Median Filtering in Constant Time

Simon Perreault and Patrick Hébert, IEEE member

Abstract— The median filter is one of the basic building blocks in many
image processing situations. However, its use has long been hampered
by its algorithmic complexity of O(r) in the kernel radius. With the
trend toward larger images and proportionally larger filter kernels, the
need for a more efficient median filtering algorithm becomes pressing. In
this correspondence, a new, simple yet much faster algorithm exhibiting
O(1) runtime complexity is described and analyzed. It is compared
and benchmarked against previous algorithms. Extensions to higher-
dimensional or higher-precision data and an approximation to a circular
kernel are presented as well.

Index Terms— Median filters, image processing, algorithms, complexity
theory.

I. INTRODUCTION

HE median filter [1] is a canonical image processing operation,

best known for its salt and pepper noise removal aptitude. It is
also the foundation upon which more advanced image filters like un-
sharp masking, rank-order processing, and morphological operations
are built [2]. Higher-level applications include object segmentation,
recognition of speech and writing, and medical imaging. Figure 4
shows an example of its application on a high-resolution picture.

However, the usefulness of the median filter has long been limited
by the processing time it requires. Its nonlinearity and non sepa-
rability make it unsuited for common optimization techniques. A
brute-force approach simply builds a list of the pixel values in the
filter kernel and sorts them. The median is then the value situated at
the middle of the list. In the general case, this algorithm’s per-pixel
complexity is O(r?logr), where 7 is the kernel radius. When the
number of possible pixel values is a constant, as is the case for 8-bit
images, one can use a bucket sort, which brings the complexity down
to O(r?). This is still unworkable for any but the smallest kernels.

The classic algorithm [3], used in virtually all publicly available
implementations, exhibits O(r) complexity (see Algorithm 1). It
makes use of a histogram for accumulating pixels in the kernel. Only
a part of it is modified when moving from one pixel to another. As
illustrated in Figure 1, 2r 41 additions and 2r + 1 subtractions need
to be carried out for updating the histogram. Computing the median
from a histogram is done in constant time by summing the values
from one end and stopping when the sum reaches (2r 4 1)2/2. For
8-bit images, a histogram is made of 256 bins and therefore 128
comparisons and 127 additions will be needed on average. Note that
any other rank-order statistic can be computed in the same way by
changing the stopping value.

Efforts were made to improve the complexity of the median filter
beyond linear. A complexity of O(log?) was attained by Gil et al.
[4] using a tree-based algorithm. In the same paper they claimed a
O(log) lower bound for any 2-D median filter algorithm. Our work
is most similar to that of [5], where sorted lists were used instead of
histograms, which resulted in a O(r?) complexity and was relatively
slow. More recently, Weiss [6] developed a method whose runtime
is O(logr) using a hierarchy of histograms. In his approach, even
though complexity has been lowered, simplicity has been lost. We
strive for a simple and efficient algorithm, with applicability to both
CPU and custom hardware.

The authors are with the Computer Vision and Systems Lab, Univer-
sit¢ Laval, Québec, Canada. GI1K 7P4. Phone: (418) 656-2131 #4479.
Fax: (418) 656-3594. E-mail: {perreaul,hebert} @gel.ulaval.ca

Fig. 1: In Huang’s O(n) algorithm, 2r 4 1 pixels must be added to
and subtracted from the kernel’s histogram when moving from one
pixel to the next. In this figure, r = 2.

Algorithm 1 Huang’s O(n) median filtering algorithm.

Input: Image X of size m x n, kernel radius r
Output: Image Y of the same size as X
Initialize kernel histogram H
for : =1 to m do
for j =1tondo
for k = —r to r do
Remove Xk j_r—1 from H
Add Xi+k,j+7> to H
end for
Y; ; < median(H)
end for
end for

In this correspondence we propose a simple O(1) median filtering
algorithm similar in spirit to Huang’s. We show a few straightforward
optimizations which enable it to become much faster than the classic
algorithm. We take the opportunity to examine why the Gil-Werman
lower bound of O(logr) does not seem to hold. Then we explore
extensions to the new filter, namely application to higher-precision or
higher-dimensional data as well as a circular kernel approximation.
Finally, timing results are shown, asserting the practicality of our
approach.

