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Abstract

A crucial step in understanding the architecture of cells and tissues from microscopy images, and 

consequently explain important biological events such as wound healing and cancer metastases, is 

the complete extraction and enumeration of individual filaments from the cellular cytoskeletal 

network. Current efforts at quantitative estimation of filament length distribution, architecture and 

orientation from microscopy images are predominantly limited to visual estimation and indirect 

experimental inference. Here we demonstrate the application of a new algorithm to reliably 

estimate centerlines of biological filament bundles and extract individual filaments from the 

centerlines by systematically disambiguating filament intersections. We utilize a filament 

enhancement step followed by reverse diffusion based filament localization and an integer 

programming based set combination to systematically extract accurate filaments automatically 

from microscopy images. Experiments on simulated and real confocal microscope images of flat 

cells (2D images) show efficacy of the new method.

Index Terms

Biological filament networks; local network topology; centerline localization; filament extraction

I. Introduction

Filaments with complex network topology are observed in a wide variety of biological 

systems, most notably the cytoskeletal filaments and the extracellular matrix. The 

persistence lengths of these filaments are typically in the range of μm to mm that are 

considerably greater than the resolution of fluorescent imaging (200 nm) and form complex 

networks. They are fundamental for several biological processes such as mechanical 

integrity, force generation, cytokinesis and motility. In addition, the cytoskeleton contributes 

to a wide range of cellular mechanisms such as intracellular signaling and differentiation [2]. 

Several microscopy modalities such as the widefield, confocal, and total internal reflectance 

fluorescence (TIRF) microscopy have been extensively used in recent years to image actin 

with the purpose of investigating the result of external perturbations on the structural 
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alterations of cytoskletal networks. Several architectural parameters of biological networks 

such as filament lengths [13], [26], persistence length [19], local orientation [11], [20], [27], 

[31], curvature distribution and local filament organization [3], when accurately estimated, 

might shed crucial light on the role of network geometry in cellular and tissue functions.

A. Burgeoning Interest in Enumerating Filament Networks from Flat Cells

The active regions of interest in cytoskeletal dynamics, specially actin networks, in a wide 

area of investigation in molecular pathology related to cells are confined to within a few 

hundred nanometers of the basal region of the cell [10]. Most prominently, cellular force 

generation occurs through basal actin stress fibers ([8], [24]) and cell motility occurs by 

polymerization at the leading edge of a thin pseudopod ([4]). As such, even with the 

acquisition of 3D confocal microscopy image stacks, a majority of actin filament dynamics 

are confined to within a few 2D slices, and most actin network measurements are essentially 

carried out in to pseudo-2D mode ([11], [20], [27], [31]). This is so because of the 

aforementioned difficulties in acquiring high resolution 3D fluorescence image data (time, 

toxicity and photobleaching) as well as the fact that the resolution in the direction 

perpendicular to the imaging plane is much lower given the 3D point spread function of 

confocal microscopes. It is therefore a critical achievement in computational post-processing 

to develop algorithms to measure cytoskeletal filament networks in these pseudo-2D modes, 

and we examine 2D projections of flat cells from 3D confocal image stacks.

Considerable advances in capabilities of microscopy devices for visualizing biological 

structures, including hardware and computational post-processing, have resulted in imaging 

resolutions at nanometer length scales [9], [25]. Unfortunaltely, optical blurring, noise, 

clutter, as well as the geometric complexity of such dense networks inside cells severly 

confound quantitative analysis of cellular filaments in situ by fluorescence. Consequently, 

the process of identifying filament distributions from microscopy images is largely 

qualitative for most experimental scientists.

The complete mathematical enumeration of a biological filament network, or for that matter, 

any filament network observable in a 2D image remains an unanswered problem of image 

analysis. Partial solutions such as local orientation [11], [20], [27], [31] and total filament 

length [13] have been proposed in the recent past. However, a successful methodology that 

(1) accurately localizes centerlines of individual filaments in a dense network despite the 

aforementioned confounding factors and (2) extracts individual filaments with a systematic 

disambiguation of filament intersections and bifurcations is difficult to locate in literature.

Local thresholding methodologies [5] or filament enhancement schemes followed by some 

sort of binary thinning [15], for example, are often inadequate solutions to for accurate 

localization since optimal thresholding parameters are difficult to obtain, while binary 

thinning ignores the intensity profile of the enhanced images (hence causing the errors 

delineated in [23]. When it comes to extraction of individual filaments (and subsequently 

computing subsequent network characteristics such as the filament length distribution) is 

difficult due to the fact that filament centerlines, in a dense environment, naturally intersect 

and bifurcate. Greedy algorithms such as following graph edges of a suitably constructed 

centerline graph (for example, by binarizing and thinning the converged centerline particles 
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from our previous step) generally give very inaccurate results due to the noise in the graph 

nodes and ambiguity of multiple possible routes at a graph bifurcation node. It should be 

noted that some research exists on tracing actin and microtubule filaments from 3D electron 

tomography images [21], [22], [30], but the very high resolution needed for the point based 

3D tracking to be successful is a missing ingredient in our confocal microscope images.

B. Recent Attempts at Network Segmentation

First we note that several commercially available software packages that perform some form 

of filament tracing in 2D or pseudo 2D cells, including [1], [14], [29] exist. We note, 

however, that the functionality of these softwares is limited to tracing structures similar to 

neurons where the resolution of the image is higher relative to the filaments (neurons) being 

traced. As a result the neuronal branches are clearly separated and the geometry of the 

branch cross sections are relatively uniform. In contrast, our images are populated with 

dense filament networks where the filament thickness is much below the optical resolution 

of fluorescent imaging. The result is optical blurring, low signal-to-noise ratio, and 

ambiguity in delineating junctions and intersections in a dense network. Most of the 

commercially available softwares use techniques such as finding unambiguous and clearly 

separated seed points along well separated filament branches, which are infeasible at the 

resolution of confocal images we work with.

