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A Resistive Mesh Phantom for Assessing the
Performance of EIT Systems

Hervé Gagnon*, Martin Cousineau, Andy Adler, and Alzbeta E. Hartinger, Student Member, IEEE

Abstract—Assessing the performance of electrical impedance
tomography (EIT) systems usually requires a phantom for valida-
tion, calibration or comparison purposes. This paper describes a
resistive mesh phantom to assess the performance of EIT systems
while taking into account cabling stray effects similar to in vivo
conditions. This phantom is built with 340 precision resistors
on a printed circuit board (PCB) representing a 2D circular
homogeneous medium. It also integrates equivalent electrical
models of the Ag/AgCl electrode impedances. The parameters of
the electrode models were fitted from impedance curves measured
with an impedance analyzer. The technique used to build the
phantom is general and applicable to phantoms of arbitrary
shape and conductivity distribution. We describe three perfor-
mance indicators that can be measured with our phantom for
every measurement of an EIT data frame: signal-to-noise ratio,
accuracy, and modeling accuracy. These performance indicators
were evaluated on our EIT system under different frame rates
and applied current intensities. The performance indicators are
dependent on frame rate, operating frequency, applied current
intensity, measurement strategy, and inter-modulation distortion
when performing simultaneous measurements at several frequen-
cies. These parameter values should therefore always be specified
when reporting performance indicators to better appreciate their
significance.

Index Terms—Electrical impedance tomography, biomedical
instrumentation, resistive mesh phantom.

I. INTRODUCTION

ELECTRICAL impedance tomography (EIT) is a biomed-
ical technique for imaging the electrical conductivity dis-

tribution of a body section. An EIT system uses body surface
electrodes to measure voltages produced while applying low
amplitude sinusoidal currents. These voltage measurements are
then converted to conductivity images by solving Maxwell’s
equations using a numerical model combined with an opti-
mization method. EIT can be useful for studying physiological
processes that involve flow or changes in volume of air or
blood whose conductivity is significantly different from that
of other biological tissues. Although EIT images have low
spatial resolution compared to other imaging modalities, they
can be obtained in real time at high frame rates and the
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required instrumentation is small, lightweight, unobtrusive,
and inexpensive. The most promising clinical applications for
EIT are functional imaging of heart, lung, and brain functions
as well as breast cancer screening [1].

Assessing the performance of EIT systems is often required
for validation, calibration, and comparison purposes. EIT
systems suitable for in vivo imaging are complex systems
requiring several closely interacting hardware and software
parts. Modifications made to any part of the system have to be
experimentally validated in order to confirm any expected ben-
efit to the performance of the whole system. Calibration has to
be performed periodically to account for components whose
performance varies over time and to ensure the system is
accurate whenever it is used. Objective comparison of EIT data
from multiple centers requires a standard calibration approach
for the EIT equipment used at each center. In order to fully
appreciate descriptions of EIT hardware performance in the
literature, it would be useful to have clearly defined objective
criteria for comparison purposes. Since no standard procedure
for testing EIT systems has been defined, performance results
are often published using different methodologies or, worse,
without any description of the methodology. Because it is
difficult to objectively assess the performance of EIT systems
in vivo, phantoms are usually preferred.

Two types of phantoms are described in the literature:
physical and mesh phantoms [2]. The former consist of a
liquid or solid conductive medium that can be imaged by an
EIT system using surface electrodes. The conductive medium
usually consists of a conductive gel or a saline solution
inside which are inserted targets whose conductivity contrasts
with that of the medium. Mesh phantoms are composed of
impedance elements interconnected in a particular topology.
Resistors [3]–[5], combinations of capacitors and resistors
[6], [7] as well as active electronic components [7], [8]
have been used as impedance elements. Four topologies have
been described in the literature: the Cardiff phantom [3], the
wheel phantom [6], and two Göttingen phantoms [4], [5].
The Cardiff phantom is composed of 624 resistors which
are assembled as shown in Fig. 1(a). The wheel phantom,
shown in Fig. 1(b), is composed of 32 impedance elements
whose values are unspecified. Fig. 1(c) and (d) show the
two Göttingen phantoms which are respectively composed
of 65 and 19 resistors. While physical phantoms generate
more realistic signals, mesh phantoms provide predictable,
stable, and reproducible signals. Mesh phantoms are therefore
better suited for objectively assessing the performance of EIT
systems in a reproducible manner.

