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Abstract

Machine learning classifiers were employed to detect glaucomatous progression using longitudinal 

series of structural data extracted from retinal nerve fiber layer thickness measurements and visual 

functional data recorded from standard automated perimetry tests. Using the collected data, a 

longitudinal feature vector was created for each patient’s eye by computing the norm 1 difference 

vector of the data at the baseline and at each follow-up visit. The longitudinal features from each 

patient’s eye were then fed to the machine learning classifier to classify each eye as stable or 

progressed over time. This study was performed using several machine learning classifiers 

including Bayesian, Lazy, Meta, and Tree, composing different families. Combinations of 

structural and functional features were selected and ranked to determine the relative effectiveness 

of each feature. Finally, the outcomes of the classifiers were assessed by several performance 

metrics and the effectiveness of structural and functional features were analyzed.

Keywords

Biomedical engineering; biomedical signal processing; change detection; glaucoma progression; 
machine learning

I. Introduction

Glaucoma, a progressive optic neuropathy, is the second leading cause of blindness in the 

world [1]–[3]. It is estimated that there will be approximately 80 million people worldwide 

affected by glaucoma by 2020 [3]. Key aspects of glaucoma management are early detection 

and monitoring of disease progression (identifying the first evidence of disease related 

change and keeping track of it). Current gold standards for identifying glaucomatous 

progression are assessment of serial stereoscopic optic disc photographs (depicting 

anatomical structure) and assessment of serial psychophysical test results (tests of visual 

function, called visual field tests).

Stereoscopic disc photos provide a permanent record of the appearance of the optic nerve 

that is independent of specialized viewing instruments [4]–[7]. This technique remains the 

most widely used and accepted documentation of the condition of the optic nerve head [6]. 

Methods for detecting glaucoma and monitoring its progression over time using 

stereophotographs have been described previously [7]. Like other subjective assessments, 

subjective assessment of serial optic disc photographs is prone to expert errors. From the 

clinical point of view, many eye care professionals prefer to have access to more objective 

progression analyses.

Standard automated perimetry (SAP) is a psychophysical test that provides the clinicians an 

insight to the function of the visual field by reporting the retinal sensitivity to light stimuli 

[8]. SAP provides an objective assessment of the visual field in the form of sensitivity 

measurements at 52 different test points (for 24-2 stimuli) across the visual field. Recent 

improved testing algorithms like the Swedish interactive thresholding algorithm (SITA) and 
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the availability of progression detection software like guided progression analysis (GPA) 

and visual field index have solidified SAP as the preferred method for diagnosis and follow-

up of functional visual field loss [8], [9].

Optical coherence tomography (OCT) is an objective tool for imaging the structure of the 

optic disc and the thickness of the surrounding retinal nerve fiber layer (RNFL, also 

damaged in glaucoma). OCT is a noncontact and noninvasive medical imaging technology 

that uses reflected light to produce detailed cross-sectional and 3-D images of the eye and 

provides a tool for visualizing structural maps of the RNFL [10]. Spectral domain OCT 

(SDOCT), also known as Fourier domain OCT, is a relatively recent advance in imaging 

that allows clinicians to detect retinal pathologies that might not be seen by the clinician or 

by using other ophthalmic instruments. Essentially, SDOCT identifies differences in optical 

reflection of the different retinal layers and illustrates them in a gray scale. Thus, SDOCT 

images depict reflective interfaces between retinal layers. SDOCT scanners generate high-

resolution images in a relatively short time [10], [11].

Machine learning classifiers (MLCs) have been widely used in biomedical areas [12]–[14]. 

In an attempt to further increase the objective interpretation of optical imaging and visual 

function testing, MLCs that use a mathematical approach without human intervention are 

used to detect defect patterns and disease progression and to classify eyes as healthy or 

glaucomatous (see [15] for a review). The advantages of MLCs compared to traditional 

methods in glaucoma diagnosis are discussed in [16]. Recent advances in MLCs and 

ophthalmic imaging instruments suggest that more accurate prediction and detection of 

glaucoma progression is possible [17]–[19]. Relevance vector machine (RVM), which 

modifies support vector machines with Bayesian strategies to provide a probability of group 

membership, is an example of a MLC [20]–[22] that was successfully employed to separate 

healthy and glaucomatous eyes. RVM performs equal to, or better, than other statistical 

techniques [23]. In [24], the authors proposed spatial modeling of visual fields to enhance 

glaucoma progression detection accuracy. By properly modeling visual field dependencies, 

the authors reached a reasonable degree of accuracy detecting glaucomatous progression. To 

identify early glaucomatous progression from objective measurements, the current study 

sought to apply various classification methods to baseline and to follow up SDOCT 

measurements, SAP results and the combination of these measurements to determine which 

eyes remain stable and which glaucoma eyes show glaucomatous progression over serial 

follow-up. The chosen classification methods were examples of Bayesian, Lazy, Meta, and 