Several researchers have pursued approaches for measuring partial topological parameters of 

filament networks from 2D images of cells. In [20] the authors use Fourier-based methods to 

estimate actin stress fiber orientation while the authors in [27] employ fractals to analyze 

cytoskeletal structure. In [11] the authors propose an improved orientation measurement 

compared to [20], [27] by accumulating image gradients into histograms defined over local 

image windows. Weichsel red et al. [31] proposes a similar method to Karlon et al. [11] 

where they calculate local coherency of the structure tensor in order to estimate the principal 

orientation of filaments. We note that although these estimated orientations have higher 

order information, calculations are independent of any actual segmentation of the actin fibers 

and are derived from image properties that relate to network topology only indirectly.

Lichtenstein et al. [13] develop a generative model for detection of filament pixels in 

fluorescence microsope images. This process is statistically amenable, but it does not 

explicitly address network geometry. Shariff et al. [26] also investigate a generative 

approach combined with indirect (inverse) estimation of the generative model to estimate 

basic parameters (number, mean length) from live and fixed cells. Fleischer [3] propose an 

interesting methodology for measuring actin network morphology by fitting geometric 

tessellation models to actin network images. Finally, Xu et al. [32] uses multiple open active 

contours to segment in-vitro actin filament populations. This method can provide individual 

filament information. However, contour merging and splitting rules (necessary operations in 

this method) are difficult to prescribe.

Multiple studies directly use 3D electron tomography images of actin and microtubule 

networks and use iterative point based 3D tracing algorithms to track filament centerlines 

([21], [22], [30]). The most critical ingredient needed in this approach is a very high voxel 

resolution so that several 2D slices are available even in the flat regions close to the cell 
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cortex for the unamiguous tracking of individual filaments. However, this level of image 

oversampling may be infeasible due to photobleaching, photodamage or timescales of 

cellular events, as in live cell imaging. In presence of lower resolution imaging such as our 

confocal images, suboptimal algorithms that infer filament lengths from 2D projections of 

the cells are often the only choice. Moreover, in very flat cells as is the case with our 

datasets, the error in length computation due to projection along the microscope optical axes 

is negligible.

C. Our Algorithm and Contributions

Here we describe a method that can automatically localize and extract filaments from 

microscopy images. The method takes as input segmented cell images and outputs the 

centerline locations for the filaments, as well as an estimated list containing individual 

filaments (including junctions and intersections). This list of filaments can be subsequently 

used for various important computations such as filament curvature distributions, local 

connectivity and topology, orientation distributions, placement within the cell, number of 

filaments, as well as the filament length distribution in that cell. Our method builds on prior 

work consists of first estimating the locations of the centerlines of each filament using the 

reverse diffusion-based method described in [23]. Given a point cloud of centerlines, a new 

segment connectivity method based on integer programming is then used for extracting 

individual filaments.

We have applied our algorithm to estimate filament length distributions from simulated data, 

as well as real microscopy images of DNA filaments. We demonstrate both qualitatively and 

quantitatively the accuracy of our method in enumerating a complete list of filaments from a 

complicated filament network in an image. Fig. 1(A) demonstrates the conceptual building 

blocks of our algorithm, while Fig. 1(B) contains an example of the main blocks applied to 

an image of actin filaments [28]. Finally, as an example application, we use the method to 

extract filament distributions of actin filaments in Arabidopsis guard cells fluorescently 

labeled with 18 kinds of organelle markers in the Live Images of Plant Stomata (LIPS) 

database [7]. Specifically, we have used samples from the LIPS III database, which hosts a 

collection of maximum intensity projections of the fluorescent serial optical sections; we 

have chosen the actin microfilament channel for our experiments. In addition, we have also 

shown a practical use of our method in estimating change of DNA filament lengths as a 

function of exposure to UV radiation as shown in the first panel (Fig. 1) in the paper [16]. 

Application of our algorithm to the time series AFM panels of deposited DNA automatically 

measures and validates the hypothesis that the length of DNA filaments decrease with 

increasing exposure to UV radiation. A detailed explanation will follow in section III.

We note here that our filament extraction process currently is designed for enumerating 

single strands of elements. In many realistic scenarios, cytoskeletal filaments such as actin 

can form bifurcation points along their lengths. However, reliable estimation of branching 

points in a dense network is a challenging mathematical problem in itself and we reserve this 

useful addition to our algorithm for our next developmental cycle.

Section II describes our method. We start by providing a brief overview of the filament 

centerline extraction framework we use, followed by the integer programming-based 
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solution for individual filament extraction. Section III contains results that quantitatively and 

qualitatively evaluate the performance of our algorithm. We conclude the paper by 

summarizing and discussing the main findings.

II. Methods

As mentioned above, our method consists of two steps: filament centerline localization via 

reverse diffusion, and filament extraction via integer programming. We start by providing a 

brief overview of the centerline estimation approach below (more details are available in 

[23]) followed by a detailed description of the filament extraction method.

A. Filament centerline localization

The algorithm for filament localization utilizes a matched filter-based approach to first 

estimate the pixel positions that are likely to contain a filament and then proceeds by 

‘evolving’ the detected points so as to converge them towards local optima (crests) in the 

image. As opposed to standard binary thinning approaches, the method utilizes the intensity 

values of the image to guide the filament thinning process.