Our objective was to design a phantom with the follow-
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Fig. 1. (a) Cardiff phantom [3] composed of 51 Ω 1© and 100 Ω 2© resistors. (b) Wheel phantom [6] composed of two different unspecified resistor values
identified by white circles. (c) First Göttingen phantom [4] composed of 5 Ω 1©, 60 Ω 2©, 90 Ω 3©, 100 Ω 4©, and 2.2 kΩ 5© resistors. (d) Second Göttingen
phantom [5] composed of 1 Ω 1©, 121 Ω 2©, and 270 Ω 3© resistors. Black circles numbered from 0 to 15 represent the 16 electrode connection sites while
black circles identified with the letter G are associated with ground connection sites.

ing characteristics: 1) approximates a 2D circular continu-
ous homogeneous medium, 2) provides signals with realis-
tic frequency content and amplitude dynamic range, 3) in-
cludes a realistic equivalent electrical model of the electrodes,
4) takes into account stray effects similar to in vivo condi-
tions, 5) provides predictable, stable, and reproducible signals,
6) is compatible with all EIT systems, and 7) is capable of
producing localized conductivity perturbations. None of the
four phantoms described above are able to achieve all these
characteristics. As will be shown in section III, the Cardiff

phantom and the second Göttingen phantom produce signals
whose frequency content and amplitude dynamic range are
unrealistic while the wheel phantom and the first Göttingen
phantom do not contain enough resistors, especially in the
middle, to produce localized conductivity perturbations that
can be used to compare reconstruction algorithms.

This paper presents a method for designing mesh phantoms
of arbitrary shape and conductivity distributions. The method
has been applied to build a phantom composed of 340 pre-
cision resistors on a 192 by 192 mm PCB. The phantom
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Fig. 2. Sample circuit mesh composed of 5 nodes and 7 admittance elements
where Vi represents the voltage measured at the ith node, Ii represents the
outward current at the ith node, and Gij is the admittance value connecting
the ith node to the jth node.

can be used to assess the performance of an EIT system by
measuring three performance indicators: signal-to-noise ratio,
accuracy, and modeling accuracy for every measurement of an
EIT data frame. It can also be used to assess the performance
of EIT image reconstruction algorithms by producing localized
conductivity perturbations. These tests were performed on our
EIT system to show how parameters such as frame rate and
current intensity affect the three performance indicators.

II. METHODS

In order to design phantoms of arbitrary shape and conduc-
tivity distribution, we have developed an algorithm based on
the analogy between the finite element method (FEM) and a
matrix method for solving electrical circuits. The algorithm
will be described in the next three sections. The first section
shows a matrix method to solve electrical circuits, the second
section summarizes the FEM equations, and the third section
shows how the two methods are combined to obtain a mesh
phantom with the desired shape and conductivity distribution.

A. Matrix method to solve electrical circuits

The matrix method for solving electrical circuit will be
illustrated using the sample circuit mesh shown in Fig. 2.
This circuit mesh is composed of 5 nodes and 7 admittance
elements where Vi represents the voltage measured at the ith
node, Ii represents the outward current at the ith node, and
Gij is the admittance value connecting the ith node to the
jth node. By applying Kirchhoff’s current law at each circuit
node, we obtain the following equations:

I1 = G12(V2 − V1) + G13(V3 − V1) (1)
I2 = G12(V1 − V2) + G23(V3 − V2) + G24(V4 − V2) (2)
I3 = G13(V1 − V3) + G23(V2 − V3) + G34(V4 − V3)

+G35(V5 − V3)
(3)

I4 = G24(V2 − V4) + G34(V3 − V4) + G45(V5 − V4) (4)
I5 = G35(V3 − V5) + G45(V4 − V5) (5)

By converting these equations into matrix form, we obtain
Y V = I

Y =




−(G12 + G13) G12

G12 −(G12 + G23 + G24)
G13 G23

0 G24

0 0
G13

G23

−(G13 + G23 + G34 + G35)
G34

G35

0 0
G24 0
G34 G35

−(G24 + G34 + G45) G45

G45 −(G35 + G45)




(6)

and

V =
[

V1 V2 V3 V4 V5

]T (7)

I =
[

I1 I2 I3 I4 I5

]T (8)

where AT represents the transpose of matrix A.
From this simple example, a general method can be inferred

to directly obtain the admittance matrix Y from Fig. 2. Off-
diagonal elements yij and yji are equal to Gij while diagonal
elements yii are equal to minus the sum of all admittance
elements connected to the ith node.