II. FROM O(r) TO O(1) COMPLEXITY

To best understand our approach, it is helpful to first point out
the inefficiency in Huang’s algorithm. Specifically, notice that no
information is retained between rows. Each pixel will need to be
added and removed to 2r+1 histograms over the course of processing
the whole image, which causes the O(r) complexity. Intuitively, we
can guess that we will need to accumulate each pixel at most a
constant number of times to obtain O(1) complexity. As we will see,
this becomes possible when information is retained between rows.

Let us introduce one property of histograms, that of distributivity
[6]. For disjoint regions A and B,

H(AU B) = H(A) + H(B).

Notice that summing histograms is a O(1) operation with respect
to the number of accumulated pixels. It depends only on the size
of the histogram, which is itself a function of the bit depth of the

Algorithm 2 The proposed O(1) median filtering algorithm.

e

(@) (b)

Fig. 2: The two steps of the proposed algorithm. (a) The column
histogram to the right is moved down one row by adding one pixel
and subtracting another. (b) The kernel histogram is updated by
adding the modified column histogram and subtracting the leftmost
one.

image. Having made this observation, we can move on to a new O(1)
algorithm.

The proposed algorithm maintains one histogram for each column
in the image. This set of histograms is preserved across rows for the
entirety of the process. Each column histogram accumulates 27 + 1
adjacent pixels and is initially centered on the first row of the image.
The kernel histogram is computed by summing 27 + 1 adjacent
column histograms. What we have done is break up the kernel
histogram into the union of its columns, each of which maintains
its own histogram. While filtering the image, all histograms can be
kept up to date in constant time with a two-step approach.

Consider the case of moving to the right from one pixel to the
next. The column histograms to the right of the kernel are yet to be
processed for the current row, so they are centered one row above.
The first step consists of updating the column histogram to the right
of the kernel by subtracting its topmost pixel and adding one new
pixel below it (Figure 2a). The effect of this is lowering the column
histogram by one row. This first step is clearly O(1) since only one
addition and one subtraction, independent of the filter radius, need
to be carried out.

The second step moves the kernel histogram, which is the sum of
2r+1 column histograms, one pixel to the right. This is accomplished
by subtracting its leftmost column histogram and adding the column
histogram lowered in the first step (Figure 2b). This second step is
also O(1). As stated earlier, adding, subtracting, and computing the
median of histograms comprise a number of operations depending
on the image bit depth, not on the filter radius.

The net effect is that the kernel histogram moves to the right while
the column histograms move downward. We visualize the kernel as a
zipper slider bringing down the zipper side represented by the column
histograms. Each pixel is visited only once and is added to only
a single histogram. The last step for each pixel is computing the
median. As stated earlier, this is O(1) thanks to the histogram.

All of the per-pixel operations (updating both the column and
kernel histograms as well as computing the median) are O(1). Now
we address the issue of initialization, which consists of accumulating
the first 7 rows in the column histograms and computing the kernel
histogram from the first 7 column histograms. This results in an O(r)
initialization. In addition, there is overhead when moving from one
row to another which accounts for another O(r) term. However, since
the O(r) initialization only occurs once per row, the cost per pixel is
insignificant for arbitrarily large images. In particular, the amortized
cost drops to O(1) per pixel when the dimensions of the image are
proportional to the kernel radius, or if the image is processed in tiles
of dimensions O(r). When the tile size is limited by the dimensions

Input: Image X of size m x n, kernel radius r
- Output: Image Y of the same size
Initialize kernel histogram H and column histograms hi.. ..,
Z + for : =1 to m do
Z for j =1ton do

Remove X;_,_1 j1, from hj i,
Add Xi+7n7j+7- to hj+r
H—H+hjrr —hjr
Y; ; < median(H)
end for
end for

of the image, the redundancy of information outside the image (e.g.
solid color, or repeated edge pixels) correspondingly simplifies the
initialization, allowing O(1) computation on any size image, for any
kernel radius.