Any filament recovery process has to first distinguish the fluorescence signal from 

acquisition noise, and also determine whether a fluorescence signal belongs to a filamentous 

protein or is simply background clutter from very short filaments. The method developed in 

[23] accomplishes this by finding regions that at the same time 1) have the ‘appearance’ of a 

filament type structure and 2) have relatively high intensity values (a fluorescent filament 

has higher intensity than a background pixel). A set of filament segment models (sampled at 

the same resolution of the given image) is used as a detection filter-bank. The filter-bank 

contains filament models of multiple lengths, orientations, and curvatures. The product of 

the raw image intensity and the normalized cross correlation of the image with each model 

filament gives the likelihood of the pixel belonging to a valid filament. The idea is to 

capitalize on the fact that filamentous regions usually have high intensity, as well as tend to 

‘look’ like a linear structure. We note that our use of the word ‘likelihood’ here is a slight 

abuse of statistical nomenclature, given the fact that our likelihood values are not true 

probabilities (do not contain values only between 0 and 1). Nonetheless, the approach was 

found to be useful in discriminating between filamentous and background [23] regions.

A mathematical equation describing this process is given by

ℒ( x ) = I( x ) max
s, θ, a

{I ★ f s, θ, a( x )} (1)

where I(x⃗) is an input image, x⃗ a 2D image coordinate, and parameters s, θ, a corresponding 

to the scale, angle, and curvature or the models in the filter bank. Thus, the likelihood 

estimation procedure also outputs an angle θ corresponding to the local orientation of any 

filament present in pixel coordinate x⃗ (see [23] for more details). We denote this orientation 

vector, at location x⃗, by O(x⃗) = [sin θ̄ cos θ̄]T. The orientation vector field is then 
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‘smoothed’ (via local averaging process [23]) to minimize the effects of spurious detections. 

The smooth orientation field is denoted as Ô(x⃗).

The next step in the process is to threshold ℒ(x⃗) > α to obtain the list of pixels in image I 
that are most likely to contain a filament. The set of coordinates that satisfy this inequality 

are denoted as X⃗ = [x1, x2, ···, xN] and serve as starting ‘particles’ to which we apply our 

reverse diffusion process. However, we constrain the movement of the particles to be along 

the direction perpendicular to O(x⃗), denoted by Ô(x⃗). The differential equation describing 

this process is given by:

dxi(ti)
dt = O( xi (ti)) . (2)

where time ti here is an artificial parameter allowing us to specify the iterative maximization 

of the following objective function:

E(t1, t2, …, tn) = λ ∑
i = 1

n
ℒ( xi (ti)) − (1 − λ) ∑

j = 1

n
∑

k = 1

n
𝒦(xk(tk), x j(t j))(xk(tk) − x j(t j))

2, (3)

where λ ∈ [0, 1] is a parameter that weights the two terms in the equation above, and 

𝒦(xi, x j) = 1/ 2πσ2e
−(xi − x j)

2/2σ2
.

Equation (3) is maximized using a standard gradient ascent method. It can be shown [23] 

that the iterative process can be written as

xi (ti + Δti) = xi (ti) + (τλ(∇ℒ( xi ) ∘ O( xi )) − τ(1 − λ)( ∑
k = 1

n
(4𝒦( xi , xk)( xi − xk)

+ 2
∂𝒦( xi , xk)

∂ti
( xi − xk)2))O( xi ) .

(4)

The second panel in Fig. 1 shows the output of the reverse diffusion step when applied to the 

actin stained image in panel one of the same image. As explained in [23], given a small 

enough step size τ, the algorithm is guaranteed convergence given that the cost function is 

bounded.

B. Extraction of Individual Filaments from the Centerline Pixel Cloud

We adopt a disambiguating technique that aims at finding a partitioning in the set of paths 

that does not violate certain constrains and parameters (described below) that are contrary to 

their natural arrangement in the biological environment. The approach first starts by 

generating a tree connecting all the centerline pixels into a centerline graph. Since only the 
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bifurcation nodes in the tree are the possible intersections of the filaments estimated by the 

reverse diffusion step in our algorithm, we are reasonably sure that adjacent non-bifurcating 

nodes in the tree belong to the same filament. Therefore, we remove all bifurcation nodes in 

the tree and start with the resultant non-intersecting set of connected chains as a first 

approximation to the filament set. Thereafter, we iteratively join adjacent filament fragments 

into longer filament segments such that an overall energy configuration of the filament set is 

minimized (described in more detail later) while simultaneously forbidding unlikely joining 

of segments (for example, joining two adjacent segments that are too far apart or that have 

end tangents highly mis-aligned).

The overall idea of iteratively combining shorter filament fragments into longer filaments is 

illustrated in Fig. 2. The steps are described in detail in the following sections.

1) Decomposition into Non-intersecting Filament Segments—We infer the local 

centerlines by connecting the converged centerline particles from the diffusion step through 

a minimum spanning tree (MST) [6], where each converged particle is treated as a graph 

node and the edge distance between any two nodes is the simple Euclidean distance 

separating them. Note, however, that the MST will also connect every particle with every 

other particle via some path. As a result, two completely separate filaments, although far 

apart in distance, might be connected by a spurious path. Consequently we assume that for a 

dense set of nodes such as the output from the reverse diffusion step, two nodes on one 

filament centerline and connected by the MST cannot be too far apart, therefore we 

disconnect edges in the MST that are longer than a prescribed length δ.

After this step, we have a set of smaller particle trees, each of which represent a set of 

intersecting filaments. Since only the bifurcation nodes in the tree(s) are the possible 

intersections of the filaments estimated by the previous reverse diffusion step, we are 

reasonably sure that adjacent non-bifurcating nodes in the tree belong to the same filament. 

Therefore, we delete all bifurcation nodes in the tree(s) and start with the resultant non-

intersecting set of filament segments (comprised of single connected chains of particles, 

joined end-to-end) as a first approximation to the filament set. Many of these filament 

segments (connected chains) belong to the same filament and have been disconnected as a 

result of deleting the bifurcation nodes in the tree(s). A systematic procedure should now 

ensure that we combine correct non-intersecting segments to build a whole filament in the 

subsequent steps. The construction of the non-intersection filament segments is illustrated in 

Fig. 2(a)–(c).