B. FEM formulation

On a continuous conductive medium, such as those typically
used in EIT at low frequencies, Maxwell’s equations can be
simplified to the following equation:

∇ · (σ∇V ) = 0 (9)

where σ represents the electrical conductivity and V represents
the electrical potential. This equation must be solved over the
entire continuous medium Ω. On the boundary Γ, the following
boundary condition applies:

Jn = σ∇V · n (10)

where n represents a unit vector normal to the boundary Γ
and Jn represents the normal current density. Since the two
previous equations cannot be solved analytically for a medium
of arbitrary shape and conductivity distribution, the FEM will
be used. The FEM consists in subdividing the continuous
medium into a mesh of triangular elements inside which the
conductivity is assumed constant and the electric potential
varies linearly. By applying the FEM with linear interpolation
on a triangle, the following elementary system of equations
can be obtained [9]:

YeVe = Ie ⇔



y11 y12 y13

y21 y22 y23

y31 y32 y33







V1

V2

V3


 =




i1
i2
i3


 (11)
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yij =
∮

Ωe

σe(
∂fi

∂x

∂fj

∂x
+

∂fi

∂y

∂fj

∂y
) dΩe (12)

ij =
∮

Γe

fjJn dΓe (13)

[
f1(x, y) f2(x, y) f3(x, y)

]
=

[
x y 1

]



x1 y1 1
x2 y2 1
x3 y3 1



−1

(14)

where (xi, yi) represents the ith triangle vertex coordinates
and Vi represents the electrical potential at the ith triangle
vertex. Ye is called the elementary admittance matrix, Ve, the
elementary potential vector, and Ie, the elementary current
vector. By developing (14) and computing the fi derivatives,
we obtain:
∂f1

∂x
=

(y2 − y3)
∆

,
∂f2

∂x
=

(y3 − y1)
∆

,
∂f3

∂x
=

(y1 − y2)
∆

(15)
∂f1

∂y
=

(x3 − x2)
∆

,
∂f2

∂y
=

(x1 − x3)
∆

,
∂f3

∂y
=

(x2 − x1)
∆

(16)

∆ = x1y2 − x1y3 − x2y1 + x2y3 + x3y1 − x3y2 (17)

By substituting these equations into (12), knowing σe is
constant inside an element and the area of an element is given
by ∆/2, we obtain:

Ye =



−(G12 + G13) G12 G13

G12 −(G12 + G23) G23

G13 G23 −(G13 + G23)




(18)

G12 =
σe

2∆
[(y2 − y3)(y3 − y1) + (x3 − x2)(x1 − x3)] (19)

G13 =
σe

2∆
[(y2 − y3)(y1 − y2) + (x3 − x2)(x2 − x1)] (20)

G23 =
σe

2∆
[(y3 − y1)(y1 − y2) + (x1 − x3)(x2 − x1)] (21)

Elementary matrices Ye, Ve, and Ie computed for every
triangular element must then be respectively assembled into
the global admittance matrix Y , the global potential vector V ,
and the global current vector I . This is performed by assigning
a global node number to each of the n nodes composing
the triangular FEM mesh and adding the contribution of each
elementary matrix to the corresponding global matrix taking
into account the assigned global node number of every triangle
vertex. The global matrix dimensions are therefore (n×n) for
Y and (n× 1) for V and I .

