
Addition Related Arithmetic Operations via
Controlled Transport of Charge

Sorin Cotofana, Senior Member, IEEE, Casper Lageweg, Student Member, IEEE, and

Stamatis Vassiliadis, Fellow, IEEE

Abstract—This paper investigates the Single Electron Tunneling (SET) technology-based computation of basic addition related

arithmetic functions, e.g., addition and multiplication, via a novel computation paradigm, which we refer to as electron counting

arithmetic, that is based on controlling the transport of discrete quantities of electrons within the SET circuit. First, assuming that the

number of controllable electrons within the system is unrestricted, we prove that the addition of two n-bit operands can be computed

with a depth-2 network composed out of 3nþ 1 circuit elements and that the multiplication of two n-bit operands can be computed with

a depth-3 network composed out of 4n� 1 circuit elements. Second, assuming that the number of controllable electrons cannot be

higher than a given constant r determined by practical limitations, we prove that the addition of two n-bit operands can be computed

with a depth- n
r þ 3
� �

network composed out of 3nþ 1þ n
r circuit elements. Under the same restriction, we suggest methods to reduce

the addition network depth in the order of log n
r and to perform n-bit multiplication in an Oðlog n

rÞ delay. Finally, we propose SET-based

implementations for a set of basic electron counting building blocks and implement a number of circuits operating under the electron

counting paradigm as follows: 4-bit Digital to Analog Converter, 5-bit Analog to Digital Converter, 4-bit adder, and 3-bit multiplier. All

proposed implementations are verified by means of simulation.

Index Terms—SET, single electron technology, electron counting, addition, multiplication.

�

1 INTRODUCTION

FEATURE size reduction in microelectronic circuits has
been an important contributing factor to the dramatic

increase in the processing power of arithmetic circuits.
However, it is generally accepted that, sooner or later, MOS-
based circuits cannot be reduced further in (feature) size
due to fundamental physical restrictions [1]. Therefore,
several emerging technologies are currently being investi-
gated [2]. Single Electron Tunneling (SET) [3] is one such
technology candidate and offers greater scaling potential
than MOS, as well as ultra-low power consumption.
Additionally, recent advances in silicon-based fabrication
technology (see, for example, [4]) show potential for room
temperature operation. However, similar to other future
technology candidates, SET devices display a switching
behavior that differs from traditional MOS devices and this
provides new possibilities and challenges for implementing
digital circuits.

SET technology introduces the quantum tunnel junction
as a new circuit element for (logic) circuits. The tunnel
junction can be thought of as a “leaky” capacitor such that
the “leaking” can be controlled by the voltage across the
tunnel junction. Although this behavior at first glance
appears similar to that of a diode, the difference stands in
the scale at which switching occurs. Charge transport
though a tunnel junction can only occur in quantities of a
single electron at a time. Additionally, given the feature
sizes anticipated for such circuits, the transport of a single

electron can have a significant effect on the voltage across a
tunnel junction such that transporting a few electrons
through a tunnel junction will inhibit further charge
transport, making it possible to control the transport of
charge in discrete and accurate quantities.

The ability to control the transport of individual
electrons in SET technology introduces a broad range of
new possibilities and challenges for implementing compu-
ter arithmetic circuits. In this paper, we introduce a new
computation paradigm, which we refer to as electron
counting arithmetic, that is based on controlling the
transport of discrete quantities of electrons within the
SET circuit. First, we propose a basic set of electron
counting building blocks, i.e., move charge block (MV ke)
and periodic symmetric function block (PSF ). We subse-
quently propose electron counting-based schemes for
computing addition and multiplication and prove that the
following holds true:

. When the number of the electrons that can be
accurately controlled within the system is
unrestricted, the addition/subtraction of two n-bit
operands can be computed with a depth-2 network
composed out of 3nþ 1 circuit elements.1 The
multiplication of two n-bit operands can be com-
puted with a depth-3 network with 4n� 1 circuit
elements.

. When the number of the electrons that can be
accurately controlled by an MV ke block is limited to
2r � 1, the addition/subtraction of twon-bitoperands
can be computed with a depth- n

r þ 3
� �

network
composed out of 3nþ 1þ n

r circuit elements.
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1. By circuit element, we mean in this context any of the building block
presented in Section 3.
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. Under the same restriction, we suggest methods to
reduce the addition network depth in the order of
log n

r and to perform n-bit multiplication in an
Oðlog n

rÞ delay.
Additionally,weproposeSET-based implementations for the
MV ke and PSF blocks. We validate the proposed structures
bymeansof simulation, evaluate their expectedperformance,
and subsequently utilize them in constructing a number of
circuits operating under the electron counting paradigm as
follows: 4-bit Digital to Analog Converter, 5-bit Analog to
Digital Converter, 4-bit adder, and 3-bit multiplier.

The remainder of this paper is organized as follows:
Section 2 briefly presents the SET background theory. In
Section 3, we discuss a set of charge transport building
blocks and proposes schemes for charge transport-based
addition and multiplication. Section 4 discusses the im-
plications of practical limitations on the structures de-
scribed in Section 3 and proposes alternative solutions that
can operate under such limitations. Section 5 introduces
possible SET-based implementations of the charge transport
building blocks and Section 6 presents a number of
examples. Finally, Section 7 concludes the paper.

2 BACKGROUND

Single Electron Tunneling technology introduces the quan-
tum tunnel junction as a new circuit element. A tunnel
junction consists of two conductors separated by an
extremely thin insulating layer. The insulating layer acts
as an energy barrier which inhibits charge transport under
normal (classical) physics laws. However, according to
quantum physics theory, charge transport of individual
electrons through this insulating layer can occur if this
results in a reduction of the total energy present in the
circuit. The transport of charge through a tunnel junction is
referred to as tunneling, while the transport of a single
electron is referred to as a tunnel event. Electrons are
considered to tunnel through a tunnel junction strictly one
after another.

Rather than calculating for each tunnel junction if a
hypothetical charge event results in a reduction of the
circuit’s energy, we can calculate the critical voltage Vc,

which is the voltage threshold needed across the tunnel
junction to make a tunnel event through this tunnel junction
possible. For calculating the critical voltage of a junction, we
assume a tunnel junction with a capacitance of Cj. The
remainder of the circuit, as viewed from the tunnel
junction’s perspective, has an equivalent capacitance of
Ce. Given the approach presented in [5], we calculate Vc for
the junction as Vc ¼ �qe

2ðCeþCjÞ , where qe ¼ 1:602 � 10�19 C is
the charge of the electron.

