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Abstract—The relentless development of the Internet of Things (IoT)

communication technologies and the gradual maturity of Artificial Intel-

ligence (AI) have led to a powerful cognitive computing ability. Users

can now access efficient and convenient smart services in smart-city,

green-IoT and heterogeneous networks. AI has been applied in various

areas, including the intelligent household, advanced health-care, auto-

matic driving and emotional interactions. This paper focuses on current

wireless-communication technologies, including cellular-communication

technologies (4G, 5G), low-power wide-area (LPWA) technologies with

an unlicensed spectrum (LoRa, SigFox), and other LPWA technolo-

gies supported by 3GPP working with an authorized spectrum (EC-

GSM, LTE-M, NB-IoT). We put forward a cognitive low-power wide-

area-network (Cognitive-LPWAN) architecture to safeguard stable and

efficient communications in a heterogeneous IoT. To ensure that the

user can employ the AI efficiently and conveniently, we realize a variety

of LPWA technologies to safeguard the network layer. In addition, to

balance the demand for heterogeneous IoT devices with the communi-

cation delay and energy consumption, we put forward the AI-enabled

LPWA hybrid method, starting from the perspective of traffic control.

The AI algorithm provides the smart control of wireless-communication

technology, intelligent applications and services for the choice of differ-

ent wireless-communication technologies. As an example, we consider

the AIWAC emotion interaction system, build the Cognitive-LPWAN and

test the proposed AI-enabled LPWA hybrid method. The experimental

results show that our scheme can meet the demands of communication-

delay applications. Cognitive-LPWAN selects appropriate communica-

tion technologies to achieve a better interaction experience.

Index Terms—Artificial intelligence, Low-power wide-area network,

LoRa, LTE, NB-IoT

1 INTRODUCTION

The Internet of Things (IoT) forms connections between people

and things, as well as between things and things based on wired

or wireless communication technologies. The IoT establishes a

thing-thing Internet with a wide geographical distribution and
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provides innovative applications and services [1]. At present,

global telecommunication operators have established mobile cellu-

lar networks with wide coverage [2]. Although the 2G, 3G, 4G and

other mobile cellular technologies [3] support wide coverage and

high transmission rates, they suffer from various disadvantages,

such as large power consumption and high costs. According to

Huawei’s analysis report released in February 2016, the number

of connections between the things and things on a global mobile

cellular network occupies only 10% of all the connections [4].

The crucial design purpose of mobile cellular-communications

technology is to improve the interpersonal communication effi-

ciency, since the current capacity of the mobile cellular network is

not sufficient to support the massive connections between things

and things. Up to 2025 the number of connections with industrial

wireless sensing, tracking and control devices will reach to 500

million [1]. Therefore, the IoT should be able to provide end-

users with convenient and efficient intelligent services and open

access to historical data, while integrating a large number of

heterogeneous terminal devices (the terminals of things) in a

transparent and seamless manner. With such services, artificial

intelligence (AI) systems can monitor the users and their sur-

roundings more efficiently [5]. This results in smart cities, smart

homes, autopilot system [6] and health-monitoring applications,

and yields a greener, more environmentally friendly, and more

efficient IoT ecosystem for more cost-effective systems.

The diversity in terms of requirements and technologies for

the Internet of Things has given rise to the heterogeneity of the

network structures and the instability of the design solutions.

Although traditional cellular networks provide long-distance cov-

erage, they hardly provide energy-efficient (EE) connectivity due

to their complex modulation and multiple access technologies [7].

As a result of the continuous development of the IoT its communi-

cation technologies have become more mature. These technologies

can be divided into two main categories according to their trans-

mission distances, as follows. The first category includes short-

range communications technologies with representative technolo-

gies of Zigbee, WiFi, Bluetooth, Z-wave, etc. and typical appli-

cation scenarios such as smart homes. The second category is

the wide-area network communication technology defined as a

low-power wide-area network (LPWAN), with typical application

scenarios such as autonomous driving. The wide-area-network

communication technology is required in low-speed businesses as

a revolutionary IoT access technology, where typical wireless local

area networks (WLANs), i.e., the WiFi, are less costly but suffer

http://arxiv.org/abs/1810.00300v1
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Fig. 1. Historical evolution of wireless-communication technologies.

from a limited coverage distance. Therefore, LPWA technology is

very promising thanks to its long-distance coverage, low power

consumption, low data rates and low costs [8].

LPWA technologies can be classified into two categories. The

first category includes the LoRa, SigFox and other technologies

that work with unlicensed spectra. The second category includes

2/3/4G cellular communication technologies with licensed spectra

based on the 3GPP, such as EC-GSM, LTE-M, NB-IoT, etc.

According to such diverse wireless-communication technologies,

here we propose the cognitive low-power wide-area network

(Cognitive-LPWAN). Such a network aims at smart cities, green

IoT and other heterogeneous networks in AI applications such as

smart home, health monitoring, automatic driving and emotional

interaction. We show that the Cognitive-LPWAN provides users

with more efficient and convenient intelligent services by taking

advantage of LPWA technologies.

Generally speaking, the purpose of a LPWAN is to provide

long-distance communication, i.e., about 30 kilometers cover-

age in rural areas and 5 kilometers coverage in urban areas.