C. Method for building phantoms of arbitrary shape and
conductivity distributions

The method for building phantoms of arbitrary shape and
conductivity distributions is based on the similarities between
the two methods presented in the previous sections. Both
methods provide a Y V = I formulation, the first one for
an electrical circuit mesh and the second one for a continu-
ous conductive medium. When comparing (6) and (18), the

(a) (b)

(c) (d)

Fig. 3. (a) Circular phantom with 16 electrodes. (b) Circular phantom with
32 electrodes. (c) Torso-shaped phantom with 16 electrodes. (d) Phantom
selected for fabrication.

similarities between the admittance matrices obtained by both
methods are obvious.

The method for building phantoms of arbitrary shape and
conductivity distribution can be summarized with the fol-
lowing steps: 1) Define the desired shape and conductivity
distribution for the phantom. 2) Divide the desired shape
into a triangular mesh from which every triangle corresponds
to an element of the FEM model and every triangle side
corresponds to a resistor of the mesh phantom. 3) Compute
the elementary admittance matrix Ye for every triangle of the
mesh. 4) Assemble all elementary admittance matrices into a
global admittance matrix Y . 5) Extract each resistor value
composing the mesh phantom from the global admittance
matrix Y . The resistor value connecting the ith node of the
mesh phantom to the jth node is equal to the inverse of the
(i, j) element of Y .

By selecting the same triangular mesh topology for the
phantom and the FEM model, the designed phantom will
theoretically have the same accuracy as the FEM model. In
practice, however, this accuracy is slightly reduced by the fact
that resistors of standard nominal values with limited tolerance
are used to build the phantom.

D. Phantom designed with the proposed method

The method described in the previous section has been pro-
grammed with the added possibility of automatically generat-
ing Gerber files that can be directly used for PCB manufacture.
To increase realism, we also added an equivalent electrical
model of the electrodes that will be described in the following
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(a)

(b)

Fig. 4. (a) Top and (b) bottom views of the resistor mesh phantom.

section. To prove the generality of the method, Fig. 3 shows
CAD-software screen snapshots of four different phantoms
designed with the proposed method. These phantoms are
circular or torso-shaped and have either 16 or 32 electrodes. In
order to obtain the characteristics described in the introduction,
we have built the phantom shown in Fig. 3(d) representing
a 2D circular homogeneous medium. This phantom includes
340 0.1% precision resistors with a temperature coefficient
of 25 ppm/K, 17 snap-on connectors (including the ground
connection), and 12 switches that can be used to short-circuit
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Fig. 5. Schematic representation of the resistor mesh phantom. White circles
numbered from 1 to 17 represent resistors whose nominal values are given
in Table I. Black circles numbered from 0 to 15 represent the electrode
connection sites.

TABLE I
NOMINAL VALUES FOR THE NUMBERED RESISTORS REPRESENTED IN

FIG. 5

Resistor number Quantity Nominal value (Ω)

1 4 51.1
2 16 59.0
3 4 63.4
4 8 64.9
5 32 71.5
6 32 90.9
7 32 95.3
8 16 97.6
9 64 100
10 32 130
11 8 133
12 16 147
13 8 178
14 4 200
15 16 261
16 32 365
17 16 3160

individual resistors to produce localized conductivity pertur-
bations. Top and bottom views of the phantom PCB are shown
in Fig. 4. A schematic representation of the resistor mesh
topology is shown in Fig. 5 where white circles numbered
from 1 to 17 represent resistors whose nominal values are
given in Table I.
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REF OUT A B
Active probes

1 W

s

Fig. 6. Electrode impedance measurement set-up.

49.9 W

100 W

22 nF

Fig. 7. Equivalent electrical model of an Ag/AgCl electrode.

E. Equivalent electrical model of an electrode

We measured the impedance of two Ag/AgCl electrodes
immersed in a saline solution from 10 Hz to 1 MHz using the
set-up illustrated in Fig. 6 and a network/spectrum/impedance
analyzer (4395A, Agilent Technologies). A voltage signal is
applied by the network analyzer to the REF OUT output and
voltage measurements are performed at the A and B inputs
using wideband active probes (41800A, Agilent Technologies).
The network analyzer then displays the complex ratio of the
A and B voltage signals which corresponds for this particular
set-up to Zσ which can be expressed as:

Zσ(jω) = 2Zelectrode(jω) + Zsaline(jω) + 1 Ω, (22)

where ω is the angular frequency, Zelectrode, the Ag/AgCl
electrode impedance, and Zsaline, the impedance of the saline
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Fig. 8. Electrode impedance spectra obtained from experimental data (· · ·)
and from the equivalent electrical model of the electrode whose component
values have been optimized by the Levenberg-Marquardt method (—).

which is unknown since it depends on the geometry of the
saline receptacle. To remove the contribution of the saline
solution (Zsaline) from the measured impedances Zσ , the
measurements were repeated with a saline solution whose
conductivity was doubled (Z2σ(jω)). The conductivity of
the saline solutions was measured with a conductivity meter
(model 1481-40, Cole-Parmer Instrument Company). These
measurements can be expressed as:

Z2σ(jω) = 2Zelectrode(jω) +
1
2
Zsaline(jω) + 1 Ω. (23)

From the two previous equations, we obtain:

Zelectrode(jω) = Z2σ(jω)− 1
2
Zσ(jω)− 1

2
Ω. (24)

To reproduce the complex impedance behavior of the
Ag/AgCl electrodes, we selected an equivalent electrical model
composed of a resistor in series with a parallel combination
of a resistor and a capacitor as shown in Fig. 7 [10]. Values
for the capacitor and the two resistors were obtained by using
the Levenberg-Marquardt [11] method to fit the impedance
of the equivalent electrical model to the experimental data
measured between 6.25 and 400 kHz, which represents six
octaves centered at 50 kHz, a common operating frequency for
EIT systems. Fig. 8 shows the impedance spectra computed
from the experimental measurements using (24) and from the
equivalent electrical model of an electrode using the resistor
and capacitor values obtained from the Levenberg-Marquardt
optimization process. These optimized values were rounded
to the nearest standard resistor and capacitor values which are
specified in Fig. 7. The circuit shown in Fig. 7 was inserted
in series with each of the 17 snap-on connectors to reproduce
the complex impedance behavior of the Ag/AgCl electrodes.

F. Performance indicators
In order to assess the performance of an EIT system, 1000

data frames, each consisting of n measurements, were acquired
on the mesh phantom. The average and variance signals of the
1000 data frames were then computed.

Signal-to-noise ratio (SNR) is computed using the following
formula:

SNRi = 20 log
|E[mi]|√
Var[mi]

, (25)

where mi represents the ith measurement, E[mi], the average
of mi, and Var[mi], the variance of mi.

Accuracy (A) is computed using the following formula:

Ai =
[
1−

∣∣∣∣
E[mi]−mT

i

mT
i

∣∣∣∣
]
× 100%, (26)

where mT
i represents the theoretical value for the ith measure-

ment.
Some EIT systems have known hardware imperfections that

can be accounted for by a calibration procedure performed by
the user or a model of hardware imperfections that can be
integrated into the forward problem solver of reconstruction
algorithms [12]. To account for such systems, modeling accu-
racy (MA) is defined by the following formula:

MAi =
[
1−

∣∣∣∣
fi(m)− fT

i (mT)
fT

i (mT)

∣∣∣∣
]
× 100%, (27)
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Fig. 9. Performance indicators of our EIT system.

where m represents the n-length average measurement vector
whose ith element is equal to E[mi], mT, the n-length
theoretical measurement vector whose ith element is equal to
mT

i , fi(m), the ith measurement corrected by a calibration
protocol, and fT

i (mT), the ith theoretical measurement com-
pensated for any hardware imperfection that can be modeled.
Accuracy is therefore evaluated using raw EIT data provided
by the EIT system while modeling accuracy is evaluated using
data compensated for any known hardware imperfection. For
EIT systems that do not implement a calibration procedure
and have no model of hardware imperfections that can be
integrated into the forward problem solver [12], accuracy and
modeling accuracy are equal.