Suppose the set of non-intersecting filament segments after disconnecting the bifurcation 

nodes in the MST be

𝒮 = {si, i = 1, ⋯, n} (5)

where si is the ith segment given by a curve of mi points in order, i.e.
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si = { xi
1, ⋯, xi

mi
} . (6)

Here we have renumbered the converged centerline pixels from (4) as xi
j so that we can 

identify the jth centerline pixel from the ith segment. As previously noted, we can 

reasonably assume that every final synthesized filament will be a combination of one or 

more of the segments in  (from (5)). The challenge is therefore to partition  into non-

intersecting sets, and combine segments inside each partitioned set appropriately to 

synthesize the final filaments, all done in a manner that satisfies biological and geometric 

constraints.

2) Parameters for Combining Filament Segments—Before describing the criterion 

for optimal global synthesis of a set of longer filament segments from a set of shorter 

filament segments, let us explain in detail how we construct one longer segment by combing 

a few adjacent shorter segments. Consider three segments, si, sj and sk, that we might 

combine to make a single segment. Since each segment si consists of pixels indexed in order 

(from one end of the segment to the other), we might name the two endpoints of the segment 

si as i(1) and i(2) (the exact number does not matter). A combination of the three segments 

si, sj and sk simply means traversing the pixels of the three segments in the order i, j and k, 

with a particular choice of endpoint to endpoint connection between the three segments. For 

example, [i(1), i(2) − j(1), j(2) − k(2), k(1)] may be one choice of endpoint connections in 

which one can traverse the three segments in order.

It is easy to check that keeping the orientation of the middle segment j fixed, there are only 

four possible ways ([1,2-1,2-2,1], [1,2-1,2-1,2], [2,1-1,2-2,1] and [2,1-1,2-1,2]) in which 

endpoint connections between si, sj and sk can be established for traversing the three 

segments in order (flipping the orientation of j simply results in the mirror images of the 

already obtained traversal orders). By an entirely similar argument, two segments si and sj 

can be joined with two choices of endpoint connections.

Now, for each choice of endpoint connection between three segments in order (or two 

segments in order), we can define a traversal cost c of the three (two) segments; for example, 

in this work, for an ordered set of pixels {y1⃗, ···, y⃗m} (representing a segment) obtained by a 

particular ordered traversal of the three (two) segments, we have fit a cubic smoothing spline 

to the set with spline nodes placed at unit resolution and then calculated the joining cost of 

the pixel set by adding up curvature energies at the individual spline nodes (the curvature 
energy can be calculated by summing up the squared second derivatives of the spline 

coordinates with respect to the spline arc-length at the spline nodes). A specific choice of 

spline function and the form of the joining cost may depend upon the application at hand 

and the specific implementation, but the framework for defining a joining cost for segments 

is general.
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Of course, as already mentioned, for three (two) segments, there are four (two) choices of 

endpoint connections. Therefore, given three (two) segments si, sj and sk (si and sj), we 

define the joining cost c({si, sj, sk}) of the segments as the minimum traversal cost c of three 

(two) segments with all possible endpoint combinations. Although the minimum endpoint 

configuration might not be unique, it is clear that the joining cost c is.

3) Valid Combinations of Filament Segments—With the above-mentioned 

parameters for combining segments, let us investigate the possible ways of choosing 

segments that are appropriate for combination into a longer segment. Let dist(si, sj) denote 

the minimum distance between any endpoint of si and any endpoint of sj. For a segment si ∈ 
, define the neighborhood set (si) of si as the set of segments (si) = {sj ∈ | dist(si, sj) 

≤ δ}, where δ is input by the user and controls the extent of gaps between neighboring 

segments that the algorithm can bridge.

For a set of segments , the valid segment combinations are represented as sets l(sj) ⊆ , 

where each l(sj) = {si, sj, sk for some si, sk ∈ (sj)}, or l(sj) = {si, sj for some si ∈ 

(sj)}, or l(sj) = {sj}. Note that single segments l(sj) = {sj} are prescribed as valid 

combinations because a single segment might be incompatible with any other segment in the 

set. We will elucidate this point later in more detail. The total number of valid sets l(sj) 

(i.e., the maximum value of the set index l) will depend on the proximity of segment sj with 

other segments in .

Along with the valid segment combinations, we also prescribe the combination cost (

l(sj)) as follows:

1. ( l(sj)) = c({si, sj, sk}) − 2b when l(sj) = {si, sj, sk|si, sk ∈ (sj)},

2. ( l(sj)) = c({si, sj}) − b when l(sj) = {si, sj|si ∈ (sj)},

3. ( l(sj)) = c({sj}) when l(sj) = {sj}. The cost c({sj}) is simply taken as the 

traversal cost c of the set of pixels in the set sj itself.

The term b in the definition for ( (sj)) is called the bond energy. Since joining three (or 

two) segments will definitely increase the additive curvature energy (given by c) of the 

combined segment, the bond energy term determines the chance of a particular combination 

to decrease the overall curvature energy of the system. The bond energy b therefore is a 

positive scalar pseudo-energy parameter that dictates whether the combination of three (two) 

segments si, sj and sk (si and sj) can reduce the total additive curvature energy of the new 

combined system as opposed to leaving the original segments uncombined with their 

individual curvature energies c({sj}). The bond energy is prescribed per ‘bond’ or endpoint 

connection between two segments, hence for combining three segments we subtract 2b from 

the combined curvature energy. We will give a numerical method to calculate the bond 

energy at the end of this section. A schematic representing the various possible ways of legal 

combination of a set of adjacent shorter filaments into a set of longer filaments is shown in 

Fig. 2(d).