Tree classifiers. Several classifier types were evaluated to both determine which may be 

most useful for this classification problem and to keep our feature evaluation results 

independent of any particular classifier.

II. Methods

In this section, we first describe the technologies and instruments used for collecting 

structural and functional ophthalmic data of study participants. Subsequently, we describe 

the data acquisition and assessment of subjects and the methodology used to generate 

optimal features for analysis using MLCs. We have provided detailed descriptions of the 

MLCs evaluated in this study and their implementation details. Next, we describe a set of 
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performance metrics that we use to assess the performance of the MLCs. We then discuss 

how glaucomatous patterns are extracted by the MLCs by ranking features of structural and 

functional measurements of study participants. The outcome of the experiment and a 

thorough discussion is provided.

A. Instruments

Color photograph pairs were simultaneously obtained through maximally dilated pupils 

using a stereoscopic camera (Kowa Nonmyd WX3D, software version VK27E, Kowa 

Company Ltd., Tokyo, Japan). SAP-measured visual field sensitivity was tested at 54 points 

(of which 52 locations were used in feature sets) using the 24-2 SITA test strategy 

(Humphrey Field Analyzer II, Carl Zeiss Meditec, Dublin, CA, USA). SDOCT 

measurements of the RNFL thickness were obtained using the Spectralis RNFL circle scan 

(software version 1.5.2.0, Heidelberg Engineering, Heidelberg, Germany).

Fig. 1(top-left) shows an example photograph of the optic disk region and peripapillary 

retina. The retinal vessels and optic cup can be seen in this figure. Fig. 1(top-right) displays 

24-2 SAP visual field absolute sensitivities in decibels at the available 52 test points that are 

uniquely specified by their angular location in superior, inferior, nasal, or temporal zones. In 

Fig. 1(bottom), a sample SDOCT image is shown. Retinal nerve fiber layer, ganglion cell 

complex, inner and outer plexiform layers, and other tissue layers can be seen from an OCT 

image.

B. Data Acquisition and Assessment

Each study participant underwent a comprehensive ophthalmic evaluation, including review 

of medical history, best corrected visual acuity, slit lamp biomicroscopy, intraocular 

pressure measurement with Goldmann applanation tonometry, gonioscopy, dilated slit lamp 

fundus examination, simultaneous stereoscopic optic disc photography, SAP visual field 

exam, and SDOCT imaging exam at each visit. All participant eyes were recruited from the 

University of California at San Diego (UCSD)-based diagnostic innovations in glaucoma 

study (DIGS) and the African Descent and Glaucoma Evaluation Study (ADAGES). The 

ADAGES is a multicenter study that includes UCSD, University of Alabama at Birmingham 

and New York Eye and Ear Infirmary. Both studies follow the tenets of the Declaration of 

Helsinki, Health Insurance Portability and Accountability Act guidelines and the Human 

Research Protection Program of each study site approved all methodology. Written informed 

consent was obtained from all study participants.

All classifiers (described below) were trained and tested on structural and functional 

measurements obtained of the same visit. To create the reference standard for classification 

assessment, all eyes evaluated were divided into two groups. The first group of eyes showed 

progression based on serial analysis of optic disc stereophotographs or based on visual field 

assessment using guided progression analysis (GPA, described below). The second group 

contained eyes that were stable using both progression detection techniques.

For progression assessment using stereophotographs, the baseline and each follow-up image 

were assessed for progressive glaucomatous optic neuropathy (PGON) by two observers 

using a stereoscopic viewing device to evaluate digitized paired images on a 21 inch or 
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larger computer monitor. PGON was defined as a decrease in the neuroretinal rim thickness, 

the appearance of a new RNFL defect or the enlargement of a preexisting RNFL defect. 