Generally speaking, if we define the voltage across a
junction as Vj, a tunnel event will occur through this tunnel
junction if and only if jVjj � Vc. If tunnel events cannot occur
in any of the circuit’s tunnel junctions, i.e., jVjj < Vc for all
junctions in the circuit, the circuit is in a stable state. For our
research, we focus on circuits where a limited number of
tunnel events may occur, resulting in a stable state. Each
stable state determines a new output value resulting from the
distribution of charge throughout the circuit.

The tunneling of electrons in a circuit containing tunnel
junctions is a stochastic process. This means that the delay
cannot be analyzed in the traditional sense. However, the
orthodox theory for single electron tunneling (see, for
example, [5] for a more extensive introduction) provides
means to calculate the average number of tunnel events per
second. Assuming that individual tunnel events can be
described by a Poisson process and given an acceptable
error probability Perror, the delay td of the tunnel event can
be calculated as

td ¼
lnðPerrorÞqeRt

Vj � Vc

�� �� ; ð1Þ

where Rt is the tunnel resistance (usually � 105�).
One of the advantages of the SET technology in general is

that SET tunnel junctions can be fabricated in many different
ways. In order to illustrate the variety in possible implemen-
tation technologies, Fig. 1 presents two possible implementa-
tions of the SET inverter. Fig. 1a depicts a SET inverter
fabricated in a conventional lithographic technology on
silicon [6]. In this case, the tunnel junctions resemble
conventional capacitors and consist of small gaps between
conducting plates. Fig. 1b, on the other hand, depicts a carbon
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Fig. 1. SET inverter implementations. (a) Conventional process. (b) Carbon nanotube.



nanotube-based implementation [7]. In this case, the tunnel
junctions consist of small gaps in a multiwall carbon
nanotube.

Besides the switching error probability, there are two
fundamental phenomena that may cause errors in
SET circuits: thermal tunneling and cotunneling. Given a
maximum acceptable switching error probability, we must
ensure that the thermal error probability as well as the
cotunneling error probability are of the same order of
magnitude or less. Thermal tunneling errors are caused by
thermal agitation. The thermal error probability can be
calculated as Ptherm ¼ e��E=KbT , where kb is Boltzman’s
constant (kb ¼ 1:38 � 10�23J=K), T is the operating tempera-
ture, and �E is the change in the energy present in the
system as a result of the tunnel event. Note that �E scales
inversely with the capacitor sizes in the SET circuit. For a
multijunction system in which a combination of tunnel
events leads to a reduction of the energy present in the
entire system, there exists a nonzero probability that those
tunnel events occur simultaneously (even if jVjj < Vc for all
individual tunnel junction involved). This phenomenon is
commonly referred to as cotunneling [8], [9]. The cotunnel-
ing error probability can be reduced sufficiently through the
addition of strip resistors [10], [11], [12]. Additionally,
current experimental SET circuits contain random electrical
charges which affect circuit biasing. Such charges are
assumed to be the result of trapped charge particles in the
tunnel junctions themselves or in the substrate and are
anticipated [3] to reduce or even disappear entirely for the
nanometer-scale feature size circuits required for room
temperature operations.

Thus far, the research on SET-based logic has predomi-
nantly focused on two design styles. The CMOS-like design
style is based on the SET transistor (see [13] for an early
review paper), which consists of two tunnel junctions in
series and a capacitor or a resistor attached to the inter-
laying circuit node. The resulting three terminal structure
can be biased such that behaves similarly to a p or an
n transistor. Thus, one can convert existing CMOS cell

libraries to their SET equivalents. Various SET transistor
logic families have been proposed [14], [15], [16], [17]. The
common denominator is that these designs attempt to copy
CMOSgate structures. Fig. 2a, for example, presents aCMOS-
like NOR gate implementation [15]. The main advantage of
converting existing cell libraries is the reutilization of existing
knowledge and tools.Once a family ofBoolean logic gates has
been developed in a novel technology such as SET, existing
gate-level designs of (larger) components, such as adders,
multipliers, etc., can be realized in a straightforwardmanner.
Equally important, existing design tools can be ported at very
little cost and effort.

The second design style, generally referred to as single
electron logic, is based on encoding the Boolean values
directly as single electron charges. One approach in this
direction, as first suggested in [18], is based on the physical
transport of charge from one gate to another such that
Boolean input signals consist of the presence or absence of
arriving charge. Another approach, as first suggested in
[19], is based on scaling down the charge transport in
SET transistor-based structures to a few electrons and
confining charge transport within individual gates. When
charge transport is scaled down to just one electron, this
approach leads to Single Electron Encoded Logic (SEEL)
logic in which the Boolean logic values 0 and 1 are encoded
as a net charge of 0 and 1 electron charge only [19]. The
SEEL paradigm can be applied to construct compact SEEL
Threshold Logic Gates [20], [21]. Fig. 2b, for example,
presents a SEEL TLG-based NOR gate implementation [21].

As one can observe in Fig. 2, the CMOS-like design style
is less area efficient. The CMOS-like NOR gate requires
25 circuit elements, whereas the SEEL threshold gate-based
NOR gate requires only 14 circuit elements. Also, the power
consumption of the CMOS-like gate is larger than that of the
SEEL TLG-based gate as it not only transports a larger
amount of charge, but also consumes a static current.
Finally, the delay of the CMOS-like NOT gate is on the
order of 10 ns [15], while a SEEL TLG-based NOR gate has a
delay on the order of 1 ns [21].
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Fig. 2. SET-based NOR gate implementations. (a) CMOS-like design. (b) SEEL TLG design.



Although the SEEL approach utilizes the SET technology
more efficiently than the CMOS-like approach, it still does
not use the SET technology’s full potential. While SEEL is
still based on Boolean variables, the majority of computa-
tional and storage logic is intended for multibit variables
(e.g., n-bit adders, registers, etc.). Thus, a paradigm that can
operate directly on such operands will potentially lead to
more effective computation. The next section discusses such
an approach in detail.

3 ELECTRON COUNTING-BASED ARITHMETIC

Given that the SET technology allows one to control the
transport of individual electrons, we have the possibility of
encoding integer values X directly as a net extra charge
Xqe. Once integer values have been encoded as a number of
electrons, we can perform arithmetic operations directly in
electron charges. This reveals a broad range of novel
computational schemes, which we will generally refer to
as electron counting.

In this section, we assume binary encoded n-bit oper-
ands, A ¼ ða0; a1; . . . ; an�1Þ and B ¼ ðb0; b1; . . . ; bn�1Þ, and
discuss electron counting schemes to compute the result of
their addition and multiplication. The basic idea behind the
method [22] is first to convert the operands from digital to
charge representation, add/subtract them in charge format,
and convert the result back to binary digital representation.
Before describing the concept in more detail, we briefly
discuss the two types of electron counting building blocks
which are required for these schemes.