Meanwhile, many IoT devices are characterized by a service

time of more than 10 years. Therefore, we need to improve the

transmission range and power consumption of the LPWAN in

order to adapt it to IoT applications that are highly extensible, e.g.,

the intelligent monitoring infrastructure, in which only a small

portion of the data is transmitted. Thus, two possible technologies

are proposed to solve these two problems. The first one is an

ultra-narrowband technology that enhances the signal-to-noise

ratio (SNR) by focalizing the signals in a narrow band. The

narrowband IoT (NB-IoT) [9] is an implementation example of

this approach. Another approach is to use a coding gain to alleviate

the high noise and power consumption in wideband receivers,

such as the Long-Range Wireless Communication (LoRa) [10]

technology that increases the transmission distance by increasing

the power consumption. However, wireless-communication tech-

nologies with unlicensed spectra can conflict with other business

flows with respect to channel collisions and spectrum occupation

if they are not well controlled [11]. If this technology is abandoned

for these reasons, a market with hundreds of millions of IoT

terminals will also be lost.

Artificial intelligence technologies have become more mature,

and we have now more powerful cognitive computing capabilities

in regards to business perception at the user level, intelligent

transmission at the network level and big-data analysis in the

cloud. Aiming at traffic control, this paper proposes a new,

intelligent solution for the Cognitive-LPWAN architecture, i.e.,

the AI-enabled LPWA hybrid method. We use the AI algorithm

in a data and resource cognitive engine. LPWA technology has

been widely applied to green IoT, so hopefully the new LPWAN

architecture and its solutions for wireless-technology selection will

contribute to the IoT ecosystem.

The main contributions of this paper are as follows:

• We investigate several typical LPWA technologies, includ-

ing the LoRa, SigFox and other wireless-communication

technologies with unlicensed spectra, and 3GPP-supported

2/3/4G cellular-communication technologies with licensed

spectra such as EC-GSM, LTE Cat-m, NB-IoT, etc.

• We propose the Cognitive-LPWAN as a combination of

multiple LPWA technologies, ensuring more efficient and

convenient user experiences in the AI services on the net-

work layer. As a result, stable and efficient communication

is guaranteed between the people and things, people and

people, and things and things in the heterogeneous IoT.

• We puts forward the AI-enabled LPWA hybrid method,

starting off from the perspective of the flow control, which

makes a balance between the communication time delay

and energy consumption in heterogeneous IoT devices. By

using the AI algorithm, we achieve smart control for com-

munication traffic, intelligent applications and services for

the choice of the wireless-communication technology.

• We establish an experimental platform according to the

AIWAC emotion interaction system, and compare the AI-

enabled LPWA hybrid method with the single-technology

mode. The experimental results show that our method can

choose the communication technology accordingly and

demonstrates proper transmission-delay performance.

The rest of this paper is organized as follows. Section 2

summarizes the existing heterogeneous, low-power, wide-area-

network technologies. Section 3 introduces Cognitive-LPWAN

and proposes the solution of multiple wireless-communication

technologies in the smart-cities environment. Next, we present

the AI-enabled LPWA hybrid method modeling in Sec. 4. Sec-

tion 5 demonstrates the building testbed through different wireless-

communication technologies based on baby robots. This building

testbed is used to test the performance of the proposed AI-enabled

LPWA hybrid method. We then discuss open issues for the future

in Sec. 6. Finally, Sec. 7 summarizes the paper.

2 HETEROGENEOUS LOW-POWER WIDE-AREA-

NETWORK TECHNOLOGY

2.1 SigFox

SigFox is provided by the SIGFOX company that was founded

by the Ludovic Le Moan and Christophe Fourtet in 2009. As a

LPWA technology worked on non-licensed spectrum, SigFox has

been rapidly commercialized and provides network devices with
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Fig. 2. Heterogeneous wireless-communication technologies.

ultra-narrowband technology [12]. Different from mobile commu-

nication technology, it is a protocol that aims to create wireless

IoT special networks with low power consumption and low costs.

More concretely, the maximum length of each message on a device

that operates based on the Sigfox network is nearly 12 bytes due

to the 50 microwatts upper limit of one-way communications. And

no more than 150 messages will be sent per day by each device.

Moreover, the coverage provided by a SigFox network can reach

up to 13 kilometers.

2.2 LoRa

LoRa is currently one of the most common LPWA technolo-

gies worked on non-licensed spectrum, which is provided by

SemTech [10]. The main characteristics of LoRa wireless tech-

nology include 20 km coverage range, 10,000 or even millions

of nodes, 10 years of battery life, and 50 kbps data rate. As

a wireless technology based on the sub-GHz frequency band,

LoRa Technology enables massive smart IoT applications and

solve some of the biggest challenges facing large-scale IoT,

including energy management, natural resource reduction, pol-

lution control, infrastructure efficiency, disaster prevention, and

more. With an increase in the number of LoRa devices and

networks and consequent mutual spectrum interferences, a unified

coordination-management mechanism and a large network are

required to allocate and manage the communication spectra due

to the unauthorized spectrum of the LoRa. Some aspects should

be considered in LoRa applications, such as the transmission

distance, the number of connected nodes, application scenarios,

the power consumption and costs.

2.3 LTE-M

3GPP possesses three basic standards, i.e., LTE-M [13], EC-

GSM [14] and NB-IoT [15], which are, respectively, based on

the LTE evolution, GSM evolution and Clean Slate technologies.

Start from 3GPP R12 in 2013, LTE-Machine-to-Machine (LTE-

M) is intended to meet the requirements of IoT devices based on

the existing LTE carriers with an upstream and downstream data

rate of 1 Mbps [13]. LTE-M possesses four basic advantages of

LPWA technology including wide coverage, massive connections,

low power consumption and low module costs. Due to the wide

coverage, LTE-M achieves a transmission gain of 15 dB in

comparison to the existing technologies under the same licensed

spectrum (700 - 900 MHz), which improves the coverage ability of

an LTE network significantly. Besides, a LTE-M network cell can

support nearly 100,000 connections. The standby time for LTE-M

terminals can be up to 10 years.