4) Iterative Combination of Filaments—In order to synthesize a complete list of 

filaments from the short filament segments in , we adopt a maximal set partitioning 
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procedure using a variant of binary integer programming [18]. We iteratively combine the 

segments inside , calling the updated sets 1, 2, ···, t, t+1, ···, T where t denotes the 

iteration index with t = T at convergence.

We now have all the ingredients to iteratively update a set of segments t+1 from t. At 

every iteration, t = {si
t, i = 1, ···, nt}, we build the collection of all possible valid 

combination sets ℳt = { l(sj
t)} ∀sj

t ∈ t. We take care to avoid duplicate sets, i.e., 

whenever l1 (sj
t) = l2 (si

t) for some l1, l2, si
t and sj

t, we omit either l1 (si
t) or l1 (sj

t) 

from ℳt. Suppose we list all the combinations in ℳt and assign each combination a binary 

variable βm, m = 1, ···, |ℳt|. This simply means that every l(sj
t) ∈ ℳt has a binary variable 

βm( l(sj
t)) attached to it. Similarly, given the binary variable βm, let us denote the 

combination set attached to it as βm. Also, let us build the indicator matrix At ∈ ℝ| t|×|ℳt| 

as follows - if βm = l(sj
t) = {si

t, sj
t, sk

t} ∈ ℳt, then the ith, jth and kth rows of the mth 

column of At are 1, all other rows of the mth column of At are zero. In other words, At(i, j) = 

1 iff the jth combination set includes segment i in it, otherwise At(i, j) is 0. For a 

combination set βm that has two (or one) constituent segments, we put the corresponding 

rows of the mth column as one, with all other rows being zero. At thus codifies all the 

combination sets in ℳt such that each column of At represents a distinct combination set 

with the chosen segments being denoted with a one in the corresponding rows. For example, 

if At(3, 4) = 1, then the 4th combination set includes segment 3 in it.

Our goal is to choose a subset of combinations from ℳt that minimizes some global 

combination cost, at the same time selecting every segment sj
t ∈ t once and only once 

across all the chosen combination sets. This is expressed mathematically as the solution of 

the following binary integer programming problem:

min
βm = {0, 1} ∑

m = 1

∣ ℳt ∣

βm𝒞(𝒱βm
) (7)

subject to

∑
m = 1

∣ ℳt ∣
At

imβm = 1, (i = 1, ⋯, nt)

Eq. (7) simply means we choose a subset of ℳt given by those elements of ℳt whose 

corresponding indicator variables βm = 1. After the solution to (7) has been obtained, 

suppose for some m, βm = 1, and βm = l(sj
t) = {si

t, sj
t, sk

t}, then a new segment sp
t+1 in 

the next iteration step is obtained by actually combining si
t, sj

t and sk
t following the endpoint 

connections that generated the joining cost c({si
t, sj

t, sk
t}). A similar argument holds for a 

βm = 1 whose combination set consists of two or one segment. More specifically, in case of 

a single segment in the combination set, we retain the original segment as is, and nothing is 

combined with it at all.
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This process is continued until convergence, i.e., until t = t−1. The set of combined 

segments t = {sp
t, p = 1, ···, nt} is output as the final list of extracted filaments. It is worth 

noting that at every step we limit our valid combinations of segments to end-to-end 

connection between three segments at the most. This is because at every iteration step, we 

allow the segments to grow one step at both ends, if possible. The best combination of 

growing is selected by the optimization step, and subsequent growth at both ends is decided 

by another optimization at a later iteration. It is easy to see that at the final iteration step, 

only those combination sets will be selected which have single elements in them. In other 

words, all the segments from the previous iteration step are retained since no further 

combinations are possible. The third panel in Fig. 1 shows the output of the filament 

extraction step when applied to the centerline localized image in panel two of the same 

image. An intermediate iteration step that chooses the optimum joining of a set of adjacent 

shorter filaments into a set of longer filaments from a range of choices in shown in Fig. 

2(d)–(e). The complete idea of iterative combination of adjacent filament segments is 

presented in a flowchart in Fig. 2(f).

5) Calculation and Significance of the Bond Energy b—The bond energy b used to 

derive the combination cost ( l(sj)) in section II-B3 conceptually encapsulates the familiar 

parameters of linking distance and linking angle in some edge-linking algorithms, albeit in 

an alternative energy formulation. We would ideally want to join two previously 

unconnected filament segments into a bigger filament filament if and only if they lie close 
enough and visually perceived as as natural continuation of each other (or in other words, 

they are aligned similarly). Amongst several choices of segment pairs that can be possibly 

combined, we also need to find those combination pairs that lead to optimal combination, as 

in, they reduce some global energy configuration as in (7). The bond energy translates these 

geometric considerations into an additive energy constraint that fits well into an energy 

minimization approach of combining two segments (7). It simply decides whether the total 

curvature energy of two or three segments, when they are joined, is reduced enough 

compared to sum of the individual curvature energy of the segments. If not, the optimization 

step in (7) will likely not choose such a combination and will keep the individual segments 

unjoined.

Thus, an accurate estimate of b is vital to the success of our method. A fairly reasonable 

estimate of the bond energy can be made based on two physical parameters that need to be 

input by the user. The concept is illustrated in Fig. 3. Suppose that it is unlikely that 

segments that are separated by more than an endpoint to endpoint distance of δ come from 

the same filament. Also, if 1 and 2 in Fig. 3 represent the endpoints of two different 

filaments separated by a distance δ, let θ1 and θ2 represent the tangent directions at the 

endpoints of segment 1 and 2 respectively. Note that θ1 is measured counterclockwise about 

point 1 and θ2 is measured clockwise about point 2; this is to ensure that the tangents are on 

the same side of the line joining 1 and 2. In case the tangents are both on the opposite sides 

of the line joining 1 and 2, θ1 is measured clockwise about point 1 and θ2 is measured 

counterclockwise about point 2. We consider the joining of two endpoints whose tangents 

are on opposite sides of the line joining two endpoints highly unlikely.
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Once the the relative position of the two endpoints 1 and 2 are fixed, we can calculate the 

cost of joining a cubic spline E(δ, θ1, θ2) between two points 1 and 2, having a relative 

separation of δ and relative endpoint tangents tan(θ1) and tan(θ2) with the configuration as 

in Fig. 3, where the cost is calculated in the same way as the cost of joining segments c is 

calculated in section II-B3. Then the bond energy b is calculated as

argmax
δ ∈ [0, δ]θ1, θ2 ∈ [0, θ]