To summarize, the operation rundown for an 8-bit grayscale pixel
is as follows:

« 1 addition for adding the new pixel to the column histogram to
the right of the kernel.

« 1 subtraction for removing the old pixel from that same column
histogram.

o 256 additions for adding the new column histogram to the kernel
histogram.

o 256 subtractions for subtracting the old column histogram from
the kernel histogram.

¢ 128 comparisons and 127 additions, on average, for finding the
median of the kernel histogram.

This may seem excessive. However, most of these operations are
naturally vectorizable, which lowers the time constant considerably.
More importantly, many optimizations can be applied to reduce the
number of operations. They are discussed in the next section.

III. IMPLEMENTATION NOTES

This section describes some optimizations that can be applied to
increase the efficiency of the proposed algorithm. They all depend
on the particular CPU architecture on which the filter is executed.
As such, their effect can vary greatly (even reducing the efficiency
in some cases) from one kind of processor to another. Note also that
optimizations of sections III-C and III-D are data-dependent.

A. Vectorization

Modern processors provide SIMD instructions that can be exploited
to speed up our algorithm. The operation rundown shows that most
of the time is spent in adding and subtracting histograms. This can
be sped up considerably with MMX, SSE2 or Altivec instruction
sets by processing multiple bins in parallel. To maximize the number
of histogram bins that we can add in one instruction, each bin is
represented with only 16 bits. Thus, the kernel size is limited to 2'6
pixels, which is acceptable for typical uses. This limit is not intrinsic
to our algorithm: it is only a means for optimization.

Another area where parallelism can be exploited is the reading
of pixels from the image and their accumulating in column his-
tograms. Instead of alternating between updating column and kernel
histograms, as described in Section II, we can process the column
histograms for a whole row of pixels first. Using SIMD instructions,
we can update multiple column histograms in parallel. We then
proceed with the kernel histogram as usual.

B. Cache Friendliness

The constant-time median filtering algorithm needs to keep in
memory one histogram for each column. For the whole image, this
may easily amount to hundreds of kilobytes, often exceeding the
cache size of today’s processors. This leads to inefficient repeated
access to the main memory and negates the usefulness of the cache.
One way to circumvent this limitation is to split the image in vertical
stripes that are processed independently. The width of each stripe is
chosen to be such that the histograms fill up the cache but do not
exceed its capacity. One disadvantage of this modification is that it
amplifies the border effects. In practice, it usually causes a huge
decrease in processing time. Note that simultaneously processing
stripes on different processors is an easy way to parallelize the
proposed algorithm.

C. Multilevel Histograms

Multilevel histograms have been analyzed in [7] and shown to
be a very effective optimization. The idea is to maintain a parallel
set of smaller histograms accumulating only the higher order bits of
pixels. For example, it is common to use two tier histograms for 8-
bit images, where the higher tier is 4-bit wide while the lower tier
contains the full 8-bit data. It is customary to name them the coarse
and fine levels, respectively. The coarse level would contain 16 bins
(2*) and each one would be the sum of its corresponding 16-element
segment of the fine level.

There are two advantages to multilevel histograms, the first being
the acceleration of the computation of the median. Instead of examin-
ing the entire 256 bins, we can now make 16-element hops by finding
the median at the coarse level. This gives us the segment of the fine
histogram that contains the median. Instead of an average of 128
additions and comparisons, we now only need 16 (8 at each level)
to reach the median. The second advantage is related to addition and
subtraction of histograms. One can skip a 16-element segment of the
fine histogram when its corresponding coarse value is zero. When r
is small, column histograms are sparsely populated and so the added
branching may be worthwhile.