2.4 EC-GSM

EC-GSM (Extended Coverage-GSM) [14] was put forward after

the narrowband IoT technology transferring to GSM (Global

System for Mobile Communication), according to the research

project in the 3GPP GERAN (GSM EDGE Radio Access Net-

work) in 2014. As a result, a wider coverage was achieved with

20 dB higher than traditional GPRS, and five major objectives

were proposed as follows: the improvement of the indoor cov-

erage performance, support to large-scale device connectivity,

simplification of the devices, reduction of the power consumption

and latency. However, with the continuous development of the

technology, the CIoT (cellular IoT) communication should be

redefined, resulting in the emergence of NB-IoT. NB-IoT is a

clean-slate solution which is not based on GSM. Therefore, the

research of the cIoT was transferred to the RAN group, that will

be introduced in next subsection. The EC-GSM is continued to

be developed by GERAN until the 3GPP R13 NB-IoT standard is

almost updated.

2.5 NB-IoT

In 2015, the 3GPP RAN initiated research on a new air-interface

technology called Clean Slate CIoT for narrowband wireless

access, which covered the NB-CIoT and NB-LTE. These two tech-

nologies are fairly incompatible and compatible with the existing

LTE for easier deployment, respectively. In 2016, for a unified

solution, NB-IoT was considered as a fusion of NB-CIoT and NB-

LTE by 3GPP R13. NB-IoT is a new type of LPWA technology

intended for sensing and data collection applications, such as

intelligent electric meters, environment supervision, and etc. It can

satisfy the requirements of non-latency-sensitive and low-bitrate

applications (time delay of uplink can be extended to more than

10 s, and uplink or downlink for a single user are supported at

160 bit/s at least), which are coverage enhancement (coverage

capacity is increased 20 dB), ultralow power consumption (a 5-

Wh batter can be used by one terminal for 10 years), and massive

terminal access (a single sector can supports 50,000 connections)

at transmission bandwidth of 200 kHz.

2.6 Comparison

We summarize the development time line of the wireless com-

munication technology. Fig. 1 shows the evolution process of 1G,

2G, 3G, BLE, 4G, SigFox, LoRa, LTE-M, EC-GSM, 5G, NB-

IoT, etc. At the same time, we also have the joint-development

nodes of other technologies, such as the mobile and short-

distance communication technologies. It is clear that, at present,

wireless-communication technology is developing vigorously, and

represents a key node to deploy and use the hybrid LPWAN

architecture.

According to the IoT standards of 3GPP [16], [17] and tech-

nology development presentation of Dr. Wei [18], we summarizes

and compares the mentioned LPWA technologies in terms of

the coverage, spectrum, bandwidth, data rate, and battery life in

Table 1. LTE possesses the smallest coverage because of its large
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TABLE 1
Comparison of LPWA technologies

Technologies
LTE-Evolution Narrowband Non-3GPP

LTE-M
NB-IoT

EC-GSM LoRa SigFox
NB-LTE NB-CIoT

Coverage < 11 km < 15 km < 15 km < 15 km < 20 km < 13 km

Spectrum
Licensed

(7-900 MHz)
Licensed

(7-900 MHz)
Licensed

(8-900 MHz)
Licensed

(7-900 MHz)

Unlicensed
(867-869 MHz or

902-928 MHz)

Unlicensed
(900 MHz)

Bandwidth 1.4 MHz 200 kHz 200 kHz 2.4 MHz 125 kHz, 250 kHz, 500 kHz 100 kHz

Date Rate < 1 Mbps < 150 kbps < 400 kbps 10 kbps < 50 kbps < 100 bps

Battery Life > 10 years > 10 years < 10 years > 10 years < 10 years > 10 years

data transmission rate and high bandwidth resources and energy

consumption. Hence, it is not suitable for WAN applications.

LoRa does not exhibit a fixed-frequency spectrum and bandwidth

resources, because it works in the unauthorized frequency band,

and is influenced by the regulations in the area they are used in. As

a result, it is not suitable for mobile communications, whereas it is

suitable for wireless sensor network communications and private

businesses. A low power consumption is the primary requirement

for all LPWA technologies, so the above technologies provide a

battery life of up to 10 years.

Fig. 2 compares the coverage and the data rate of the com-

monly used LPWA technology and other wireless-communication

technologies, e.g., LoRa, EC-GSM, NB-IoT, WiFi, BLE (blue-

tooth low-power consumption), and LTE-M. Short-distance and

high-bandwidth communication technologies, such as WiFi, can

cover up to 100 m with a data transmission rate of 100 Mbps.

This communication mode is suitable for short-distance and

high-bandwidth applications. For short-distance and low-data-

transmission-rate communication technologies, e.g., Bluetooth

and ZigBee, the highest coverage can reach to 100 m or so

while its data transfer rate is 100 kbps. The communication mode

is suitable for short-distance, low-bandwidth applications. Long-

distance and high-data-transmission-rate communication tech-

nologies, such as UMTS and LTE, can cover a maximum range

of 10 km, with a data transmission rate of 100 Mbps. This

communication method is suitable for long-distance and high-

bandwidth applications. GSM can provide coverage up to 10

km, and a data-transmission rate of close to 100 kbps. This

communication mode is suitable for long-distance and medium-

bandwidth applications. Long-distance low-data-transmission-rate

communication technologies, such as LoRa, NB-IoT, C-IoT and

NB-CIoT, can cover up to 10 km, while the data transmission

rate is 100 kbps, and this communication method is suitable for

long-distance and low-bandwidth applications.