E(δ, θ1, θ2) . (8)

Eq. (8) means that bond energy b is simply the maximum cost that we might incur while 

joining two endpoints whose relative tangents are at most misaligned by an angle θ (θ1, θ2 ∈ 
[0, θ] in (8)) and which are separated by at most a distance δ. Therefore, our algorithm 

needs two inputs from the user, the maximum segment linking distance δ and a maximum 

mismatch in orientation θ - both can be expected to be known in advance reasonably 

accurately from the biological constraints of the problem. In order for two endpoints from 

two different segments to be combined, the additional cost incurred by the combination 

process in section II-B3 must be strictly less than b; any misalignment or separation that 

causes the extra combination energy to be more than b cannot be balanced by a subtraction 

of b in the formula for ( l(sj)) in section II-B3.

III. Experiments

Our filament localization algorithm has been tested on a database of real and simulated 

images to test for both accuracy and applicability. To generate our filter bank, we used a 

filament width w = 2 pixels for the simulated image database and w = 0.4μm for the real 

image database, and a fine sampling of curvatures, orientations and scales in our filter bank. 

In all results shown, the threshold parameter for the likelihood function was set to α = 0.1. 

The width of the Gaussian function (x⃗i, x⃗j) was set to σ = 3 pixels for the simulated 

images and σ = 0.6μm for the real image database.

A. Validation on simulated images

We have tested our filament extraction methodology on 100 simulated images of size 128 × 

128 pixels consisting of filament networks that vary in complexity and filament density. The 

real cytoskeletal filament generation process is complex and not fully understood to the level 

of accurate simulations. Therefore, a simple assumption of white filament centerlines on a 

black background served as the ideal image, and it was subsequently convolved with a psf 

that approximated a real microscope.

The length of individual filaments are drawn randomly from a Gaussian distribution of mean 

50 pixel lengths and a standard deviation of 3 pixel lengths. The starting point of each 

filament in each image is chosen randomly, and the filament is allowed to grow to the 

sampled length incrementally, with the direction of each incremental addition (the direction 

is measured as an angle to the previous growth direction) selected uniformly randomly 

between zero and 20°.
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The maximum filament count is 37 per image and four images per filament count are 

generated. The maximum allowable separation δ between filament endpoints have been set 

to 2 pixels and the maximum tangent mismatch θ has been set to 20° since we know the 

parameters beforehand from the generation process. Panels (a), (b), (c) and (d) of Figure 4 

show four simulated images.

Fig. 5 shows the result of our filament extraction methodology on the simulated image 

database. We calculate the relative error for filament position in every image (shown in blue 

in Fig. 5(i)) as the sum of two distances - (A) the distance between every pixel of every 

simulated filament and the nearest pixel from the best extracted filament that matches the 

simulated filament, relative to the total length of the simulated filaments in the image and 

(B) the distance between every pixel of every extracted filament and the nearest pixel from 

the best simulated filament that matches the extracted filament, relative to the total length of 

the simulated filaments in the image. The relative error for filament mean length in every 

image (shown in red in Fig. 5(i)) is calculated as the absolute difference of the mean 

filament length of the simulated image and the mean filament length from the corresponding 

extracted filament image, relative to the total length of the simulated filaments in the image. 

The relative error in filament count accuracy in Fig. 5(j) is simply the error in estimation of 

the total filament count divided by the total filament count.

Figs. 5(a)–(d) show examples of the simulated filament images. Panels (e), (f), (g) and (h) 

shows the corresponding filament extracted images. Different colors in (e)–(h) denote 

different filaments, although colors are not unique. Fig. 5(i) shows the filament extraction 

accuracy in percentage error and Fig. 5(j) shows the relative error in determining the total 

filament count in an image. It can be noticed that apart from regions in Figs. 5(a)–(d) where 

the filament distribution is too dense for correctly identifying separate filaments for even the 

human eye, our extraction method does a reasonably accurate job of extracting the individual 

filaments by disambiguating filament intersections. The filament extraction accuracy, as 

described above, remains within a acceptable value of 2% (for positional error) and 1.7% 

(for mean length error) in Figs. 5(i) despite variation in filament density (number of filament 

per image). Additionally, apart from one image where the relative error in filament count is 

high, the algorithm performs well in estimating the total number of filaments from the error 

histogram in Fig. 5(j).

B. Real Filament Images

We have applied the filament localization step to image datasets of cells. Our real cell image 

dataset consists of HeLa cells (Fig. 4(e)) that have been fixed and labeled with rhodamine 

phallodine that preferentially binds to actin filaments. We have used another publicly 

available database of Arabidopsis guard cells fluorescently labeled for actin microfilaments 

[7]. Figs. 4(f) and 4(g) show two maximum intensity projections of plant stomata guard cells 

from the LIPS-III subdatabase in [7]. The value of the maximum allowable gap between 

filament endpoints, or δ has been set equal to the standard deviation σ of the Gaussian 

neighborhood kernel from (3), which is fixed at σ = 0.6μm. The maximum allowable tangent 

mismatch θ has been set to 20°, which is a reasonable tangent mismatch of separate actin 

filaments in our problem setup.
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Figure 6 shows the result of applying our filament localization and extraction method on the 

raw images. The first column shows the three raw images of HeLa cell (first row) and plant 

stomata guard cells (second and third row). The second column shows the localized 

centerlines of the actin filaments after the reverse diffusion step described earlier of the 

corresponding images (red pixels overlaid on the raw images). The third column shows the 

corresponding filament extracted images, where individual filaments are shown in different 

colors. Note that the colors are not unique to each filament. From the results, it is clear that 

our filament localization and extraction method does a reasonably accurate job of predicting 

individual filament from the images.