Observers were masked to patient identification and diagnosis. A third observer adjudicated 

any disagreement in assessment between the first two observers [25].

For progression assessment using SAP, progressive glaucoma was defined based on GPA 

analysis, a method for detecting changes available on the visual field instrument. GPA 

indicates change from baseline by evaluating all test points and indicates “likely 

progression” for the full field if change (greater than the variability observed in two baseline 

measurements) in three or more of the same points is repeatable in three consecutive exams 

[26], [27]. For this study, two consecutive “likely progression” results were required. 

Therefore, two groups of progressed glaucoma subjects were identified—progressed by 

PGON, and progressed by GPA. The PGON group represents glaucomatous progression 

based on structural evidence while the GPA group represents glaucomatous progression 

based on functional evidence. A total of 107 eyes from 100 subjects were identified as 

progressed by either PGON or GPA. A total of 632 OCT and SAP visual field 

measurements were collected from this group. The mean number of follow-up visits was 

4.3, and the mean follow-up time was 2.2 years.

All stable eyes were selected from eyes that had been identified as glaucomatous at baseline 

with repeatable SAP defects (instrument software defined pattern standard deviation ≤5% of 

normal or Glaucoma Hemifield Test outside of normal limits) [28]. Stability was simulated 

by testing with SDOCT and SAP every week for five weeks, providing an average of 3.9 

consecutive tests excluding baseline, for each eye. These eyes were considered stable (i.e., 

nonprogressing) because testing was completed within a mean of four weeks and detectable 

disease-related change in structure or function is not possible in this brief time (because 

glaucomatous change usually occurs over years). A total of 73 eyes from 39 subjects were 

included and a total of 358 OCT and SAP visual field measurements were collected.

Table I shows the demographic information of the subjects in the stable or progressing 

groups. The mean deviation (MD) and pattern standard deviation (PSD) of each group are 

listed in this table, as well. MD and PSD are global indices that indicate the deviation of a 

visual field from a mean of normal visual field and are descriptors of glaucoma related 

visual field defects. The lower the MD and higher the PSD, the more severe the defect.

C. Data Formats and Feature Sets for MLC

OCT RNFL thickness measurements and thresholds at each SAP test points were used to 

train and test the machine learning classifiers. MD and PSD values also were included 

resulting in a 54-D vector for SAP (threshold values at 52 test points, MD, and PSD).

RNFL thickness was measured using the Spectralis RNFL Circle Scan configuration, a 

single B-scan along a 3.4-mm circle centered on the optic disc composed of 1536 SDOCT 

A-scans. Spectralis software segments the image (isolating the RNFL) and calculates the 

average RNFL thickness for different sectors. In this study, RNFL thickness was obtained in 

six sectors; superior temporal, temporal, inferior temporal, inferior nasal, nasal, and superior 

nasal. Spectralis software also provides global RNFL thickness in addition to sectoral 
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measurements. The OCT data comprised these seven RNFL thickness measurements, 

resulting in a 7-D input vector. Quality of all SDOCT scans was reviewed according to 

standard protocol by the imaging data evaluation and analysis center staff, and only good 

quality scans were included in the analysis. All SAP results were reliable (fixation loss 

≤33%, false positive results ≤15%) and were free of common tests artifacts. RNFL and SAP 

measurements for each visit were obtained within three months of each other. Average 

between-visit interval for progressing eyes was 0.6 years (SD = 0.3 years) and average 

between-visit interval for stable eyes was 8.3 days (SD = 2.0 days).

The RNFL and SAP data vectors were processed further to generate the feature vectors. For 

each eye, the difference between the baseline RNFL and SAP data vectors (obtained by the 

first exam date) and each follow-up RNFL and SAP data vector were calculated. This way, 

we obtained a longitudinal time series of features for each subject’s eye. For instance, if the 

data are collected from a subject at baseline and at 4 follow-up visits, the longitudinal data 

set for this subject has four time points and each time point has a corresponding 7-D RNFL 

and a 54-D SAP (threshold values at 52 test points, MD, and PSD) feature vector. This is 

shown in Fig. 2 in more detail. Fig. 2(a) shows sample RNFL and SAP measurements and 

indicates how the data vectors are formed. Fig. 2(b) shows the longitudinal data vectors for a 

single subject. The longitudinal feature vectors, which are the norm 1 difference between the 

baseline and follow-up data vectors, are displayed in Fig. 2(c).