3 COGNITIVE LOW-POWER WIDE-AREA-

NETWORK ARCHITECTURE

Fig. 3 shows the architecture of Cognitive-LPWAN. This archi-

tecture takes advantage of the LPWA communication technology

(in Section 2), the heterogeneous IoT applications, SDN and AI

technology. Cognitive-LPWAN realizes the mixing of a variety of

LPWA technologies, and provides the users with more efficient

and convenient intelligent services. The main applications of this

technology are smart cities, green IoT, general heterogeneous

networks, as well as AI applications such as smart home, health

monitoring, automatic driving and emotional interaction.

(1) IoT / Heterogeneous LPWANs

It is clear from the above text that, at present, there are

many types of wireless-communication technologies causing het-

erogeneous and complicated IoT infrastructure and applications.

As shown in Fig. 3, the heterogeneous IoT platform based on

a variety of wireless-communication technologies, including the

LPWA technology. These wireless-communication technologies

include unlicensed LPWA technology (LoRa, SigFox), short-

distance wireless-communication technology (BLE, WiFi), and

mobile cellular-communications technology (NB-IoT, LTE, 4G

and 5G). The applications and coverage areas supported by

these technologies intersect and are widely used in users’ lives.

Technically, they can even replace each other. However, for a

comprehensive consideration of cost and communication perfor-

mance, power consumption, mobility [19] and other factors, the

applications of these techniques still have their own advantages in

specific scenarios. The coverages of these technologies, listed in

Fig. 3, are as follows. The coverage of NB-IoT is < 15 km, the

coverage of BLE is < 10 m, the coverage of WiFi is < 100 m, the

coverage of LoRa is < 20 km, the coverage of LTE is < 11 km

and the coverage of 5G is < 15 km [20]. The above coverage areas

(as well as other performance indicators, such as transmission rate,

bandwidth, sensor capacity are discussed in Sec. 2) limit the pop-

ularity of these technologies throughout the field. Nevertheless,

different applications or services have different requirements and

use different communication technologies. For instance, BLE is

often used for short-distance mobile-phone or robot communi-

cations, and WiFi is low cost, has a fast transmission rate and

is a stable communication in WLAN (wireless WAN network)

applications such as the smart home. Moreover, Nb-IoT base-

stations can be built based on LTE and 4G infrastructures, and

use LTE spectrum resources, which greatly saves the promotion

costs and supports low-power-consumption WAN applications.

LoRa is widely used for smart sensing (the interconnection and

transmission of mass sensors) and other applications thanks to its

advantages in working in a non-authorized spectrum. The IoT and

its intelligent applications are given in details in Fig. 3. Among

them, NB-IoT supports agriculture and environment monitoring,

consumer tracking, smart buildings, smart metering and smart

cities. BLE supports machine-to-machine (M2M) communication,

device-to-device (D2D) communication and other applications.

WiFi supports smart home, wireless access [21] and M2M com-

munication and other applications; LoRa supports smart sensing,

smart home, vehicle-to-vehicle (V2V) communication and M2M

communication. The LTE, 4G and 5G, as a wireless-access tech-

nology on the Edge of the IoT, connect the above IoT cells (NB-

IoT, BLE, WiFi, LoRa, etc.) that are the closest to the user to the

Edge Cloud and realize the network-access function.

(2) Cognitive engine
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Fig. 3. Architecture of the cognitive low-power wide-area network.

It is clear from Fig. 3 that in the Edge Cloud and Cloud [22] we

have introduced the cognitive engine, deployed high-performance

artificial intelligence algorithms, and stored a lot of user data

and IoT business flows. Consequently, it can provide a high-

precision calculation and data analysis and provide Cloud support

for the selection of the LPWA communication technology. The

Cognitive engine is divided into two types, i.e., the resource-

cognitive engine and the data-cognitive engine [23]. 1) Data

cognitive engine: processing the real-time multi-modal business

data flow in the network environment, with data analysis and

business automatic processing power, executing the business logic

intelligently, and realizing the cognition to the business data and

resource data through a variety of cognitive calculating meth-

ods. This includes data mining, machine learning, deep learning

and artificial intelligence. As a result, a dynamic guide [24]

of the resource-allocation [25], [26] and cognitive services will

be achieved. 2) The resource-cognitive engine can perceive the

computing resources, communication resources [27] and network

resources [28] of heterogeneous resources IoT [29], edge cloud

and remote cloud [30], and make the real-time feedback of

the comprehensive resources data to the data cognitive engine.

Meanwhile, the network resources include the network type,

data flow, communication quality of business and other dynamic

environment parameters. Added to this, the analysis results of

the data-cognition engine are received to guide the selection of

the LPWA technologies and real-time dynamic optimization and

allocation of resources.

(3) AI-enabled LPWA hybrid method

The AI-LPWA hybrid method is a key component of the new

architecture proposed in this paper, as shown in the circular flow

chart in Fig. 3. In this section we discuss the algorithm flow.

When a user or device in the IoT makes a request, the business

flow is transferred to the edge of the IoT through the current

LPWA technology. It is then transmitted by the LTE, 4G, 5G [31]

and other technologies to the Edge Cloud (wireless access point,

router, base-station and other Edge computing nodes). If its request

computation amount exceeds the Edge Cloud’s capability, it will

be forwarded to the Cloud [32] again by the Edge computing

node. In addition, the question is whether the Edge Cloud or

the Cloud dealing with the business flow, the data-cognitive

engine we deployed in each compute node will perceive all

the information contained in the business flow, and consolidate

the perceived requests, including the application request, content

request, data volume, communication capacity, user mobility, cur-

rent LPWA technology, and transmission rate. Subsequently, the

data-cognitive engine will intelligently analyze the perceived re-

quests, and extract the traffic pattern to transmit it to the resource-

cognitive engine for the admission control. When the Edge Cloud

computing node/Cloud computing node admits the requests, the

cognitive engine will allocate the computing resources for the IoT
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users or devices launching the request, and determine what type

of LPWA wireless-communication technology will be adopted to

carry the information back. The returning information (business

content and control information) includes the LPWA technology

selection, interaction result, content feedback, services feedback,

resource allocation, and real-time monitoring. Among them, the

selected LPWA technology will be used in the next request until

the feedback traffic pattern of the reverse propagation in the next

traffic monitoring does not conform to the current technological

performance. At this point it will be replaced. The specific AI-

enabled LPWA hybrid method modeling will be introduced in

Section 4.