The MV ke block depicted in Fig. 3a is an electron
counting building block with which a variable number of
electrons can be added to or removed from a charge
reservoir. Thus, it can be utilized to move electrons within
an SET circuit. Typically, a charge reservoir is a circuit node
that is capacitively coupled to ground. A charge reservoir
with a capacitance Ccr containing a charge of V � qe is
therefore equivalent to a voltage source U ¼ V�qe

Ccr
. The

MV ke block behavior is controlled via two Boolean input
signals, R (reset) and E (enable), and it operates as follows:
If R ¼ 0 and E ¼ 1, V � k electrons are removed from the
electron reservoir, where k is a positive integer constant and
V is an integer (variable) value. Note that V could either be
another charge reservoir containing a charge V � qe or an
equivalent voltage source. For positive V values, the MV ke
block is in “add” mode (increasing the charge of the
reservoir by removing electrons) while, for negative
V values, the MV ke block is in “remove” mode (reducing
the charge of the reservoir by adding electrons). The MV ke

block has a dynamic logic behavior. Thus, before a new
charge transport can be initiated, it has to be reset, which
can be achieved by R ¼ 1 and E ¼ 0.

A Boolean symmetric function Fsðx0; x1; . . . ; xn�1Þ is a
Boolean function for which the output depends on the
sum of the inputs X ¼

Pn�1
i¼0 xi. A Periodic Symmetric

Function (PSF) FpðXÞ is a symmetric function for which
FpðXÞ ¼ FpðX þ T Þ, where T is the period. Any PSF can be
completely characterized by T , the value of its period, and
a; b, the values of X corresponding to the first positive
transition and the first negative transition, as displayed in
Fig. 3b. Efficient implementation of periodic symmetric
functions is quite important as many functions involved in
computer arithmetic computations, e.g., parity, belong to
this class of functions. The PSF block is an electron
counting building block that can evaluate a PSF, where it is
assumed that the sum of the inputs X is charge encoded
and stored in a charge reservoir.

Given these two types of building blocks, we can now
discuss electron counting schemes for addition and multi-
plication. Assuming binary operands, the first step in any
electron counting process is to convert a binary integer
value X to its discrete analog equivalent Xqe using a Digital
to Analog Converter (DAC) which follows the general
organization of the one introduced in [23]. As described
earlier, the MV ke block in Fig. 6a can be utilized to add/
remove a number of electrons to/from a charge reservoir.
When multiple such MV ke blocks operate in parallel on the
same charge reservoir, electrons can be added to or
removed from the reservoir in parallel. More specifically,
to convert an operand X ¼ ðx0; x1; . . . ; xn�1Þ, each bit xi, i ¼
0; 1; . . . ; n� 1 is connected to the E input of an MV ke block
that has the V input hardwired to a bias potential that
induces a V � k value equal to 2i. Therefore, the operand X
can be encoded as

Pn�1
i¼0 xi2

iqe at the cost of n MV ke blocks
in “add” mode. Thus, this DAC scheme has an OðnÞ
asymptotic complexity in terms of the number of required
building blocks.

Given theMV ke-DAC encoding scheme described above,
theadditionof twon-bitoperands,AandB, canbeembedded
in the conversion process if the operands are converted into
charge format via a total of 2n MV ke blocks in “add” mode
that share the same charge reservoir. Once the result
corresponding to the addition is available in the charge
reservoir as a charge Y qe, where Y ¼ AþB, we need to
convert this result back to a digital format in order to finalize
the computationprocess. Toachieve this, anAnalog toDigital
Conversion (ADC) process is required. In the following, we
describe an ADC circuit based on the PSF block.
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Fig. 3. Building blocks for electron counting-based arithmetic. (a) The MV ke block. (b) Period symmetric function FpðXÞ.



If N is the maximum number of extra electrons that can
be removed from the result charge reservoir, m ¼ 1þ
½logN � bits are required to represent this value in binary
format. Then, following the base 2 counting rules, any ADC
output bit si, i ¼ 0; 1; . . . ; ½logN � is equal to 1 inside an
interval that includes 2i consecutive integers, every 2iþ1

integers, and 0 otherwise. Thus, each bit si can be described
by a periodic symmetric function with period 2iþ1. As a
consequence of this property, each output bit si can be
computed by a PSF block that had been adjusted in order
to have a transfer function that copies the periodic
symmetric function required for the bit position i. Thus,
we can implement an m-bit ADC using m PSF blocks (the
PSF applied at bit position i is tuned to exhibit the periodic
transfer function corresponding to that si bit) assuming as
input the same charge reservoir. Given that we are
addressing the particular case of n-bit operand addition
such that m ¼ nþ 1, the cost of the required ADC circuit is
on the order of OðnÞ.

Summarizing, the electron counting-based addition of
two n-bit operands can be implemented with a depth-2 SET
network composed out of 3nþ 1 electron counting building
blocks, then with an OðnÞ asymptotic complexity measured
in terms of building blocks. The overall organization of the
circuit is depicted in Fig. 4. We note here that, in the figure,
the value k of the MV ke blocks has been drawn inside the
blocks to suggest that it was implemented by properly
adjusting the corresponding circuit parameter(s), while all
inputs V have been fixed to the equivalent of a charge
reservoir with 1qe charge.

As our main goal was to demonstrate a new paradigm
for addition, we assumed, for simplicity, that the operands
are unsigned numbers. However, the scheme in Fig. 4a can
be easily extended to operate with signed numbers. Given
that the sign information is actually present in the charge
reservoir, a simple threshold logic gate evaluating

sgnfChargeReservoirg can produce the correct sign of the
results. Thus, if we assume, for example, ðnþ 1Þ-bit sign-
magnitude operands A and B, the sum AþB can evaluated
by the circuit in Fig. 4a if the sign bits of the operands are
used as control signals for the V input of the MV ke blocks
as follows: For all theMV ke blocks that process an operand,
V ¼ �1 if the sign bit is 1 and V ¼ 1 otherwise. To evaluate
A�B, we just have to invert the sign bit of B before
computing the V values for the B operand. The magnitude
of the result is correctly evaluated by the PSF blocks and,
for the sign bit of the result, we just have to augment the
circuit in Fig. 4a with one threshold gate.

Even though the proposed addition scheme is primarily
meant for addition/subtraction, it has a broader scope.
Some of the alternative utilizations include n-bit subtrac-
tion, n-bit parity functions, multioperand addition, and
nj logn counters, as described in [22].

We next discuss an electron counting multiplication
scheme that follows, to some extent, the paradigm we
introduced for addition. Assume we have the input
operands A and B and we want to compute P ¼ A�B.
As indicated in [22], a straightforward application of the
electron counting principle to the multiplication produces a
depth-3 network with an overall asymptotic complexity
measured in terms of circuit elements in the order of Oðn2Þ.
A more effective implementation is also possible if one
makes use of the ability to transport a variable number of
electrons to/from a charge reservoir exhibited by the
MV ke structure depicted in Fig. 3a.