Different combinations of the RNFL and SAP features were fed to the machine learning 

classifiers to assess their effectiveness and power in detecting glaucoma progression patterns 

and separating stable from progressed eyes over time. Note that combining the features is 

done by concatenating two feature vectors. This is discussed in more details in the following 

sections.

D. Machine Learning Classifiers

To analyze the effectiveness of different classifiers and to assess the optimality of SAP and 

RNFL input features, we used classifiers from Bayesian, Instance-based, Meta, and Tree 

families of MLCs including Bayesian net, Lazy K Star, Meta classification using regression, 

Meta ensemble selection, alternating decision tree (AD tree), random forest tree, and simple 

classification and regression tree (CART) to detect glaucoma progression patterns from the 

longitudinal feature vectors, and to separate each eye into either the nonprogressed (i.e., 

stable) or progressed glaucoma. Eyes with at least 50% of follow-up exams classified as 

progressed by the MLC, or with two consecutive follow-up exams classified as progressed 

by the MLC, were assigned to the progressed glaucoma group; the remaining study eyes 

were assigned to the stable glaucoma group. Here, we briefly describe these classifiers.

Bayesian net employs factored representations of probability distributions that generalize the 

naive Bayesian classifier and explicitly represent statements about independence. In Lazy 

learning algorithms, the generalization beyond the training data is delayed until the arrival of 

a new observation. Lazy IB is actually a nearest neighbor classifier that assigns the nearest 

sample’s class to the new instance [29]. Lazy K Star is another form of instance-based 

classifier that utilizes the entropic measures as the metric distance [30].
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In Meta learning algorithms, multiple learners are integrated to compute a higher level 

learner. Meta classification using regression, first binaries each class and then a regression 

model is built for each class value to perform the classification [31]. In ensemble learning, 

multiple models are used to obtain a better predictive performance than any of the 

constituent models [32]–[34]. In ensemble selection, ensembles are constructed from 

libraries of thousands of models then forward stepwise methodology is used to augment the 

ensemble models in order to maximize their performance [34].

AD tree is a generalization of decision trees, voted decision trees, and voted decision stumps 

[35]. AD Tree is relatively easy to interpret and has strong connection to boosting. Random 

forest tree is an ensemble learning method for classification and regression. It constructs a 

forest of decision trees at the time of training and then outputs the class that is the mode of 

the classes output by individual trees [36], [37]. CART uses data to construct classification 

or regression decision trees that can then be used for classification of new observations.

E. Implementation

The machine learning classifiers were implemented in MATLAB (Mathworks, Natick, MA, 

USA) or Weka (The University of Waikato, New Zealand) to assess the effectiveness of 

structural and functional ophthalmic features. First, we used RNFL and SAP features 

separately and then we combined the SAP and RNFL features to assess whether the 

combined functional and structural data performed significantly better than either alone. 

This is a critical analysis to reveal the optimality of the SAP features for classifiers [38]. 

Several classification performance metrics outlined below were implemented using ten-fold 

cross validation (independent training and testing groups) to assess the machine learning 

classifier outcomes and in addition, independent feature ranking was performed to assess the 

discriminating power of the structural and functional features in detecting stable from 

progressing glaucoma eyes. We further implemented and analyzed the longitudinal 

evolution of the best features over time for subjects in each group, specifying the fastest 

glaucomatous progressed eye over time, and identifying and displaying the features 

corresponding to misclassified eyes.

The following default parameters and initializations were used, however, changing these 

default parameters did not change the outcomes significantly. For Bayesian net, a simple 

estimator was used for estimating the conditional probability tables of a Bayes network once 

the structure had been learned. The local hill climbing algorithm was used with the 

maximum number of parents set to 1. For lazy k-star, the global blending parameter was set 

to 20 and the missing mode was set to average entropy curves. In implementing Meta 

classification using regression, we used an improved version of M5 model tree [39] for the 

classification that was used along with regression. For Meta ensemble selection, a forward 

selection with greedy sort initialization was used, and the other parameters were set as 

follows: the hill climb iteration was set to 100, model ratio to 0.5, number of folds to 1, 

number of model bags to 10, and the validation ratio to 0.25. For AD tree, the number of 

boosting iterations parameter was set to 10. For Random Forest Tree we used unlimited 

maximum depth of the trees, and ten trees to be generated.
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F. Performance Metrics

Performance metrics are mostly defined based on a confusion matrix. The confusion matrix 

is composed of four items: true positive (TP) which are positive instances correctly 

classified as positives; false positive (FP) which are negative instances incorrectly classified 

as positive; true negative (TN) which are negative instances correctly classified as negatives, 

and finally; False Negative (FN) which are positive instances incorrectly classified as 

negatives. A sample confusion matrix is shown in Table II.