4 AI-ENABLED LPWA HYBRID METHOD MODEL-

ING

This section presents the mathematical model of the AI-LPWA

hybrid method. Here, we introduce the no-label learning algo-

rithm for modeling [33]. Specifically, in this paper, aiming at

the current business flow reaching the compute nodes, its traffic

patterns are extracted and added to the traffic-pattern data set

already there in the data-cognitive engine. Next, we integrate the

existing data to predict and evaluate the selection of wireless-

communication technologies in this business. We assume that

the existing traffic-pattern data set (i.e., the labeled data sets)

are xl = (xl
1
, xl

2
, ..., xl

n), where x represents the traffic pattern

(including the communication time delay, data volume, transmis-

sion rate, user mobility, and computing complexity), n represents

the number of labeled data. The service request (business flow)

data set (i.e., unlabeled data set) that reaches the compute node

is xu = (xu
1
, xu

2
, ..., xu

m), where m represents the number of

non-labeled data. The label corresponding to the label data set

is yl = (ylx1
, ylx2

, ..., ylxn
). Suppose the probability of assigning

some wireless communication technology to this traffic flow is

yuxi
= {p1xu

i

, p2xu

i

, ..., pcxu

i

}. Here, p
j
xu

i

represents the proba-

bility that the traffic pattern xu
i is predicted as category j, j

represents the wireless-communication technology, where j =
{LTE,NB − IoT, LoRa, Sigfox,BLE,WiFI, 4G, 5G...},

c represents the number of j. Then, the pre-selection probability

entropy of the communication technology of the non-labeled data

set is shown as Eq. (1).

E(yuxi
) = −

c∑

j=1

p
j
xu

i

log(pjxu

i

) (1)

It is clear from the above formula that decreasing the entropy

value results in a lower prediction uncertainty for the new an-

notated data (i.e., the wireless-communication technology used

to allocate the business flow). Therefore, entropy can be used as

the pre-selection standard of the LPWA technology. However, the

selection of the threshold value is uncertain, i.e., the low entropy

value might still lead to the wrong selection of the communication

technology (which may be directly reflected by the user experience

data, such as interactive delay and energy consumption). If the pre-

selection of the LPWA technology is not accurate, i.e., this traffic

pattern is added to the existing data set as trusted data, this can lead

to the accumulation of errors in the subsequent training model.

Specifically, the label corresponding to the traffic-pattern data was

incorrectly marked, which results in increased noise added to the

data set and increases the forward propagation error.

In order to overcome this problem, we apply the traffic

monitoring to the business flow, i.e., each time there is a new
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Fig. 4. Comparison of the transmission delay between the AI-enabled
LPWA hybrid method and different wireless-communication technolo-
gies and in the AIWAC system.
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Fig. 5. Comparison of the energy consumption between the AI-enabled
LPWA hybrid method and different wireless-communication technolo-
gies and in the AIWAC system.

data joining the training set, the data joining each time will be

evaluated. However, we might not always trust low-threshold data.

Assume the independent tag data set added based on the low-

entropy threshold is z. Then, for any xu
i ⊆ z, the following

conditions should be met, as shown in Eq. (2).

E(yuxi
) 6 E(ylxi

) (2)

In other words, the data of the error markers can be corrected

through a re-evaluation, i.e., reverse propagation in Fig. 3 (4), and

the tag results might be fine-tuned to reduce the error.

5 TESTBED AND ANALYSIS

We use the AIWAC system [34] as an AI-enabled, heterogeneous,

low-power, wide-area-network architecture (application scene),

which realizes the emotional interaction between the users and the

smartphone / AIWAC robot. In our real experimental environment,

smart clients (smartphones, robots, etc.) represent the IoT devices,
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and the local server represents the deployed edge computing node.

Meanwhile, the cloud deploys a big-data center and an analytics

server as the remote service background of the smart client. Some

of the hardware parameters include the Smart Client (Android

7.0, 8-core, 1.2 GHz frequency), Local Server (CentOS 7, Quad-

core, 3.4 GHz frequency), GPU Analytics Server (Ubuntu 16.04,

NVIDIA GTX1080ti*2) and Big data Center (Android 4.4, 16core

4 GHz + 42core 4 GHz). The computation capability of the Smart

Client (Edge Computing Node) < Local Server (Fog Computing

Node) < Big Data Center (Cloud).

We deployed several wireless-communication technologies,

which include NB-IoT, BLE, WiFi and LTE, as mentioned in

Section IV on smartphones (communication protocol alternatives)

and AIWAC robots (hardware circuit-board communication mod-

ules). These technologies represent the current typical LPWA

communication protocols and provide us with a performance

basis for the communication protocols in a real environment for

the proposed Cognitive-LPWAN. In addition, we deployed the

AI-enabled LPWA hybrid method on the cognitive engine of

the Smart Client, Edge Computing Node and Cloud Computing

Node to test the interaction performance comparison between the

proposed scheme and the one under the single communication

mode.