D. Conditional Updating of the Kernel

The separation of histograms in coarse and fine levels enables a
slightly less obvious but very effective optimization. Notice that up
to this point, most of the processing time was spent in adding and
subtracting column histograms to and from the kernel histogram. With
conditional updating, this time is lowered by keeping up to date only
the kernel histogram’s coarse level while its fine level is updated
on-demand.

Recall that computation of the median is done by first scanning at
the coarse level, which indicates the 16-element segment of the fine
level that contains the median. Since a column histogram contributes
to at most 2r 4+ 1 computations of the kernel’s median, at most
2r 4+ 1 of its fine level segments will ever be useful. When pixel
values vary smoothly in the image, the actual figure is much lower
because the same segment is accessed repetitively. Updating the
kernel histogram’s fine level with segments that will never be used
can be skipped.

To do so, we need to maintain a list of the column index at which
each segment was last updated. When moving from one pixel to
the next, we update both levels of the new column histogram but
only the coarse level of the kernel histogram. Next, we compute
the kernel histogram’s median at the coarse level and determine in
which segment of the fine level the median resides. We then bring
that segment up to date by processing column histograms starting
from its last updated column. If that column is offset by more than

2r + 1 pixels from the current one, then there is no overlap between
the kernel at the old location and the current one. We therefore update
the histogram segment from scratch, skipping columns in the process.
It is in that case, by skipping columns, that we make up in reduced
processing time for the additional branching and bookkeeping.

It is also advantageous to interleave the layout of histograms in
memory so that segments of adjacent columns are also adjacent in
memory. That is, histogram bins should be arranged first by segment
index, then by column index, and finally by bin index. That way,
updating a segment of the kernel’s fine level corresponds to summing
a contiguous block of memory.

IV. REFUTATION OF THE GIL-WERMAN LOWER BOUND

A theoretical lower bound of Q(logr) for the complexity of the 2-
D median filter was introduced in [4]. They state that “any algorithm
for computing the r-sized median filter for an n X n input with n >
(3r—1)/2 runs in Q(log r) amortized time per element.” This seems
to be in direct contradiction with our findings: we have proven that
our algorithm is in O(1) and Q(logr) N O(1) = § by definition.

Although their reasoning is correct, it is based on reduction from
sorting. They show that the 2-D median filter has the power of sorting
arbitrary input. They then argue that since the output has been sorted,
the runtime must have been Q(log) per element. This is true as long
as one uses a comparison sort algorithm. This is avoidable when the
number of possible signal values is a constant.

It is well known that non-comparison sort algorithms, of which
bucket and radix sort are examples, are not subjected to this lower
bound [8]. The histogramming process our algorithm makes use of
is analogous to sorting data with a non-comparison sort. The coun-
terexample of a median filter exhibiting O(1) runtime per element
disproves the 2(logr) lower bound. It is also readily recognized as
the true lower bound since per-element processing time cannot be
lower than constant. It would nevertheless be possible to diminish
this constant with new optimization ideas.

V. EXTENSIONS

The proposed algorithm can be extended to new situations. We
explore some of the more common ones in this section.

A. Higher Precision

Images having a bit depth other than § bits can be processed just
as easily by our algorithm. A single change needs to be made: the
number of histogram buckets must be scaled accordingly. This implies
that histogram addition and subtraction as well as the search for the
median will take accordingly more time. It would be useful at some
point to make use of three-tier (or more) histograms as their size
increases.

Larger histograms will also occupy more space in memory, which
will result in smaller stripes (see Section III-B). If this becomes a
problem, the ordinal transform [6] could be of some use. However,
as the size of histograms scales in O(2°), where b represents the
image bit depth, high bit depths are a fundamental weakness of any
histogram-based algorithm.