True positive rate (TPR), false positive rate (FPR), F-Measure, Mathews correlation 

coefficient (MCC), area under receiver operator characteristic curve (AUROC), and area 

under precision recall curve (AUPRC) were calculated and compared for each method. The 

AUROC standard deviation and 95% confidence intervals were calculated based on the 

method reported by Hanley et al. [40]. The procedures for computing the performance 

metrics are explained below:

Specificity (TNR) is defined as the ratio of TNs and the total number of negatives

Sensitivity (TPR) is defined as the ratio of TPs and the total number of positives

FPR is defined as the ratio of the number of FPs and the total number of negatives

F-Measure: The F-Measure is defined based on information retrieval concepts. It is a value 

between 0 and 1. A perfect classifier generates an F-Measure equal to 1. It is defined as 

follows:

MCC: Indicates the quality of a classifier for binary classification, and is a better indication 

of quality when the classes are of very different sizes [41]. MCC ranges from −1 to 1, where 

−1 indicates adverse classification, zero corresponds to average, and 1 represents the perfect 

classification

Yousefi et al. Page 8

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2015 April 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



AUROC: The ROC curve is used to characterize the tradeoff between true positive rate and 

false positive rates. AUROC, a widely used metric to measure classification model 

performance, is the area under ROC curve [42]. AUROC ranges from 0 to 1 and a perfect 

classifier results in an AUROC that is equal to 1.

AUPRC: Is a single-value measure based on information retrieval concepts. It ranges from 0 

to 1 and depicts the tradeoff between recall and precision. An ideal classifier generates area 

under PRC equal to 1 [43].

G. Feature Selection

Independent feature ranking measures the discriminating power of each feature independent 

of the other features. Correlation-based feature ranking based on Pearson correlation 

coefficient and information gain feature ranking are two widely used independent feature 

ranking methods [44], [45] that can be used for feature ranking and selection. Evaluating the 

feature usefulness along with other features (i.e., dependent feature ranking) is another way 

of selecting an optimal subset of features. Both methods were performed in our analysis. For 

dependent feature selection, correlation-based feature subset selection (CSF) was used. CSF 

evaluates the discriminating power of a subset of features by considering the individual 

predictive ability of each feature, along with the degree of redundancy between them [46] 

using linear forward selection, to select a subset of the best performing features out of a pool 

of features [47]. Further explanation of this finding is provided in Section III

III. Results and Discussion

RNFL and SAP features from each study eye were fed to seven different MLCs. Different 

combinations of features (structural or functional) were selected and fed to classifiers to 

assess their effectiveness based on the performance metrics described earlier. The ROC 

curves for different classifiers and feature combinations are shown in Fig. 3. Fig. 3(a) 

displays the diagnostic accuracy of the MLCs when we used the combined set of all RNFL 

and all SAP features. Fig. 3(b) shows the diagnostic accuracy of the MLCs using all RNFL 

features only. Differences in other diagnostic performance measures of MLCs between 

RNFL only and RNFL-SAP combined features were not statistically significant (see Tables 

III and IV). Fig. 3(c) shows the diagnostic accuracy of the MLCs using all SAP features 

only. As can be seen from this figure, the performance decreases significantly compared to 

the performance of the classifiers using combined RNFL and SAP features and RNFL 

feature alone. Fig. 3(d) shows the diagnostic accuracy of the best performing MLC for the 

combined set of RNFL and SAP features, RNFL features only, and SAP features only.