Fig. 4 and Fig. 5 show the experimental results of the trans-

mission delay and energy consumption with the data-transmission

amount (network throughput) of different wireless communication

technologies. Due to the narrow bandwidth of the NB-IoT and

BLE technologies, their low transmission rate leads to a large

interaction delay. In particular, they are seriously defective when

transferring large content or files. However, they consume ultra-

low energy consumption while transmitting small amounts of data,

so they are often used in the low-power-consumption business.

Data-transmission rates are an advantage for WiFi and LTE

technologies, so transmission delays are less important than the

two mentioned above. However,the energy consumption of LTE

and WiFi are opposites. With the increase in energy consumption

and costs, they represent a better option for businesses that are

sensitive to the time delay. The transmission delay of the proposed

AI-enabled LPWA hybrid method is under AIWAC testbed and is

basically consistent with WiFi and LTE. This is due to the fact that

the AIWAC system provides the emotion recognition and interac-

tive services. And it is a time-delay-sensitive application. For the

loss under the compromise between the energy consumption and

delay of the choice, it is better to use a high-speed communication

technology. For the compromise between the energy consumption

and the time delay, the loss of the partial energy consumption is

chosen as the cost, so it is preferential to be used in high speed

communication technology.

6 OPEN ISSUES

Although Cognitive-LPWAN architecture is proposed in this pa-

per, business shunt problems are discussed and the AI-enabled

LPWA hybrid method was introduced, in the large-scale use of the

hybrid LPWA technologies, the following challenging problems

should be solved.

(1) Security requirements: There are many similarities

and differences between the security requirements of Cognitive-

LPWAN and conventional IoT. The security requirements of

Cognitive-LPWAN mainly includes the hardware for the low-

power IoT, the network communication mode, and the actual

business requirements related to the equipment and other aspects.

For instance, any tiny security breach could cause serious safety

accidents in the IoT platform with a very large number of

users [35], [36].

(2) Energy consumption and real-time management: Since

LPWA technology has mostly been applied to the low-power

long-distance service, its transmission rate is much lower than

other technologies. In the heterogeneous IoT, considering the

mobility of the users and the diversity of applications, we should

compromise the energy consumption and real-time performance

of multiple intelligent services. Accordingly, we introduce short-

distance communication technologies, e.g., BLE and WiFi, as

well as mobile cellular networks, e.g., 4G and 5G. We therefore

meet the different requirements of various businesses for energy

consumption and real time.

(3) Spectrum resources optimization: Since the LPWAN in-

cludes technologies working in an unauthorized spectrum (taking

LoRa and SigFox, for example), limited spectrum resources are

required to serve a large number of IoT devices. Hence, there

are conflicts between the bandwidth occupation and the spectrum

resources for a large number of communication users. Therefore,

we need to use AI technologies such as machine learning to

conduct concurrent control and schedule to similar users in the

channel allocation, interference management, transmission power

optimization and other aspects.

(4) Infrastructure deployment: The Cognitive-LPWAN de-

ployment with distributive algorithms is a hot research topic at

present. How to build a new LPWAN architecture on the layout

of the existing infrastructure and achieve the goal of minimizing

cost and maximizing utilization rate is the key point that telecom

operators need to consider.

7 CONCLUSION

The diversity of the Internet of Things (IoT) in terms of demand

and technology has led to the heterogeneity of the network

structure and the instability of the design scheme. This paper

has compared the performance of the commonly used wireless-

communication technologies. In particular, we considered differ-

ent aspects, advantages and disadvantages of the LoRa, SigFox,

LTE-M, EC-GSM and NB-IoT technologies which are typical in

LPWA technology. Their advantages and disadvantages in terms of

coverage, frequency spectrum, bandwidth and data rate, and bat-

tery life are discussed. In LPWA and short-distance communica-

tion technologies (BLE, WiFi) as well as mobile cellular-network

technology (4G, 5G) are summarized. We aimed at wireless-

communication technologies and heterogeneous networks, includ-

ing smart cities and green IoT, as well as AI applications including

smart home, health monitoring, automatic driving and emotional

interaction. We next proposed Cognitive-LPWAN, which realizes

the mixing of a variety of LPWA technologies and provides more

efficient and convenient smart services. In addition, on the basis

of the powerful cognitive computing (i.e., service awareness at

the user level, intelligent transmission at the network level and

a large data-analysis ability in the cloud) provided by the AI

technology, we proposed the AI-enabled LPWA hybrid method

from the perspective of traffic control. It uses the AI algorithms

to conduct business shunt and filtering to wireless-communication

technologies, intelligent applications and services for the choice

of the wireless-communication technologies. Then, we took the

AIWAC emotion interaction system as an example and built the
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architecture of Cognitive-LPWAN to test the proposed AI-enabled

LPWA hybrid method. The experimental results show that our

scheme can meet the demands of the communication (trans-

mission) delay (and energy consumption) in applications where

appropriate communication technologies are chosen to achieve

a better interaction experience. Finally, we presented different

aspects of future research regarding the security requirements, en-

ergy consumption and real-time management, spectrum resource

optimization and infrastructure deployment.

REFERENCES

[1] K. Hwang, M. Chen, “Big Data Analytics for Cloud/IoT and Cognitive
Computing,” Wiley, U.K., ISBN: 9781119247029, 2017.

[2] A. Asadi, V. Mancuso, R. Gupta, “DORE: An Experimental Framework
to Enable Outband D2D Relay in Cellular Networks”, IEEE/ACM Transac-

tions on Networking, No. 99, pp. 1–14, 2017.

[3] R. Vaze, S. Iyer, “Capacity of Cellular Wireless Network”, WIOPT 2017,
pp. 1–8, 2017. DOI:10.23919/WIOPT.2017.7959907.