B. Higher Dimensionality

Median filtering data in more than two dimensions is common in
fields like medical imaging [9], [10] and video processing [11]. The
proposed algorithm can handle N-dimensional data in O(1) runtime
complexity at the cost of increased memory usage. As an example,
Algorithm 3 shows how 3-D median filtering is accomplished.
Extending this to higher dimensions is straightforward.

N
V.4 A
/ N
7 ¥
,,,,,,,,,, - RS
Q V4
‘,

(@ (b)

© (d)

Fig. 3: Movement of diagonal and column histograms in the circular kernel approximated by an octagon. (a) Layout of the five side histograms
one row above the current one. (b) Histograms being lowered to the current row. (c) Position of histograms when centered on the current

row. (d) Octagonal kernel moving horizontally.

Algorithm 3 Median filtering in constant time for 3-D data.

Input: Image X of size m X n X o, kernel radius r
Output: Image Y of the same size
Initialize kernel histogram H, planar histograms hi._, and column
histograms h3. 1.
for i =1 to m do
for j =1tondo
for k =1 to o do
Remove X;_y_1 j4rpktr from B3, 0.
Add Xitr jyrkir to h?+r,k+r
hllc+'r — hllc+r + h‘?+7‘,k+7‘ — h?
H—H + hllc+r - hifrfl
Y; jk < median(H)
end for
end for
end for

hj+r,k—7‘—1

Each new dimension requires a new set of histograms whose size is
the product of the sizes of lower-order dimensions. This exponential
scaling will quickly make it impractical for higher dimensions.
However, it would always be possible to process the data in hyper-
stripes (see Section III-B), which would let one impose an arbitrary
limit on memory usage at the cost of increasing the importance of
the linear terms caused by border effects. As for the runtime, one
can see that the inner loop is still O(1) in the kernel size. It scales
with the number of dimensions as O(NN), as each added dimension
requires one more histogram summation. It is interesting to notice
that a single new pixel from the source image is accessed for each
pixel of the destination image to be computed.

C. Circular Kernel Approximation

A popular extension to many filters is an approximately circular
kernel. Such a kernel shape is closer to the theoretical perfectly
circular kernel as defined on continuous data and minimizes the
artifacts caused by a square kernel. The proposed algorithm can
be extended to an octagonal kernel, as shown in Figure 3. Five
histograms, each one corresponding to one side of the octagon, are
used instead of a single column histogram in the square kernel case.
They can be preserved across rows in much the same way. Instead of
one set of column histograms, five sets are now needed: one for the
vertical sides to the right and the left, and four for the diagonals. Note
that diagonals need separate sets for the left and right side because
they have differing orientations.

The algorithm is still O(1), albeit with a higher constant. Five
sets of histograms must be kept up to date instead of one in the

square kernel case. Moving the kernel histogram from one pixel
to another now requires three histogram summations and three
histogram subtractions instead of one of each in the square kernel
case.

Although our implementation of the octagonal filter is not opti-
mized, we can expect a fast one to be about 5 times slower than
the square kernel. It should be possible to devise better geometric
constructions which could possibly lower the constant while keeping
the algorithm O(1). As another example, hexagonally-tessellated
CCDs such as those made by Fuji could benefit from a hexagonal
kernel, which would be built following a similar reasoning. What
should be pointed out is that the constant scaling of the proposed
algorithm does not depend on the kernel being rectangular.

VI. RESULTS

The new algorithm was compared against Photoshop CS 2, which
features an implementation of Huang’s classic O(r) algorithm, and
against Pixfoliate, a Photoshop plugin distributed by Weiss', imple-
menting his O(logr) algorithm. The latter is the fastest 2-D median
filter algorithm known to the authors. Timing was conducted on a
PowerMac G5 1.6 GHz running Mac OS X 10.4. An 8-megapixel
(3504 x 2336) RGB image with typical content (shown in Figure 4)
was filtered with a varying filter radius. The results are displayed
in Figure 5. One can see the flat trace generated by the proposed
algorithm, indicative of its constant runtime complexity.