III. RESULTS

One thousand measurements were acquired on the phantom
with our EIT system [13]. Fig. 9 shows graphically the
performance indicators that were obtained at 4.71 frames
per second with an applied current intensity of 4 mApp at
50 kHz. Table II summarizes the three performance indicators
by specifying mean, minimum, and maximum values. The
system was set up to acquire data using the measurement
sequence illustrated in Fig. 10 which is equivalent to the
Sheffield protocol [1] except that measurements are performed
in a different sequence. Compared to the Sheffield protocol,
this sequence makes it easier to visually pinpoint any flaws

TABLE II
PERFORMANCE INDICATORS OF OUR EIT SYSTEM

SNR (dB) mean 64.03
maximum 75.19
minimum 55.66

Accuracy (%) mean 98.84
maximum 99.99
minimum 58.52

Modeling mean 99.56
Accuracy (%) maximum 100.0

minimum 98.51
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Fig. 10. Measurement sequence used to acquire the EIT data shown in Fig. 9.

in the EIT data because of its regular shape consisting in
13 plateaus of 16 measurements each for a total of 208
measurements. Furthermore, the frequency bandwidth of this
measurement sequence is smaller than that of the Sheffield
protocol. The measurement indexes increase from 1 to 416 in
Fig. 9 since our system was set up to acquire each of the 208
measurements twice.

Close inspection of Fig. 9 shows that the shape of the
SNR curve generally follows the shape of the average EIT
signal. This clearly indicates than some of the noise sources
have an additive contribution to the EIT signal. Some mea-

TABLE III
THEORETICAL ACCURACY EVALUATED ON PHANTOMS BUILT WITH

RESISTORS WHOSE TOLERANCE IS 0.1%, 1%, AND 5%

Tolerance (%) 0.1 1 5

Accuracy (%) mean 99.97 99.69 98.46
maximum 100.0 100.0 100.0
minimum 99.88 98.85 94.25
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surement indexes, however, exhibit lower SNR values than
their neighbors with similar signal amplitude. This corresponds
in most cases to measurements that are performed using
pairs of electrodes whose corresponding front-end electronic
components are located at opposite ends of the EIT system
PCB. By comparing the accuracy curve with the average EIT
signal curve, the reader will notice that the accuracy is much
lower whenever there is a large transition in the average EIT
signal. This problem is related to a low-pass filter which is
part of the demodulation process used in our system. Since
this low-pass filter is part of the design, its impulse response is
well known and has been integrated into the forward problem
solver [12] to compute the modeling accuracy. This is why
the modeling accuracy does not exhibit the large variations

observed in the accuracy curve.
When evaluating accuracy and modeling accuracy with the

proposed phantom, one limitation comes from the fact that the
theoretical value for each measurement is calculated using the
nominal values of the 340 resistors composing the phantom.
In practice, the tolerance of the resistors that were used to
build the phantom is 0.1%. Part of the inaccuracy that is
evaluated with the proposed method will therefore come from
the uncertainty about the actual resistor values that were used
to build the phantom. Therefore, the proposed method for
evaluating the accuracy and modeling accuracy of an EIT
system will, in some cases, underestimate the actual accuracy
of the system due to the 0.1% tolerance of the resistors. In
order to evaluate the contribution of the resistor tolerance to
the inaccuracy of a system, we performed 217 = 131072
Monte Carlo simulations where the resistor values of each
simulated phantom were obtained using the upper and lower
limits of the tolerance for each of the 17 different nominal
resistor values. This assumption is based on the fact that
resistors from the same production lot will generally exhibit an
unknown but similar deviation from their nominal value within
the specified limits of their tolerance. Table III summarizes
the accuracy figures that were obtained for phantoms built
from resistors whose tolerance is 0.1%, 1%, and 5%. Close
inspection reveals that an EIT system whose accuracy has been
evaluated at 99.88% using a phantom built with 0.1% precision
resistors could actually have an accuracy of 100% since the
0.12% difference can theoretically be explained by the 0.1%
tolerance of the resistors.

In order to validate the accuracy of our phantom by an
independent method, we have measured the impedance of
the 16 adjacent pairs of electrodes using a digital multimeter
(34401A, Agilent Technologies). The 16 measured impedances
varied from 409.17 to 409.42 Ω with an average of 409.29 Ω.
The theoretical value of the impedance computed using the
resistor nominal values is 409.29 Ω. The maximum relative
error on the measured impedance is therefore around 0.0318%
which is, as expected, lower than the 0.1% tolerance of the
resistors.