[4] Huawei, “2016 is the Key Year for the Develop-
ment of NB-IoT Industry,” MWC2016, 2016. URL:
http://iot.ofweek.com/2016-02/ART-132209-8120-29069354.html

[5] H. Lu, Y. Li, M. Chen, et al., “Brain Intelligence: Go beyond Artificial
Intelligence”, Mobile Networks & Applications, Vol. 23, No. 2, pp. 368-
375, 2017.

[6] F. R. Yu, “Connected Vehicles for Intelligent Transportation Systems,”
IEEE Trans. Veh. Tech., Editorial, Vol. 65, No. 6, pp. 3843–3844, June
2016.

[7] X. Ge, Y. Qiu, J. Chen, M. Huang, et. al, “Wireless Fractal Cellular
Networks,” IEEE Wireless Communications, Vol. 23, No. 5, pp. 110–119,
Oct. 2016.

[8] R. Usman, P. Kulkarni, and M. Sooriyabandara. “Low Power Wide Area
Networks: An Overview.” IEEE Communications Surveys & Tutorials, Vol.
19, No. 2, pp. 855-873, 2017.

[9] M. Chen, Y. Miao, Y. Hao, K. Hwang, “Narrow Band Internet of Things,”
IEEE Access, Vol. 5, pp. 20557-20577, 2017.

[10] M. Saari, A. M. Baharudin, P. Sillberg, S. Hyrynsalmi, W. Yan. “LoRa-A
survey of recent research trends,” MIPRO 2018, Opatija, Jadranska obala,
Hrvatska, 21-25 May 2018.

[11] G. Wang, W. Xiang, J. Yuan, “Outage Performance for Compute-and-
Forward in Generalized Multi-Way Relay Channels,” IEEE Communica-

tions Letters, Vol.16, No.12, pp.2099-2102, Dec. 2012.

[12] B. Vejlgaard, M. Lauridsen, H. Nguyen, I. Z. Kovacs, P. Mogensen; M.
Sorensen, “Coverage and Capacity Analysis of Sigfox, LoRa, GPRS, and
NB-IoT,” IEEE VTC Spring 2017, Sydney, Australia, 4C7 June 2017.

[13] R. Ratasuk, et al. “Narrowband LTE-M System for M2M Communica-
tion,” IEEE VTC Spring 2014, Seoul, South Korea, 18C21 May 2014.

[14] S. Lippuner, B. Weber, M. Salomon, M. Korb, Q. Huang, “EC-GSM-IoT
network synchronization with support for large frequency offsets,” IEEE

WCNC 2018, Barcelona, Spain, 15-18 April 2018.

[15] Y. Miao, W. Li, D. Tian, M. S. Hossain, M. F. Alhamid, “Narrow Band
Internet of Things: Simulation and Modelling,” IEEE Internet of Things

Journal, Vol. 5, No. 4, pp. 2304-2314, 2017.

[16] 3GPP, “Standards for the Iot”, 2 December 2016. URL:
http://www.3gpp.org/news-events/3gpp-news/1805-iot r14

[17] P. Reininger, “3Gpp standards for the Internet-of-Things,” Huawei, Shen-
zhen, China, Tech. Rep. report no. 3GPP RAN WG 3, 2016.

[18] J. Wei, “Development status of 3GPP NB-IoT Internet of things technol-
ogy,” 2016 Institute for Information Industry, 2016.

[19] G. Rizzo, V. Mancuso, S. Ali, M. A. Marsan, “Stop and Forward:
Opportunistic Local Information Sharing Under Walking Mobility”, Ad Hoc

Networks, May 2018. DOI: 10.1016/j.adhoc.2018.05.011.

[20] W. Xiang, K. Zheng, X. Shen, “5G Mobile Communications”, Springer,
2017, ISBN: 978-3-319-34206-1.

[21] R. Vaze, “Random Wireless Networks: An Information Theoretic Per-
spective,” Cambridge University Press, 2015.

[22] Q. Zhang, S. Guo, “Online Shuffling with Task Duplication in the Cloud”,
ZTE Communications, Vol. 15, No. 4, pp. 38–42, October 2017.

[23] M. Chen, Y. Tian, G. Fortino, J. Zhang, I. Humar, “Cognitive Internet of
Vehicles,” Computer Communications, Vol. 120, pp. 58-70, May 2018.

[24] P. Hassanzadeh, A. M. Tulino, J. Llorca, E. Erkip, “On Coding for Cache-
Aided Delivery of Dynamic Correlated Content”, IEEE Journal on Selected

Areas in Communications, June 2018. DOI: 10.1109/JSAC.2018.2844579.

[25] H. Shan, Y. Zhang, W. Zhuang, A. Huang, Z. Zhang, “User Behavior-
aware Scheduling based on Time-frequency Resource Conversion,” IEEE

Trans. Vehicular Technology, Vol. 66, No. 9, pp. 8429–8444, Sept. 2017.
[26] L. Jiao, A, M, Tulino, J. Llorca, A. Sala, “ Smoothed Online Resource

Allocation in Multi-Tier Distributed Cloud Networks”, IEEE IPDPSW

2016, Chicago, USA, 23-27 May 2016.
[27] H. Shan, Z. Ye, Y. Bi, A. Huang, “Genetic Algorithm based Resource

Management for Cognitive Mesh Networks with Real-time and Non-real-
time Services,” KSII Trans Internet & Information Systems, Vol. 9, No. 8,
pp. 2774–2796, Aug. 2015.