The basic idea behind the scheme is again to build up a
charge P � qe in a charge reservoir and to utilize an
ADC structure to obtain the binary representation of the
product P . The general organization of the proposed multi-
plication circuit is depicted in Fig. 4b.Again, the value kof the
MV ke blocks has been drawn inside the blocks themselves to
suggest that that kvaluewas implemented inside theblockby
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Fig. 4. Electron counting addition and multiplication schemes. (a) n-bit addition circuit. (b) n-bit multiplication circuit.



properly adjusting the corresponding circuit parameter(s).
The scheme is utilizing a clock for synchronization purposes2

and the computation process can be described as follows:
First, on the positive clock value, a charge corresponding to
the value of the B operand, i.e.,

Pn�1
i¼0 bi2

iqe, is built up in the
corresponding charge reservoir. This is achieved with n
MV ke blocks, each of them assuming as inputs the bi bits and
having the V input hardwired to the equivalent of a charge
reservoirwith 1qe charge, such thatV � k ¼ 2i. Second, on the
negative clock value, a charge of A�B� qe is built up in the
other charge reservoir. This is achieved with nMV ke blocks,
assuming as inputs the ai bits and the analog valuepresent on
the charge reservoir processed in the previous computation
step.As eachMV ke block in this stage contributes ai � 2i �B
electrons, a final charge of

Pn�1
i¼0 ai2

i �Bqe, i.e.,A�B� qe, is
present in the output charge reservoirwhen the second step is
completed. Last, the value on the output charge reservoir is
converted to digital with 2n� 1 PSF blocks.

This scheme still implies a depth-3 network, but requires
2n MV ke blocks and 2n� 1 PSF blocks, thus the overall
asymptotic complexity is reduced to OðnÞ.

4 ELECTRON COUNTING—PRACTICAL

CONSIDERATIONS

In the previous discussion about addition and multiplica-
tion via the electron counting paradigm, we were mainly
interested in establishing the asymptotic bounds for the
delay and area of adders and multipliers potentially
implemented in this paradigm. While these bounds indicate
that electron counting-based arithmetic circuits have the
potential to outperform Boolean and Threshold logic-based
circuits, they are mainly of theoretical interest. Whether or
not this holds in practical implementations very much
depends on a number of issues that are fabrication
technology dependent, e.g., the maximum number of
electrons that can be accurately manipulated via an
MV ke block, the dependence of the block’s delay on the
capacitance of the charge reservoir, the maximum value in
an electron reservoir that can be accuracy handled by a
PSF block, etc. Additionally, the computation via charge
manipulation requires the transport of at most 2nþ1

electrons for n-bit addition and at most 22n electrons for
n-bit multiplication. This also limits the operand width and
affects the calculation delay as we expect that the more
electrons have to tunnel, the larger the delay.

While, for a mature technology like CMOS, such things
can be easily characterized, this does not hold true for an
emerging technology like SET. There is very little we can
say about the actual values of the device parameters, thus,
by implication, about the previously mentioned issues.
Regardless of this, we can with certainty assume that, for a
given SET fabrication technology, the maximum number of
electrons that can be accommodated in a charge reservoir is
limited by a certain value and that this value limits the
amount of charge that can be manipulated by the
MV ke blocks in the circuit. The constant depth addition
and multiplication designs have to be changed in order to
deal with such limitations. Thus, such a restriction has a
direct implication on the delay of electron counting-based

designs. In the remainder of this section, we discuss a
number of mechanisms that one can use in order to cope
with such practical restrictions. It is not our intention to
exhaustively cover this issue (future research is still
required in order to better understand all the involved
phenomena); we only attempt to demonstrate that interest-
ing solutions exist and evaluate the implication of such
restrictions on performance and area.

Let us assume the n-bit addition case and that at most
2r � 1 electrons can be accurately controlled by an
MV ke block. This implies that V � k can span between 0
and 2r � 1. To be able to construct an electron counting-
based implementation under this restriction, we have to
partition the operands in r-bit groups, which is equivalent
to a radix-2r operation. This produces, in the general case,
n
r

� �
groups, but, for simplicity of notation, we can assume

with no lost of generality that r is a divisor of n and neglect
the ceiling operator.

The proposed addition scheme is depicted in Fig. 5 and it
operates as follows: For each and every digit position j,
j ¼ 1; 2; . . . ; nr , we can use the scheme described in Section 3
and convert in charge, in a charge reservoir CRj, the sum of
the two digits Tj ¼ Aj þBj. As these values can be larger
than 2r � 1, a carry into the next digit might be produced.
To evaluate if such a carry has to be considered into the next
position, we can use a conditional MV ke block (CM1e) that
assumes as input CRj and removes one electron from the
charge reservoir CRjþ1 in the case that sgnfCRj � 2rg ¼ 1,
i.e., a carry was produced, and leaves CRjþ1 unchanged
otherwise. The process continues in this way until the last
charge reservoir CR

n
r is updated. At this point, the carry

propagation between the digits is completed and the charge
to digital conversion can be performed in parallel for all the
charge reservoirs by enabling all the PSF blocks. This new
scheme requires 2n MV ke blocks, nþ 1 PSF blocks, and
n
r CM1e blocks. When considering the delay of this scheme,
the critical path includes an MV ke block, n

r CM1e blocks,
and a PSF block. Thus, when we compare this scheme with
the one in Section 3, the extra delay is on the order of n

r and,
as expected, the higher the radix one can assume, the lower
the delay penalty. We note, however, that, given that the
MV ke blocks and PSF blocks can become slower when k is
larger than a certain value, the highest radix possible for a
given technology might not necessarily mean the fastest
scheme. Moreover, we note here that the CM1e blocks are
faster than the normal MV ke blocks as, for them, at most
one electron is removed from the output charge reservoir.

The extra delay due to the carry propagation between
digit positions can be further reduced if a carry lookahead
technique is utilized. In this way, based on the values in the
charge reservoirs, we can compute the generate, digit
propagate, and carry signals for all digit positions follow-
ing, for example, the method in [24]. In this way, the extra
delay is brought in the order of log n

r at the expanse of some
additional TL gates.