The optimizations of sections III-C and III-D are data-dependent
and there exist pathological cases designed to disrupt the hypotheses
on which those optimizations rely. One such case is the rainbow
image shown in Figure 4e, for which per-pixel processing time was
measured to be about twice as long as for the sails image, with a
peak ratio of 2.33 at r = 100. Figure 4f shows the resulting output
featuring an unusual smoothly varying signal, defeating optimization
III-D. As for the the best case (solid black), it was processed twice as
fast. Timing with an assortment of stock photographs produced results
identical to those of Figure 5. Table I shows different processors’
affinity for the proposed algorithm. All four optimizations were used
on those processors.

It may appear surprising that the O(1) algorithm is so much faster
than the O(r) algorithm for small kernel sizes. From experience, a
reduction in complexity often comes at the price of an increase in the
associated constant. In this case, our algorithm is both less complex
and more efficient by a large margin at all kernel sizes compared
with the classic algorithm. It could also be argued that it is simpler
by comparing Algorithms 1 and 2 side by side.

Uhttp://www.shellandslate.com/pixfoliatemacdemo.html

Fig. 4: Effect of median filtering. (a) Original 8-megapixel RGB image. (b) The same image after applying the median filter with a square
kernel of 50 pixels radius. Notice sharpness of edges while small structures have been lost. (c) 512 x 512 image of uniform binary noise
filtered with a square kernel of 20 pixels radius. (d) Same image filtered with an octagonal kernel of 20 pixels radius. Notice disappearance
of horizontal and vertical line artifacts. (e) Closeup of pathological case which tries to defeat the optimizations of sections III-C and III-D.
It is a 512 x 512 region of an 8 megapixel image of a periodic truncated triangle. (f) Output after filtering at r» = 100.

TABLE I: Comparison of the proposed method’s efficiency on
different processors. (r = 50 on an 8-megapixel RGB image.)

SIMD L2 cache | Clock cycles per
Processor instruction set size output element
PowerMac G5 1.6 GHz AltiVec 512 kB 102
Intel Core 2 Duo E6600 SSE2 4096 kB 153
AMD Sempron 2400+ MMX 256 kB 296
Intel Pentium 4 1.8 GHz SSE2 256 kB 628

The new algorithm performs better or worse than Weiss’ O(log)
depending on the value of r. The crossover is at » = 40, although
the traces are fairly parallel. This gives the crossover point a high
sensitivity to experimental conditions. Since Weiss’ Pixfoliate soft-
ware is only available on the PowerPC architecture, comparison was
only carried out on this platform. A slight reduction of the constant
on current or future architectures would greatly lower the crossover
radius.

Given the similar timings of the two best algorithms, the difference
lies in two places. First, the tree of histograms in Weiss’ algorithm
makes the implementation fairly convoluted and generally unsuitable
for custom hardware. Also, as a higher tree is required for greater
radii, different implementations need to be generated, each one han-
dling a portion of the radius range. In contrast, our implementation of
the proposed algorithm, including optimization, totals about 275 lines
of C code and handles all of the radius range. Second, the proposed
algorithm has the advantage of constant complexity. This means that it
will perform better than one of higher complexity as the kernel radius
increases. Given the trend toward higher-resolution images, requiring

8-Megapixel RGB Image, PowerMac G5 1.6 GHz
T

T T T
12 : b
Photoshop CS 2 - O(r)
1r — = — Weiss, 2006 — O(log(n) |]
10+ Our O(1) algorithm i
9r 4
w
2
S 8 4
(5]
)
~ 7 - 4
[}
£
F el 4
j=2)
£
@ sr B
Q
Q
o
T 4f 1
3r 4
2t I e g
s |
0 1 1 1 1 1 1
0 20 40 60 80 100 120

Filter Radius (pixels)

Fig. 5: Timing of the proposed algorithm.

correspondingly higher filter kernel radii, this makes the proposed
algorithm future-proof. Faster hardware with better vectorization
capabilities will also contribute to lowering its time constant.