The choice of the various filament localization and extraction parameters are somewhat 

crucial to the performance of our algorithm. The filament localization step requires a choice 

of neighborhood size and a clustering threshold, but the mechanics of reverse diffusion make 

the localization process relatively robust to slight mis-calibrations of the parameters; the 

corresponding experimental verification has already been provided in [23].

In this work, we have experimented with slight mis-calibrations of the maximum segment 

gap δ and maximum orientation mismatch θ for calculating the bond energy. A visual 

inspection of Fig. 7 shows that our algorithm is relatively robust to mis-calibrations and 

imperfect assumptions of the filament linking parameters.

It is important to note that a considerable mis-estimation in the afore-mentioned filament 

linking parameters might produce inaccurate results; but as is the norm with almost all 

biological problems, a reasonable value for the algorithmic parameters must be decided 

upon apriori using cues from the real biological problem. In our case, it is not a difficult task 

to come up with reasonable values of the maximum edge gap and orientation parameters, 

and it is our belief that slight variation of the actual algorithmic parameters around the 

assumed values will produce similar (if not exactly same) results.

As mentioned earlier in section I-B, intensity based centerline tracing algorithms are a 

popular choice in very high resolution 3D tomography images of cytoskeletal structures 

([21], [22], [30]). Here, the voxel size (0.3nm) is much smaller compared to the actin 

filament diameter (7nm). Consequently, a template based filament detection step similar to 

the enhancement step in our algorithm is used to enhance the filamentous structures in the 

image volume. This step is followed by a seed following algorithm that depends on the 

likelihood of adjacent voxels belonging to a continuous filament satisfying certain geometric 

smoothness criteria (see [21]). This approach is not suitable in the case of our microscopy 

images at much lower resolutions that show significant optical blurring, filament bundling 

and filament intersections (due to the pseudo-2D nature of the actin dynamics on very flat 
regions of the cells).

To demonstrate the inapplicability of simple filament tracing algorithms such as [21] in our 

case, we have reimplemented [21] for a 2D filament tracing scenario with the results shown 

in Fig. 8. The algorithm in [21] is crucially dependent on many smoothness parameters and 

intensity thresholds, and even with a suitable choice of all parameters, the maximum number 

of seed initializations based on the sorted maximum correlations of the pixels can drastically 
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affect the extracted filaments. For example, the maximum number of seed initializations are 

set to 100 and 200 in Figs. 8(c) and 8(d), and the algorithm finds 44 and 83 filaments of 

length more than 2 voxels respectively. The non-uniformity of our low resolution images and 

filament intersections cause [21] to mis-trace the centerlines within a bundle and confound 

the tracing at intersections. Compared to [21], our algorithm gives a much more reasonable 

filament extraction in Fig. 8(b).

In addition, in Fig. 9, we have applied our algorithm for an automated estimation of change 

of DNA length with exposure to UV radiation as described in [16]. Fig. 1 in [16] 

investigated single DNA molecules on mica surfaces and the influence of UV irradiation on 

the geometric structure of the attached DNA. A pertinent measurement of geometric 

structure being the length of the DNA contours, we applied our algorithm to automatically 

output the mean length of the DNA strands in Figs. 9(A)–(C). For verification, we have also 

manually segmented the DNA panels and computed te centerline lengths of the DNA 

strands. Fig. 9 shows the manual estimation of the DNA strands (in red) vis-a-vis that 

computed by our algorithm (in blue). It can be seen that our algorithm correctly captures the 

general trend of decreasing DNA contour length with increase in UV irradiation (as verified 

in [16]). The normalization of mean length has been performed with respect to the image 

dimensions. This shows a practical application of our method to relevant problems of 

filament network extraction from other domains.

IV. Summary and discussion

We have described an approach for localizing and extracting cellular filaments from 

microscopy images. The approach builds on earlier work [23] and uses a reverse diffusion-

based approach for localizing centerlines of filaments in a given image. The point cloud is 

then analyzed in an attempt to delineate individual filaments. The tree of centerline pixels 

output by our method can then be subsequently used in calculation of many important 

biological properties of filament networks in cells, such as filament length histograms, 

curvature distributions and orientation histograms.

We characterized the error of our algorithm in carefully constructed simulations. In these, it 

was shown that the error (both in terms of filament localization and filament counts) were on 

the order of a few percent. We demonstrate the feasibility of our approach by applying our 

tool to estimate actin filament networks in confocal microscope images of filament 

distributions in several cells. Extraction of filaments is possible even in the case of dense 

networks with complicated intersections and bifurcations. Experiments on a limited set of 

HeLa cells showed that carbon nanotubes may have an adverse effect in the configuration of 

actin networks in cells, with cells treated with a SWCNT solution showed on average shorter 

filaments. More data will be used in the future to confirm whether these results are 

statistically significant.

It is also important to highlight a few limitations of the algorithm. First we note that the 

implementation we use is appropriate for two dimensional microscopy images, while a cell 

is a 3D structure. We note that nothing in our methodology impedes the approach from being 

implemented in 3D as well. We note however, that most experimental data available for 

Basu et al. Page 15

IEEE/ACM Trans Comput Biol Bioinform. Author manuscript; available in PMC 2018 April 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



quantifying filamentous structures are available in 2D images only [3], [11], [12], [19], [20], 

[26], [27], [31], [32]. We also mention that the computational complexity of the method is 

high; for 256 × 256 images of the actin filaments, the average runtime is 323 secs. This is 

primarily due to two reasons - (1) the reverse diffusion step for localizing centerlines evolves 

a differential equation on all candidate centerline particles and (2) the complexity of the 

binary integer programming in the iterative filament combination step grows multiplicatively 

with the number of non-intersecting filament fragments available as the first approximation 

to the final filament set. However, our algorithm was implemented in the Matlab [17] 

programming language, with extensive use of ‘FOR’ loops, which are notoriously slow. We 

are confident the time of computation, however could be significantly improved by 

implementing the code in a compiled (as opposed to interpreted) language.