A similar technique can be applied to the multiplication
when the fabrication technology does not allow for the direct
utilization of the electron counting multiplication scheme
discussed in Section 3. Under the same assumption that at
most 2r � 1 electrons can be accurately controlled by the
MV ke blocks, a possiblemethod to implementmultiplication
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2. We assume here a level triggered behavior, but the scheme can work
with edge triggered policy as well.



can be sketched as follows: Again, we can operate in high
radix, but, in this case (in order to keep the maximum
number of electrons within boundaries), we have to
assume that the input operands are in radix-2

ffiffi
r

p
, thus we

initially deal with
ffiffiffi
r

p
-bit digits. First, we can compute the

partial products by applying the depth-3 multiplication
scheme in Fig. 4b at the digit level. We note here that, due to
the fact that the next computation steps are performed
directly on digits kept in charge reservoirs, the partial
products do not have to be reconverted in binary after the
multiplication. This means that the multiplication we use
for the production of the radix-2r partial products is depth-2
as the final conversion is not required. This first step
requires n2

r such depth-2 multipliers. Next, we reduce the
partial product matrix that contains r-bit digits to two rows.
This can be achieved with various types of counters that
operate on and produce radix-2r digits kept in charge
reservoirs. Such counters can be built with conditional
MV ke blocks that can now remove a variable number of
electrons from the output charge reservoir. A conditional
MV ke block can be built by augmenting the standard
MV ke block with a threshold gate. At the end of the
reduction process, the two available rows are formed by
charge reservoirs containing radix-2r digits, thus an adder
based on the scheme in Fig. 5 can be utilized to complete the
calculation. Again, this adder is less complex as the inputs
are already converted in charge. Asymptotically speaking,
the overall multiplication delay might be on the order of
Oðlog n

rÞ. For the time being, we cannot make more accurate
delay evaluations as it very much depends on the type of
counters one can implement under the constraints we
assumed and this issue is subject to future research.

Thus far, we have discussed potential schemes for
addition and multiplication. In order to evaluate imple-
mentations of the proposed electron counting addition and
multiplication schemes, the next section proposes possible
implementations of the required building blocks.

5 POSSIBLE IMPLEMENTATIONS OF ELECTRON

COUNTING BUILDING BLOCKS

In Section 3, we discussed several approaches for comput-
ing arithmetic functions, e.g., addition and multiplication,
via the controlled transport of individual electrons. These

proposals are based on the MV ke and PSF building blocks,
whose functional behavior was also introduced in Section 3.
In this section, we propose possible SET-based implementa-
tions of the these two building blocks. We discuss their
operation principles and demonstrate the behavior of the
designs by means of simulation.

5.1 Implementing the MVke Building Block

The SET transistor can be utilized to control the transport of
charge from its source to its drain terminal. For any applied
gate voltage Vg, there exists a minimum drain-source voltage
Vds that results in a nonzero current id. However, if the source
and/or the drain terminal are capacitively coupled to their
environment, the transported charge will (gradually) reduce
Vds until further charge transport is no longer possible. This
principle forms the basis for the proposed MV ke block, as
depicted in Fig. 6a. The Boolean inputs E (enable) and R

(reset) are control signals and the input V is a discrete analog
input representing an integer value.

Before discussing the operation principle of the proposed
implementation we have to make certain assumptions
related to the electrical representation of the logic “0” and
logic “1” values. In the remainder of this paper, if not
specified otherwise, we assume that Boolean input/output
signals correspond with the following voltages: logic “0” = 0
Volt, logic “1” = qe=10C Volt, where C acts as a unit for
capacitance. If, for example, we choose C ¼ 10�18F , we find
logic “1” = 16 mV.

The proposed implementation of the MV ke block
operates as follows: Assume that, initially, all inputs are 0
and the circuit is in a neutral charge configuration, i.e., the
net charges present on circuit nodes t and i as well as the
charge present in the charge reservoir are 0. When the
circuit is enabled (E ¼ “1”), the voltage across junction Cj1

becomes close to its critical voltage Vc. If, simultaneously,
the input V assumes a value larger than 0, the voltage
across junction Cj1 becomes larger than its critical voltage
and charge transport occurs. Note that this charge transport
consists of paired tunnel events: A tunnel event in junction
Cj1 (transporting one electron from node i to node t) is
followed by a tunnel event in junction Cj2 (transporting one
electron from the charge reservoir to node i). The net effect
of each paired tunnel event is þ1qe charge present in the
charge reservoir and �1qe charge present on node t.
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Eventually, the voltage resulting from the increasing
negative charge present on node t will cancel the effect of
the input signal V and further charge transport will cease.
Note that the circuit can be designed such that both V and E
can now be set to “0” without losing the charge trapped on
node t. This has the added advantage that any effect of V
and E on the output voltage (due to capacitive voltage
division) is removed entirely. After the result produced by
the MV ke block has been processed by the next circuit
element, the MV ke block can be reset (R ¼ “1”) while
E ¼ V ¼ 0, reversing the process described above. In this
way, the MV ke block is brought back to the neutral charge
configuration and made ready for the next evaluation
phase. We note here that one simple way to make E ¼ “0”
and V ¼ 0 during the reset phase is to NOR them with R. In
this way, they are always 0 when R ¼ “1” and R can be
seen as the only control signal.

In order to implement an instance of the MV ke block
described above, we assume that the capacitance Ccr of the
charge reservoir is much larger than the capacitance of Cj2

(Ccr >> Cj2). We also assume that C�t >> Cj1, where
C�t ¼ Ce þ Cv þ Ct. As a result, we found, for both junctions,
thatVc ¼ e=2C�i, whereC�i ¼ Cj1 þ Cj2 þ Cr þ Ci. Choosing
C�i ¼ 10C and C ¼ 10�18F , we find Vc � 8mV for both
junctions. However, given these assumptions, we calculated
that the actual critical voltage is somewhat higher. We
therefore chose the circuit parameters such that the voltage
across junction Cj1 is 8 mV when E = logic “1” = 16 mV. In
order to decouple the input from the output, as well as to
maximize the contributions of the input voltages E and V to
the voltage across junction Cj1, we choose Cj1 ¼ Cj2 ¼ 0:5C.
As a result, we calculated that the following capacitor ratios
are required: Ce=C�t ¼ 5=9:5 and Cr=C�i ¼ 5=10. The in-
teger constant k of the MV ke block is determined by the
capacitor Cv as follows: Assume V ¼ 1 corresponds to a
voltage qe=�C and that k electrons have been transported to
node t. In order for the contribution of the input V and of
the transported charge k� qe to the voltage of node t to
cancel each other, we find that Cv=�C ¼ k. Assuming, for
example, � ¼ 100, we find that k ¼ 3 corresponds to
Cv ¼ 300C.

To demonstrate the correct behavior of the proposed
MV ke block,we have simulated an instance of the circuit.We
utilized C ¼ 1aF , � ¼ 100, k ¼ 3, which resulted in the
following circuit parameters (corresponding to the previous
discussions) : Cj1 ¼ Cj2 ¼ 0:5aF , Cr ¼ 5aF , Ci ¼ 4aF ,
Ce ¼ 500aF , Cv ¼ 300aF , Ct ¼ 150aF , logic 1 = 16 mV.