The optimality of the RNFL features can be confirmed by looking at other performance 

metrics listed in Tables III–V. This general analysis suggests that, in this study population of 

early to moderate glaucoma, the SAP features do not add or improve the accuracy of MLCs 

in detecting glaucoma progression, while RNFL features provide more information than 

SAP features to MLCs for detecting progression. Note that the metrics listed in Tables III–V 

are the weighted average outcomes for the two classes.
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We also were interested in comparing different classifiers when the input features were the 

same. As can be seen from Fig. 3(a) and (b) and Tables III and IV, there is no significant 

difference between the AUROC of the classifiers, indicating that adding SAP features does 

not improve the classifier accuracy. The performance of most MLCs (AUROC) was 

significantly lower when the input features were SAP only, based on Fig. 3(c) and Table V. 

Looking at other performance metrics, as can be seen from Fig. 3(a) and Table III, CART 

does not perform as well as the other classifiers at high specificities (90%). Figs. 3(a) and 

(b) and Tables III and IV suggest that for achieving a higher sensitivity, it is better to use 

Random Forest Tree or Lazy K Star. The same conclusion is true for MLCs when the 

features are RNFL alone (see Table III) and finally, when we use SAP features only (see 

Table V), the MLCs do not perform much better than chance at high specificities with the 

exception of Lazy K Star and Random Forest Tree. The results at 80% and 90% specificity 

for Tables III and V are very different indicating significant difference between the 

optimality of the SAP and RNFL features.

Using the above combinations of features provide us the usefulness and effectiveness of the 

entire set of RNFL or SAP features without providing insight into the effectiveness of each 

individual feature. To reveal the discriminating power of each single feature from the RNFL 

or SAP group, an independent feature ranking analysis was performed. The outcome of both 

independent correlation based and dependent CSF when RNFL and SAP features were 

combined (61-D feature set) are listed in Table VI, columns 2, and 3, respectively. These top 

ten combined features were selected out of 61 features based on their correlation ratio 

metric. As can be seen, both independent and dependent feature selection identify the same 

best four features, and seven features are selected in common by both methods.

As shown in Table VI, the four best features belong to RNFL feature set. This confirms the 

findings above that RNFL features alone provide enough information to MLCs for 

discriminating stable from progressing glaucoma eyes at this stage of disease. This finding 

led us to further analyze the effectiveness of features; therefore, we performed classification 

based on the first ten highly ranked features. Fig. 4 shows the ROC curves when using only 

the top ten ranked features and Table VII shows the AUROC measures of combined RNFL 

and SAP when using the best, best two, or top ten ranked features listed in Table VI. Note 

that when we fed a combination of all RNFL and all SAP features to the classifiers, Random 

Forest Tree classifier generated an AUROC of 0.88 (refer to Table III) and when we fed the 

selected top ten ranked features to the classifier, Random Forest Tree classifier generated an 

AUROC of 0.88, but improved sensitivity at higher specificities [compare the gray curve in 

Fig. 4 with Fig 3(a)]. As can be seen, this AUROC is much higher than the AUROC 

reported in [24] which is 0.69.

This analysis suggests that the MLCs performance using the top ten ranked features is 

sufficient to achieve the same diagnostic performance of the MLCs when using all RNFL 

and SAP features. This is supported by the fact that four top features belong to the RNFL 

feature set, and is in agreement with our findings described above.

Fig. 5 shows the longitudinal probability assignments for the first 12 eyes from both the 

stable and progressing group. Each color represents a subject’s eye, and the connected 
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circles show longitudinal data over time for that particular subject’s eye. For instance, in 

Fig. 5(a), the first subject (in dark green connected circles) has two follow ups and the 

classifier has assigned this subject’s eye to the stable group with probabilities 99%, and 99% 

at two follow up visits based on the recorded structural and functional data, respectively. 

Therefore, all two longitudinal features for this subject suggest that this subject has not 

progressed over time, which is a correct assignment. As can be seen from Fig. 5(a) and (b), 

the longitudinal features for each subject have been assigned correctly in most cases (points 

lie on the correct side of the 50% probability lines). Recall that we assigned an eye to the 

progressing glaucoma group if either more than 50% of the follow-up cases were classified 

as progressing or if two or more consecutive follow-up cases were classified as progressing. 

Note that the second rule is in agreement with visual field progressor software currently 

used in clinical applications and is a widely accepted objective criterion. The Bayesian Net 

MLC has been used in assigning the classes displayed in Fig. 5.