Finally, we also clarify that the technique described here is most applicable when the 

complexity of the filament network and image resolution are such that individual filaments 

are visibly discerned. In some instances, such as when imaging microtubule structures with 

confocal techniques over the entire cell [26], this approach is not expected to produce useful 

results.
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Fig. 1. 
Overview of our filament extraction procedure. (A) A flow diagram showing the several 

sequential steps in our filament extraction algorithm from filament network images. (B) A 

real example demonstrating the extraction pipeline. The input image (leftmost panel) is first 

analyzed to determine the likelihood that a filament is present at any given pixel. The 

likelihood function is then thresholded to obtain an initial estimate of the filament locations. 

The initial estimate is ‘evolved’ with the constrained reverse diffusion-based algorithm 

described in the text so as to estimate the centerlines of each likely filament (second panel). 

The estimated filament centerlines are then decomposed into a set of non-intersecting short 

filament segments and an iterative filament combination process joins the short filaments 

into complete longer filaments disambiguating filament intersections; the individual 

filaments are shown in different colors (not unique) in the right most panel.
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Fig. 2. 
Schematic of combination of longer filaments from shorter filament segments. (a) Suppose 

we have two filaments intersecting as shown in green in the original confocal image. (b) 

after the reverse diffusion step in section II-A and the MST generation step in the beginning 

of section II-B1, the corresponding tree estimate for (a) is shown in blue. (c) The bifurcation 

nodes in the tree in (b) are omitted to give shorter non-intersecting fragments as outlined in 

II-B1. (d) d1, d2 and d3 show three out of the numerous ways of joining neighboring 

fragments to form longer filaments, where red thick lines and green dotted lines show the 

corresponding joining of neighboring filaments. For each of these joining, the combined 

curvature energy of the longer filament increases with respect to the sum of the curvature 

energies of the shorter constituent filaments; this is balanced by the bond energy b. (e) d3 is 

chosen to be an optimum configuration of joining the fragments in this particular step of the 

iteration since it minimizes the overall curvature energy of the configuration. The two 

resultant longer filaments are shown in blue and green. This iterative combination is now 

continued with the longer filaments considered as starting constituent filaments. The idea of 

iteratively combining neighboring filament fragments to gradually give rise to longer and 

complete filaments is shown in a flowchart in (f).
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Fig. 3. 
The schematic for calculating the bond energy b. 1 and 2 denote two endpoints of two 

different filament segments separated by a distance δ, and θ1 and θ2 are orientations of the 

tangents at the respective endpoints.
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Fig. 4. 
(a), (b), (c) and (d) show four images from a simulated database of artificial filaments with 

filament counts of 33, 34, 35 and 36 respectively. (e) shows a real image of HeLa cell with 

rhodamine phalloidin labeled F-actin [28] and (f), (g) shows two maximum intensity 

projection views of plant stomata guard cells stained for actin microfilaments [7].
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Fig. 5. 
(a), (b), (c) and (d) show the same four simulated images from Fig. 4, and (e), (f), (g) and (h) 

shows the corresponding filament extracted images. Different colors in (e)–(h) denote 

different filaments, although colors are not unique. (i) shows the filament extraction 

accuracy in percentage error. The blue plot shows the positional error which is estimate of an 

average error of matching the closest filament pairs, one filament coming from the original 

image and the other coming from the extracted filament set (see text for details). The red 

plot shows the percentage error in estimation of mean length of the filament images (see text 

for details) (j) shows the histogram of relative error in determining the total filament count in 

an image (see text for details of calculation of relative errors).
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Fig. 6. 
The first column shows the four raw images of actin stained HeLa (first row) and plant 

stomata guard (second and third rows) cells. The second column shows the localized 

centerlines of the actin filaments after the reverse diffusion step in section II-A of the 

corresponding images (red pixels overlaid on the raw images). The third column shows the 

corresponding filament extracted images, where individual filaments are shown in different 

colors.
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Fig. 7. 
Filament extractions for the actin filaments in the Arabidopsis guard cells similar to Fig. 6 

(second and third row). (A) The original actin microfilament maximum intensity projection 

image in a sample guard cell. Keeping the same values for parameters in the filament 

localization step, we have used the maximum segment gap δ of 4, 6 and 8 pixels and 

maximum orientation mismatch θ of 15, 20 and 25 degrees respectively in (B), (C) and (D). 

It can be seen there are negligible differences in extracted filaments in (B), (C) and (D).
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Fig. 8. 
A simple experiment to demonstrate the inapplicability of seed following algorithms such as 

[21] to our microscopy images. (a) shows the original image stained for actin and (b) shows 

the result of actin filament exraction by our algorithm. (c) and (d) show the performance of 

the 2D version of [21] with two different maximum parameter extraction settings. See text 

for more details.
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Fig. 9. 
AFM images of DNA fragments deposited on mica as shown in Fig. 1 in [16]. (A), (B) and 

(C) refer to the DNA panels prior to, after 20 mins ad after 40 mins respectively of UV 

radiation. The bottom plot shows the normalized mean length of the DNA fragments in the 

above panels, plotted as a function of time of exposure, estimated with the help of our 

filament extraction algorithm. The red plot shows that performed by a human, and the blue 

plot shows the same estimation performed by our algorithm.
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