The charge reservoir is implemented by a capacitor

Ccr ¼ 10�14F . The simulation results are presented in Fig.

7. In the figure, the top three bars represent the inputs R, E,

and V , while the bottom two bars represents the charge

present in the charge reservoir and the voltage across Ccr

(the capacitor implementing the charge reservoir). As can

be observed in the figure, the MV ke block transports V �
3qe charge to the charge reservoir as it should. Given that

Ccr ¼ 10�14F , every 3qe charge added corresponds to an

increase of 0:048 mV. Maintaining signal strength therefore

requires an amplification of factor 100. As one can observe,

the charge reservoir maintains its value when E ¼ R ¼ V ¼
0 Volt. Finally, no charge transport occurs while E ¼ 0 as it

can be observed that, for the last input value, V ¼ 8 mV.
Given the above parameters, we can estimate the delay

of the MV ke block as a function of the input value V .

Charge transportation through a tunnel is assumed to be

sequential in nature. Thus, V ¼ 2 (and k ¼ 3), for example,

results in six sequential combined tunnel events. By a

combined tunnel event, we refer to an initial tunnel event

in junction Cj1, followed by a tunnel event in junction Cj2.

As the delay of the second event can be neglected when

compared with the delay of the first event, the delay

estimates are based on the first event only. Each tunnel

event in junction Cj1 reduces the voltage Vj across this

tunnel junction. Given (1), this implies that each consecutive

tunnel event has a larger delay than the previous one. The
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Fig. 6. Implementation details of the MV ke block. (a) Circuit diagram. (b) Delay as a function of V .

Fig. 7. MV ke block simulation results.



total delay can be calculated by summarizing each
individual delay, which, for V > 0, results in:

td ¼ �V �k
i¼1

0:295

1:6 � 3
9:5 � 2i�1

2k

ns: ð2Þ

In order to visualize the above result, we plotted the delay
td as a function of the input value V . The result is depicted
in Fig. 6b. From this, it can be observed that, although the
delay depends on the number of electrons which are
transported through the tunnel junctions, the increase in
delay is asymptotically bound. As we can observe in Fig. 6b,
for the circuit parameters we assumed, the delay varies
between 5 and 10 ns, which means that the maximum delay
is about the same as the typical delay of a CMOS-like gate,
but 10� larger than the one of a SEEL gate. The area of the
MV ke block can be estimated in a straightforward manner
by counting the required number of circuit elements.
Excluding the charge reservoir capacitor, we find that the
area costs seven circuit elements.

5.2 Implementing the PSF Building Block

The electron trap, consisting simply of a capacitor in series
with a tunnel junction, as depicted in Fig. 8a, displays a
periodic behavior. Thus, it can serve as the basis for an
implementation of the PSF block. The operating principle
of the electron trap is as follows: Assume that the input
voltage Vin starts at 0 Volt such that the net charge present
on the output node is 0. When Vin is gradually increased,
the output voltage will also rise due to voltage division.
Eventually, the voltage across the tunnel junction will reach
its critical value Vc and an electron will tunnel. As a result of
this tunnel event, the voltage present at the electron trap
output drops to a negative value. When Vin further
increases, the output voltage again gradually increases
until it passes the critical value, after which the process

repeats itself. The transfer function of the electron trap, as
depicted in Fig. 8b, is therefore periodic in nature.

The periodic signal of the electron trap and the literal
function of the SET inverter serve as the basis for our
proposed implementation of the PSF , which is depicted in
Fig. 9a. The circuit operates as follows: The SET inverter
behaves as a literal gate and transforms its input signal
(within a limited range) to either logic 0 or logic 1. The
inverter is modified such that it has two inputs. One of its
inputs is attached to a bias voltage Vb. The bias voltage is set
such that the inverter is close to its switching point. The
output of the electron trap serves as the second input to the
modified inverter block. Given that the PSF block is
intended as a building block for Analog to Digital
Conversion (ADC), we are solely interested in periodic
symmetric functions (see Fig. 3b) in which b ¼ 2a and
T ¼ 2a. We therefore bias the inverter in order to obtain the
following behavior: If the output of the electron box is
negative, the inverter interprets the combined input of the
electron trap and the bias voltage as logic 0 and its output
becomes 1. Likewise, if the output of the electron trap is
positive, the inverter interprets the combined input of the
electron trap and the bias voltage as logic 1 and its output
becomes 0.

When implementing instances of the proposed
PSF block, the following is assumed: The input V of the
PSF block is a discrete analog input representing an integer
value. Assume that V ¼ 1 corresponds to a voltage qe=�C
and that we implement the periodic symmetric function
characterized by a ¼ qe=�C, b ¼ 2qe=�C, T ¼ 2qe=�C (see
Fig. 3b). Given the operating principle of the proposed
implementation of the PSF block and the general transfer
function of the electron trap (see Fig. 8b), we can implement
this PSF block by mapping a ¼ qe=�C to V ¼ qe=2Ct.
Assuming � ¼ 100, we find Cc ¼ 50C. The maximum
amplitude of the electron trap is determined by the total
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Fig. 8. SET electron trap. (a) Circuit. (b) Transfer function.

Fig. 9. Implementation details of the PSF block. (a) Circuit diagram. (b) Delay as a function of V .



capacitance attached to node t. Choosing C�t ¼ �C results

in a maximum signal amplitude Vmax ¼ qe=�C.
In order to simplify the remainder of the design process,

we assume that the bias voltage Vb and the output of the

electron trap have equally weighted contributions to the

modified inverter, i.e., equal sized capacitors Cg. Addition-

ally, we assume � ¼ 100, resulting in the following set of

circuit parameters for the inverter: C1 ¼ 1C, C2 ¼ 5C,

Cb ¼ 42:5C, Co ¼ 90C, Vb ¼ qe=100C. Note that these para-

meter ratios have previously been verified (see, for

example, [20]) and scale linearly with � (such that, for

example, � ¼ 10 corresponds with C2 ¼ 0:5C).
Assuming C ¼ 10�18F , we verified the resulting design

by means of simulation (SIMON) using the following circuit

parameters: Cc ¼ 50aF , Cj ¼ 45aF , Cg ¼ 2:5aF , C1 ¼ 1aF ,

C2 ¼ 5aF , Cb ¼ 42:5aF , Co ¼ 90aF , Vb ¼ 1:61V , � ¼ 100

(V ¼ 1 ¼ 1:6 mV). The simulation results are depicted in

Fig. 10. In the figure, the top represents the analog input V

while the bottom bar represents the binary output Fp. As

can be observed, the PSF block is performing the expected

computation.
The delay calculations of the PSF block are somewhat

complicated as they cannot be described by a single

equation. This can be explained as follows: Both when V ¼
1 and when V ¼ 2, the electron trap transports 1 electron.