Fig. 6 displays the feature distribution of the two best RNFL features; Inferior-Nasal 

thickness and Inferior-Temporal thickness, to provide an insight into the features from stable 

and progressing groups. The Bayesian discriminating function for the corresponding features 

is displayed. The features inside the discriminating surface are assigned to the stable group, 

while the features outside this surface are assigned to progressing group. Note that we have 

displayed two features and the Bayesian discriminating surface corresponding to those 

features, instead of displaying all combined features in a 61-D space.

The distribution of the progression probability assignments is another objective way to 

assess the accuracy of the method and performance of the MLCs. Fig. 7 shows the 

distribution of the probability assignments to either stable or progressing groups, by the 

Bayesian net classifier. In most cases the classifier assigns the eyes to the expected class 

with a high confidence.

It is informative to see the evolution over time of the best feature, from Table VI, for some 

subjects from each group (stable and progressed). Fig. 8(a) and (b) shows the evolution of 

the Inferior-Nasal RNFL thickness feature for ten sample stable and ten progressing 

glaucoma eyes, respectively [at each follow up the feature is constructed by computing the 

norm 1 difference of measurement at baseline and measurement at follow ups—refer to Fig. 

2(c)].

As can be seen, the features in stable glaucoma group [see Fig. 8(a)] are close to the zero 

line and tend to be mostly flat over time, while the features in the progressing glaucoma 

group [see Fig. 8(b)] have more negative values and tend to have negative slopes, indicating 

progression over time. This finding is in agreement with known disease-related decreases in 

RNFL thickness over time. Most of the features have this characteristic, however, some eyes 

were misclassified. As an example, for the last eye in Fig. 8(a) all the longitudinal features 

are negative and all indicate progression over time. In Fig. 8(b), the last eye has five follow 

ups and four of the follow-ups are positive, indicating no change (i.e., stability).

There are several possible explanations for the misclassification, described above. First, 

even though the features used for analysis are optimized, and the goal is to identify the 
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closest to ideal classifier, the MLCs are not perfect because they make some underlying 

assumptions that do not necessarily fit to the characteristics of the data. Second, 

measurements are collected from instruments that can be subject to measurement errors. For 

instance, SDOCT software segments the SDOCT images at apparent tissue boundaries and 

computes the thickness from the segmented images. In some cases, the segmentation 

algorithm exhibits localized failure that could result in inaccurate RNFL thickness 

measurements in a given sector (however, all scans were reviewed for segmentation failures 

and attempts were made to correct these failures, if identified). In addition, variation in 

image quality can affect RNFL thickness measurements, somewhat [48]. Visual function 

(i.e., SAP) measurements are subject to variability over time. This variability likely is the 

result, in part, of patient fatigue during testing, inattention, and increased variability that 

comes from disease-related intermittent cell firing and aging.

IV. Conclusion

Employing MLCs in discriminating stable from progressing glaucoma eyes using structural 

RNFL and functional visual sensitivity measurements is promising. In this population of 

early to moderate glaucoma eyes, the analyses suggest that the RNFL features alone provide 

similar diagnostic accuracy compared to classifiers that include both RNFL and SAP. More 

specifically, our findings suggest that the RNFL measurements in inferior nasal, inferior 

temporal, global, superior temporal, and temporal sectors of the RNFL provide the most 

discriminating power for separating stable from progressing glaucoma eyes. Using the ten 

best independent features, (the top four belonged to the RNFL feature set), resulted in the 

same outcome as using all 61 features. To obtain high diagnostic accuracy and higher 

sensitivity at high specificity, we suggest using a Random Forest Tree and not the simple 

CART classifier. Our experiments reveal that simple Bayesian Net classifiers perform as 

well as more complicated Meta or Tree-based classifiers when using RNFL features.
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with structural imaging of the optic nerve, visual function and electrophysiological testing 

using standard and machine learning classifier-based analyses.
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Fig. 1. 
Top left: Sample optic disc photograph image, Top right: SAP visual points tested using the 

24-2 system, and bottom: Sample OCT RNFL image and its scan type (circular optical 

section around the optic nerve).