VII. CONCLUSION

We have presented a fast and simple median filter algorithm whose
runtime and storage scale in O(1) as the kernel radius varies. We
have proposed a few optimizations that make this algorithm as fast as
the fastest currently available, to the extent of our knowledge, while
remaining much simpler. With its straightforward instruction-level
parallelism, it is suitable for CPU-based as well as custom hardware
implementation.

Significant issues regarding the extensibility of the algorithm to
new situations have been addressed. In particular, filtering data of
higher dimensionality or precision, as well as an approximation to a
circular kernel, have been discussed. We have also shown why the
Gil-Werman theoretical lower bound of €2(log) on the complexity of
the 2-D median filter does not apply to traditional algorithms making
use of histograms for sorting the data.

An implementation in C of the proposed algorithm is available
freely on the authors” website? and has been included in the popular
and free OpenCV? computer vision library. We are confident that new,
clever optimizations will further lower its time constant. We hope the
simplicity, speed and adaptability of this new algorithm will make it
useful across a wide range of applications.

ACKNOWLEDGEMENTS

Many thanks to Jean-Daniel Deschénes, Philippe Lambert, and
Nicolas Martel-Brisson for helpful feedback. Thanks to Stéphanie
Brochu for the use of her sails picture.

REFERENCES

[1] J. Tukey, Exploratory Data Analysis. Addison-Wesley Menlo Park, CA,
1977.

[2] P. Maragos and R. Schafer, “Morphological Filters—Part II: Their Rela-
tions to Median, Order-Statistic, and Stack Filters,” IEEE Trans. Acoust.,
Speech, Signal Processing, vol. 35, no. 8, pp. 1170-1184, 1987.

[3] T. Huang, G. Yang, and G. Tang, “A Fast Two-Dimensional Median
Filtering Algorithm,” IEEE Trans. Acoust., Speech, Signal Processing,
vol. 27, no. 1, pp. 13-18, 1979.

[4] J. Gil and M. Werman, “Computing 2-D Min, Median, and Max Filters,”
IEEE Trans. Pattern Anal. Machine Intell., vol. 15, no. 5, pp. 504-507,
1993.

[5] B. Chaudhuri, “An Efficient Algorithm for Running Window Pel Gray

Level Ranking 2-D Images,” Pattern Recognition Letters, vol. 11, no. 2,

pp. 77-80, 1990.

B. Weiss, “Fast Median and Bilateral Filtering,” ACM Transactions on

Graphics (TOG), vol. 25, no. 3, pp. 519-526, 2006.

[7] L. Alparone, V. Cappellini, and A. Garzelli, “A Coarse-to-Fine Algo-
rithm for Fast Median Filtering of Image Data With a Huge Number of
Levels,” Signal Processing, vol. 39, no. 1-2, pp. 33-41, 1994.

[8] D. Knuth, The Art of Computer Programming Volume 3: Sorting and
Searching, 2™ ed. Addison Wesley Longman Publishing Co., Inc.
Redwood City, CA, USA, 1998.

[9] T. Nelson and D. Pretorius, “Three-Dimensional Ultrasound of Fetal
Surface Features,” Ultrasound in Obstetrics and Gynecology, vol. 2,
no. 3, pp. 166-174, 1992.

[10] P. Carayon, M. Portier, D. Dussossoy, A. Bord, G. Petitpretre, X. Canat,
G. Le Fur, and P. Casellas, “Involvement of Peripheral Benzodiazepine
Receptors in the Protection of Hematopoietic Cells Against Oxygen
Radical Damage,” Blood, vol. 87, no. 8, pp. 3170-3178, 1996.

[11] G. Arce, “Multistage Order Statistic Filters for Image Sequence Pro-
cessing,” IEEE Trans. Signal Processing, vol. 39, no. 5, pp. 1146-1163,
1991.

[6

=

Zhttp://nomis80.org/ctmf.html
3http://www.intel.com/technology/computing/opencv/