[28] L. Chen, F. R. Yu, H. Ji, V. C. M. Leung, “Dynamic Resource Allocation
in Next Generation Cellular Networks with Full-Duplex Self-backhauls”,
Wireless Networks, 2016.

[29] H. Ji, L. Xi, Z. He, W. Ke, “ Resource Allocation Scheme based on Game
Theory in Heterogeneous Networks”, The Journal of China Universities of

Posts and Telecommunications, Vol. 23, No. 3, pp. 57–88, 2016.
[30] F. R. Yu, J. Liu, Y. He, P. Si, and Y. Zhang, “Virtualization for Distributed

Ledger Technology (vDLT),” IEEE Access, Vol. 6, pp. 25019–25028, 2018.
[31] X. Ge, H. Wang, R. Zi, Q. Li and Q. Ni, “5G Multimedia Massive

MIMO Communications Systems,” Wireless Communications and Mobile

Computing (Wiley InterScience), Vol. 16, No. 11, pp. 1377–1388, Aug.
2016.

[32] Y. Zhi, W. Ke, H. Ji, “Delay-aware Downlink Beamforming with Discrete
Rate Adaptation for Green Cloud Radio Access Network”, The Journal of

China Universities of Posts and Telecommunications, Vol. 24, No. 1, pp.
26–34, 2017.

[33] Min Chen, V. Leung, “From Cloud-based Communications to Cognition-
based Communications: A Computing Perspective”, Computer Communi-

cations, Vol. 128, pp. 74-79, 2018.
[34] M. Chen, Y. Zhang, Y. Li, M. M. Hassan, A. Alamri, “AIWAC: Affective

Interaction Through Wearable Computing and Cloud Technology,” IEEE

Wireless Communications, Vol. 22, No. 1, pp. 20-27, 2015.
[35] H. Long, W. Xiang, Y. Zhang, Y. Liu, W. Wang, “Secrecy capacity

enhancement with distributed precoding in multirelay wiretap systems,”
IEEE Transactions on Information Forensics and Security, Vol. 8, No. 1,
pp. 229-238, Jan. 2013.?

[36] H. Li, K. Wang, X. Liu, Y. Sun, S. Guo, “A Selective Privacy Preserving
Approach for Multimedia Data”, IEEE Multimedia Magazine, Vol. 24, No.
4, pp. 14ł25, 2017.

Min Chen [SM’09] has been a full professor in
the School of Computer Science and Technology
at HUST since February 2012. He is Chair of the
IEEE Computer Society STC on big data. His
Google Scholars Citations reached 13500+ with
an h-index of 58. He received the IEEE Commu-
nications Society Fred W. Ellersick Prize in 2017.
His research focuses on cyber physical systems,
IoT sensing, 5G networks, SDN, healthcare big
data, etc.

Yiming Miao received the B.Sc. degree in Col-
lege of Computer Science and Technology from
QingHai Univerisity, Xining, China in 2016. Cur-
rently, she is a Ph.D candidate in School of Com-
puter Science and Technology at Huazhong Uni-
versity of Science and Technology (HUST). Her
research interests include IoT sensing, health-
care big data and emotion-aware computing,
etc.

http://iot.ofweek.com/2016-02/ART-132209-8120-29069354.html
http://www.3gpp.org/news-events/3gpp-news/1805-iot_r14


UNDER REVIEW: IEEE TRANSACTIONS ON GREEN COMMUNICATION AND NETWORKING, VOL. XX, NO. YY, MONTH 20XX 9

Xin Jian received his B.E. and Ph.D. degree
from Chongqing University, Chongqing, China
in 2009 and 2014, respectively. He is an asso-
ciate professor at the College of Communica-
tion Engineering, Chongqing University, China.
His interests include the next generation mobile
communication, massive machine type commu-
nications, Narrow band Internet of Things.

Xiaofei Wang [M’10, SM’18] received the MS
and PhD degrees from the School of Com-
puter Science and Engineering, Seoul National
University, in 2008 and 2013, respectively. He
worked as a post-doctoral research fellow in
the University of British Columbia, Canada from
2014 to 2016. He is currently a professor with the
School of Computer Science and Technology,
Tianjin University, China. He has published more
than 80 research papers in top journals and
conferences, and got the IEEE Communications

Society Fred W. Ellersick Prize, in 2017. His research interests include
cooperative edge caching, and D2D traffic offloading. He is a senior
member of the IEEE.

Iztok Humar [M’01, SM’10] received Ph.D. degrees in telecommuni-
cations from the Faculty of Electrical Engineering (FE) and informa-
tion management at the Faculty of Economics, University of Ljubljana,
Slovenia, in 2007 and 2009, respectively. He is an assistant professor
at the FE, where he lecturers on design, management and modeling
of telecommunication networks. His main research topics include the
design, planning and management of telecommunications networks and
services, as well as measurement and modeling of network loads and
traffic. Currently, he is a visiting professor at Huazhong University of
Science and Technology (HUST), China, where he works on energy-
efficient wireless networks. Currently, he serves as IEEE Communi-
cation Society of Slovenia Chapter Chair, MMTC member, and IEEE
Slovenia Section Secretary.


	1 Introduction
	2 Heterogeneous Low-Power Wide-Area-Network Technology
	2.1 SigFox
	2.2 LoRa
	2.3 LTE-M
	2.4 EC-GSM
	2.5 NB-IoT
	2.6 Comparison

	3 Cognitive Low-Power Wide-Area-Network Architecture
	4 AI-Enabled LPWA Hybrid Method Modeling
	5 Testbed and Analysis
	6 Open Issues
	7 Conclusion
	References
	Biographies
	Min Chen
	Yiming Miao
	Xin Jian
	Xiaofei Wang
	Iztok Humar