Yousefi et al. Page 18

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2015 April 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Fig. 2. 
(a) Data vector formation, (b) longitudinal data formation for each subject’s eye, (c) feature 

vector generation.
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Fig. 3. 
ROC curves for different feature sets; (a) Combined features from all RNFL and all SAP, 

(b) all RNFL features only, (c) all SAP features only, and (d) the best classifier (based on 

AUROC) for combined features from all RNFL and all SAP, all RNFL features only, and all 

SAP features only.
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Fig. 4. 
ROC curves for different classifiers when we use only top ten ranked features.
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Fig. 5. 
Probability assignment to longitudinal visit of each patient. (a) Stable group. (b) Progressing 

group. Connected circles in the same color indicate the classifier outcome for the same 

subject’s eye longitudinal data.
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Fig. 6. 
Feature distributions and Bayesian discriminating function plotted in 2-D for two best 

features. Each blue circle represents the RNFL inferior temporal versus inferior nasal feature 

(difference between RNFL thickness at baseline and follow-up in micron) at a follow-up of 

an eye that belongs to the stable group, and each orange circle represents RNFL inferior 

temporal versus inferior nasal feature of an eye that belongs to the progressing group.
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Fig. 7. 
Percent probability of progression based on Bayesian Net classifier outcome.
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Fig. 8. 
Evolution of features over time (visits); (a) RNFL feature at inferior nasal sector for ten 

stable eyes over the time course of follow ups, (b) RNFL feature at inferior nasal sector for 

ten progressing eyes over the time course of follow ups. (Connected circles belong to a 

single eye and each circle represents the feature value at that visit, sorted from first follow-

up to the last follow-up from left to right).
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TABLE I

Demographic Information From Subjects and Characteristics of Follow-Up Visits

Parameter Stable Progressed based on either photo or visual
field or structure of function

p-value

Number of eyes 73 107 -

Number of subjects 39 100 -

Number of Follow-ups (SD) 3.9 (1) 4.3 (1.9) <0.01

Length of Follow-up (SD) 32.2 days (11.9) 2.2 years (1.1) -

Age at baseline in years (SD) 71.9 (9.0) 66.4 (12.3) 0.01

Gender (percent female) 44 56 0.20

Baseline SAP Mean Defect (MD) in dB (SD) −5.6 (7.1) −4.1 (4.7) 0.05

Baseline SAP Pattern Standard Deviation (PSD) in dB (SD) 5.5(4.0) 4.4 (3.8) 0.36
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TABLE II

Confusion Matrix

Actual
positive

Actual
negative

Predicted positive TP FP

Predicted negative FN TN
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TABLE VI

Feature Ranking and Subset Feature Selection

Rank Correlation based feature ranking CSF feature selection

1 RNFL at Inferior-Nasal RNFL at Inferior-Nasal

2 RNFL at Inferior-Temporal RNFL at Inferior-Temporal

3 RNFL at Global RNFL at Global

4 RNFL at Superior-Temporal RNFL at Superior-Temporal

5 SAP point (9° nasal and 15° superior) SAP point (21° temporal and 9° superior)

6 SAP point (3° nasal and 9° inferior) SAP point (3° nasal and 9° inferior)

7 SAP point (21° nasal and 3° inferior) SAP point (21° nasal and 3° inferior)

8 SAP point (9° temporal and 3° inferior) SAP point (3° nasal and 3° inferior)

9 SAP point (21° temporal and 3° superior) SAP point (21° temporal and 3° inferior)

10 RNFL at Temporal RNFL at Temporal
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TABLE VII

AUROC (95% CI) When Selecting 1, 2, and 10 Best Features Using Independent Feature Selection

Classifier AUROC (95% CI)
using 1 feature

AUROC (95% CI)
using 2 features

AUROC (95% CI)
using 10 features

Bayesian Net 0.74 [0.70 0.77] 0.81 [0.78 0.84] 0.83 [0.80,0.86]

Lazy K Star 0.80 [0.76 0.83] 0.83 [0.80 0.86] 0.84 [0.81,0.87]

Meta Classification Regression 0.78 [0.75 0.82] 0.83 [0.80 0.86] 0.83 [0.79,0.86]

Meta Ensemble Selection 0.78 [0.74 0.81] 0.83 [0.80 0.86] 0.86 [0.83,0.89]

Alternating Decision Tree 0.78 [0.74 0.82] 0.83 [0.80 0.86] 0.83 [0.80,0.87]

Random Forest Tree 0.77 [0.74 0.81] 0.78 [0.74 0.82] 0.88 [0.85,0.91]

Classification And Regression Tree (CART) 0.76 [0.71 0.79] 0.78 [0.74 0.81] 0.82 [0.79,0.86]
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