However, when V ¼ 2, the voltage Vj across the electron

trap’s tunnel junction Cj is larger. Thus, the difference

between Vj and the critical voltage Vc is larger, which

implies (see (1)) that the delay for V ¼ 2 is less than the

delay for V ¼ 1. This holds for all consecutive pairs such as

V ¼ 3 and V ¼ 4, V ¼ 5 and V ¼ 6, etc. Given the

parameters described above and (1), we calculated the

delay of the PSF block for various values of V . The results

are depicted in Fig. 9b. It can be observed that, for

increasing values of V , the delay of odd V values is

asymptotically bound to approximately double the delay of

even V values. As we can observe in the figure, for the

circuit parameters we assumed, the delay varies between

0:2 and 1:2 ns, which means that the maximum delay is

about the same with the typical delay of a SEEL gate.

6 ELECTRON COUNTING CIRCUIT EXAMPLES

In the previous section, we proposed SET-based imple-

mentations of theMV ke and PSF blocks. In this section, we

present a number of electron counting-based circuit

examples. As DAC and ADC are basic steps within the
electron counting arithmetic paradigm, we first present

such circuits. Subsequently, we present electron counting

circuits for addition and multiplications. All the presented
circuits are verified via simulation.

6.1 4-Bit Digital to Analog Converter

To convert a 4-bit operand X ¼ ðx0; x1; x2; x3Þ, each bit xi,

i ¼ 0; 1; 2; 3, is connected to the E input of an MV ke block

that has the V input hardwired to a bias potential that

induces a V � k value equal to 2i. Therefore, the operand X

can be encoded as
P3

i¼0 xi2
iqe at the cost of four MV ke

blocks with k0 ¼ 1; k1 ¼ 2; k2 ¼ 4; k3 ¼ 8.
To implement an instance of the 4-bit DAC, we assume

that, for the binary inputs, logic “1” = 16mVand logic “0” = 0

mV and that the conversion result is stored in a charge

reservoir with the capacitance Ccr ¼ 10�14F . For eachMV ke

block, we have to compute theCv value corresponding to the

desired k. As in the MV ke example, V ¼ 1 corresponds to

1.6 mV the input capacitors realizing the weighing (constant

k) have to be reduced by a factor of 10. This results inCv being

equal to 10; 20; 40; 80 aF for k ¼ 1; 2; 4; 8, respectively. All the

other circuit parameters remain as in the MV ke block

example presented in Section 5.1. The 4-bit DAC circuit is

presented in Fig. 11 and the corresponding simulation results

in Fig. 12. Various 4-bit numbers are considered as input and,

as the figure indicates, the proposed circuit performs the

correct conversions.Additionally, one canobserve that,when

E ¼ 0, this is the case for the last evaluated input pattern, no

conversion is performed and the charge reservoir remains in

the neutral state.
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Fig. 10. PSF block simulation results.

Fig. 11. 4-bit digital to analog converter.



6.2 5-Bit Analog to Digital Converter

The next circuit we consider is a 5-bit analog to digital
converter (ADC). For such a circuit, the input V is assumed to
be the charge encoded on a 10�16F capacitor and the outputs
are five binary signals d0; d1; d2; d3; d4. To implement the
ADC, we need five PSF blocks designed in such a way that
each block can evaluate an output signal di. For all the PSFs,
b ¼ 2a and T ¼ 2a and ai ¼ 2i for di; i ¼ 0; 1; 2; 3; 4. To
instantiate the five PSF blocks, we have to compute the
circuit parameters corresponding to the function they have
to evaluate.

We chose Ct ¼ 20C for all the PSF instances. This choice
provides enough signal swing on the electron trap output to
register small variations, but also not too much maximum
amplitude as the inverter has a limited input voltage range
for which it can operate correctly. The inverter with the
parameters suggested in Section 5.2 is not balanced quite
properly. The boundary between inputs considered 0 and 1
shifts, depending on what the last one was. So, for example,
a 0 to 1 transition switches the output at Vin ¼ 0:45 � Vhigh,
while a 1 to 0 transition switches at 0:55 � Vhigh. When the
output signal of the electron box changes in very small
steps, this might ruin the desired behavior. Experiments
revealed that c1 ¼ 5C (instead of 1C) significantly improves
the balance. A slight increase of the Vb to 1:61mV (instead of
the usual 1:6 mV) can also alleviate the situation.

The method for calculating the Cc value is based on some
estimates. By applying the estimation method, we found
out that the Cc values of 50 aF, 25 aF, 12.5 aF, 6.2 aF, and
3.05 aF, are required for the PSF block calculating
d0; d1; d2; d3; d4, respectively.

The 5-bit ADC circuit is presented in Fig. 13 and the
corresponding simulation results in Fig. 14. As one can
observe in Fig. 14, values between 0 and 31 are assumed as
inputs and the 5-bit ADC produces the correct results.

6.3 4-Bit Addition

A4-bit adder structure can be instantiated as a particular case
of the addition structure discussed in Section 3. Simply
speaking, such a structure can be built with two 4-bit DACs,
oneMV keblock tohandle the carry in, a charge reservoir, and
one 5-bit ADC. The 4-bit adder circuit is presented in Fig. 15.

The DAC blocks are identical with the one presented in
Section 6.1 and the PSF block is the same with the one
described in Section 6.2. The MV ke block that processes the
Cin is identical with the one processing a0 or b0.

As the charge reservoir (as in all examples) consists of a
10�14 F capacitance, it produces a voltage of 0.016 mV per
electron. Due to the fact that the PSF blocks expect an input
V such that V ¼ 1 corresponds with 1.6 mV, we have to
utilize an operational amplifier with 100x amplification
factor. Such an amplifier can be built with FET-SET
technology and, in principle, SET circuits that include
Opamps should not constitute a problem for SIMON
simulations. It seems, however, that the utilization of
Opamps creates random effects in SIMON simulations.
SIMON supports ideal circuit components, so what hap-
pens at the output of the Opamp should have no effect at
the input side. However, if the Opamp output side has SET
circuitry, all kinds of “random” effects start occurring. To
solve this problem, we utilized a simulation strategy that
requires the partition of the circuit in stages that end with
an electron reservoir and an Opamp. In this way, we can
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Fig. 12. 4-bit digital to analog converter—simulation results.
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first simulate the first stage of the adder and store the

simulation data at the Opamp’s output. Subsequently, we

simulate the next stage, which is now driven by a voltage

source instead of an Opamp. By copying the recorded

Opamp output values to the SIMON voltage source

description such that the voltage source produces exactly

the same voltages as the Opamp, we create the appropriate

simulation stimuli for the second stage. In this way, the 4-bit

adder was simulated in two steps and we avoided the

random effects created in SIMON simulations by Opamps

followed by SET circuits. The simulation results are

presented in Fig. 16 and one can easily observe that the

adder functions correctly.

