~X1 is
given by the Kullback divergence between the posterior and the prior

�I(x1) =
P (x1) log

2P (x )
P (x )+Q(x )

+Q(x1) log
2Q(x )

P (x )+Q(x )

P (x1) +Q(x1)
: (10)

To find the expected value of this gain, we now average�I(x1) over
the prior distribution ofx1, which is given by1

2
P + 1

2
Q. This yields,

noting thatP (x1 = !i) = pi and likewise forQ

E(�I(x1)) =
1

2

N

i=1

pi log
2pi

pi + qi
+

1

2

N

i=1

qi log
2qi

pi + qi

=
1

2
D
2
PQ: (11)

Therefore, another interpretation ofDPQ is that it is twice the expected
information gain when deciding (by means of a sample of length1)
between two distributions given a uniform prior over the distributions.
Consider now the case thatP andQ are such thatDPQ is maximized.
Then, as stated above,1

2
D2
PQ = 1 (when usinglog2), i.e., the infor-

mation gain is 1 bit. Thus, a sample of length1 is sufficient to make
the (binary) decision as to which distribution is the correct one. More
general formulas than (11) can be found in [8], where relations between
arbitraryf -divergences and information gains in decision problems are
studied.
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On Asymptotic Properties of Information-Theoretic
Divergences

María del Carmen Pardo and Igor Vajda, Fellow, IEEE

Abstract—Mutual asymptotic equivalence is established within three
classes of information-theoretic divergences of discrete probability dis-
tributions, namely, -divergences of Csiszár, -divergences of Bregman,
and -divergences of Burbea–Rao. These equivalences are used to find
asymptotic distributions of the corresponding divergence statistics for
testing the goodness of fit when the hypothetic distribution is uniform. All
results are based on standard expansion techniques and on a new relation
between the Bregman and Burbea–Rao divergences formulated in Lemma
2.

Index Terms—Asymptotic distributions, asymptotic equivalence,
Bregman divergences, Burbea–Rao divergences, divergences of Csiszár,
divergence statistics.

I. INTRODUCTION

We consider several types of divergencesD(p; q) of probability dis-
tributionsp = (p (x) ; x 2 ) andq = (q (x) ; x 2 ) on a count-
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