6.4 3-Bit Multiplication

A 3-bit multiplier structure can be instantiated as a
particular case of the multiplication structure discussed in
Section 3 and it is presented in Fig. 17.

The first stage (the one processing the bi inputs) is a 3-bit
DAC structure that follows the same organization and
requires the same parameters as the one required for the
first three inputs of the 4-bit DAC. To connect its output at
the second stage, an amplification of 100� is required and
this can be achieved with an Opamp.

In the second stage, the ai inputs are attached to the
E input of the MV ke blocks. Since E ¼ “1” has the same
voltage as ai ¼ “1,” no changes are required. The V inputs
of the second stage don’t have V ¼ 1 corresponding with
1.6 mV as in the MV ke block example. Thus, for k ¼ 1; 2; 4,
we have to use Cv ¼ 100; 200; 400 aF. To connect the second
stage to the third one, a 100x amplification is again
required. The last stage is a 6-bit ADC structure that can
be obtained by the augmentation of the 5-bit ADC with a
PSF block with the Cc value of 1.5aF.

To simulate the multiplier, we utilized the same
methodology as for the adder, but now the simulation
requires three steps. The simulation results are presented in
Fig. 18 and one can easily observe that the multiplier
functions correctly.

7 CONCLUSIONS

Single Electron Tunneling (SET) technology offers a potential
for (sub)nanometer feature size scaling, room temperature
operation, as well as ultra-low power consumption. How-
ever, similarly to other future technology candidates, it
displays a switching behavior that differs from traditional
MOS devices. This provides new possibilities and challenges
for implementing computer arithmetic circuits.

In this paper, we investigated the implementation of basic
arithmetic functions, such as addition and multiplication, in
SET technology via the controlled transport of charge. First,
we proposed a set of building blocks, e.g., move charge block
(MV ke) and periodic symmetric function block (PSF ),
which can be utilized for charge controlled computations.
Second, using the new set of building blocks, we proposed a
number of novel approaches for computing addition related
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Fig. 14. 5-bit analog to digital converter—simulation results.

Fig. 15. 4-bit adder.

Fig. 16. 4-bit addition—simulation results.



arithmetic functions, e.g., addition, multiplication, via the
controlled transport of charge. When the number of the
electrons that can be accurately controlled within the system
is unrestricted, we proved that the following holds true:
The addition/subtraction of two n-bit operands can be
computed with a depth-2 network composed out of 3nþ 1
circuit elements; the multiplication of two n-bit operands
can be computed with a depth-3 network with 4n� 1 circuit
elements. For the more practical case when the number of
the electrons that can be accurately controlled by an MV ke

block is limited to 2r � 1, we proved that the addition/
subtraction of two n-bit operands can be computed with a
depth- n

r þ 3
� �

network composed of 3nþ 1þ n
r circuit

elements. Additionally, under the same restriction, we
suggested methods to reduce the addition network depth in
the order of log n

r and to perform n-bit multiplication in an
Oðlog n

rÞ delay. Third, we introduced SET implementations
for the electron counting blocks and evaluated their area
and potential delay. The MV ke can be implemented with
seven circuit elements and has a delay that varies between 5
and 10 ns, which means that the maximum delay is about
the same with the typical delay of a CMOS-like gate, but
10� larger than the one of a SEEL gate. The PSF block can
be implemented with 13 circuit elements and has a delay
that varies between 0:2 and 1:2 ns. Finally, we proposed
SET-based implementations for a number of circuits
operating under the electron counting paradigm as follows:
4-bit Digital to Analog Converter, 5-bit Analog to Digital
Converter, 4-bit adder, and 3-bit multiplier.

The main advantage of the electron counting paradigm is
the potential to encode an n-bit binary number as a single
variable. First, this can result in a large reduction of area for
memory cell arrays as well as for arithmetic circuits.
Second, it can potentially result in reduced delay for
arithmetic operations as electron counting logic can
reduce/eliminate the carry chain that usually determines
the critical path of such operations.

The main disadvantage of the electron counting para-
digm is the need for additional signal amplification. Given

that the charge present in a charge reservoir can potentially
vary over a large range, the capacitance of the charge
reservoir should be relatively large in order to reduce
feedback to the attached electron counting building blocks.
This also implies that the feed forward signal is relatively
small and that it requires amplification. As this signal is
non-Boolean, a simple buffer such as an inverter cannot be
utilized. Instead, the presence of Opamp-like buffers is
required. It may, however, be possible to delay signal
amplification until a charge encoded result is converted into
a binary number such that an inverter chain is sufficient for
signal-level restoration.

Our investigation demonstrated the potential benefits the
electron counting paradigmmight have in terms of required
area and delay for addition related operations. However,
we do not yet have sufficient simulation data to evaluate it
in relevant practical cases. The expected delay of the
electron counting basic building blocks is larger than the
one of SEEL gates, but we expect that the shallow networks
produced by the electron counting paradigm can compen-
sate for this. For example, when considering the n-bit
addition, any fast structure based on carry lookahead or
another similar technique [25] requires a delay in the order
of OðlognÞ, whereas the electron counting produces a
network with a depth on the order of Oðlog n

rÞ when the
number of electrons that can be accurately controlled by an
MV ke block is limited to 2r � 1. Whether or not this is
enough to compensate for the larger delay of the electron
counting blocks and/or for other practical issues that might
limit the number of bits that can be accommodated within a
charge reservoir is still an open issue and the subject of
future research. However, given that the delay of electron
counting blocks is about the same as the typical delay of a
SEEL gate in the case of the PSF blocks and about one
order of magnitude larger for the MV ke blocks, we expect
adder and multiplier implementations based on the electron
counting paradigm to be faster than SEEL-based designs.
We also expect that the required area for addition related
operations implemented in the electron counting paradigm
will be lesser than the one required by SEEL implementa-
tion based on Boolean and/or threshold gates. When
assuming that signal amplification can be achieved with
an inverter chain, the power consumption might be
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Fig. 17. 3-bit multiplier.

Fig. 18. 3-bit multiplier—simulation results.



comparable to the SEEL approach, but this issue also
requires more future investigations. Concluding, regarding
the SET implementation of arithmetic operations, electron
counting logic appears to be the design style that best
exploits the SET potential. Another potential interesting
application for this encoding scheme is the implementation
of memory cell arrays as a large number of memory cells
can utilize a single DAC and ADC.
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