As shown by Gagnon [9] and Robitaille [14], performance
indicators are affected by several parameters. For instance,
by decreasing the operating frequency or the frame rate,
performance indicators improve. They can be further improved
by increasing the applied current intensity. To illustrate this
fact, Fig. 11 shows how the SNR varies as a function of
frame rate for our system while Fig. 12 shows how the
SNR varies as a function of current intensity expressed as
a percentage of the maximal current our system can apply
which is 4 mApp. At 1.84 frames per second, the mean SNR
is 67.13 dB while at 21.85 frames per second the mean SNR
decreases to 54.25 dB. At 100% applied current intensity,
the mean SNR is 64.06 dB and at 10% current intensity
the mean SNR decreases to 45.35 dB. The accuracy and
modeling accuracy were also computed from the same data
set but remained constant at the values specified in Table II
for all current intensities and frame rates. Although this is
true for our EIT system, other EIT systems may behave
otherwise. Measurement strategies also affect performance
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Fig. 13. a) Theoretical signal obtained from the Cardiff phantom. b)
Theoretical signal obtained from the wheel phantom. c) Theoretical signal
obtained from the first Göttingen phantom. d) Theoretical signal obtained
from the proposed phantom. All theoretical signals were obtained using the
measurement sequence described in Fig. 10.

indicators since they modify the amplitude dynamic range and
frequency content of EIT signals. For multi-frequency systems,
inter-modulation between the measurement frequencies may
also adversely affect the performance indicators.

IV. DISCUSSION AND CONCLUSION

Theoretical EIT signals produced by the Cardiff phantom
[3], the wheel phantom [6], the first Göttingen phantom
[4], and our phantom have been computed and are shown
in Fig. 13. Since the resistor values for the wheel phantom
are unspecified, their values were optimized to minimize the
error between the signal it produces and the signal produced
by our phantom. To obtain Fig. 13(b), resistors identified as 1©
in Fig. 1(b) were therefore set to 56 Ω while resistors identified
as 2© were set to 330 Ω. Mainly due to the fact that the
Cardiff phantom approximates a circular shape with square
elements, the signal it produces [see Fig. 13(a)] does not
exhibit the regular shape expected from a continuous circular
conductive medium. The Cardiff phantom is, however, very
good at producing localized conductivity perturbations since
it contains 624 impedance elements [see Fig. 1(a)] that can
be easily shunted. The first Göttingen phantom and the wheel
phantom produce EIT signals with a shape similar to an actual
EIT signal measured on a continuous circular homogeneous
medium. They are however not very good at producing local-
ized conductivity perturbations to test image reconstruction
algorithms due to the fact that they are composed of few
impedance elements especially in the middle [see Fig. 1(b)
and (c)].

The phantom illustrated in Fig. 1(d) was recently proposed
by the Göttingen group [5]. This phantom produces a constant

signal for all measurements of the Sheffield protocol and its
amplitude can be set by changing a single resistor value iden-
tified as 1© in Fig. 1(d). This phantom is great for exploring
the strengths and weaknesses of an EIT system design and
is well adapted to the design of the Göttingen EIT system.
It cannot however be used to assess the performance of all
EIT systems for the following reasons: 1) It does not support
all measurement protocols such as those that use non-adjacent
electrode pairs. 2) It generates a constant signal that does not
reflect the frequency content or the amplitude dynamic range
of a real EIT signal. It thus cannot be used to discriminate EIT
systems that distort the EIT signal amplitude or its frequency
content.

While performing in vivo data acquisitions, cables are
used to connect the EIT system to the electrodes that are
placed on the body. The assembly and layout of the cables
introduce stray effects (mainly capacitive and inductive) which
contribute noise to the EIT measurements. By using snap-on
connectors, the same cables that are used for in vivo recording
can be connected to our phantom as they would on a patient.
By using cables to connect the Göttingen phantom to a DB37
connector and an adapter to connect the cables to the phantom,
the cable assembly and layout is different from the one used
for in vivo recording and, therefore, unrepresentative stray
effects can be expected. Our phantom also incorporates a re-
alistic electrical model of electrode impedances obtained from
in vitro data while the Göttingen phantom has no equivalent.
The set-up of our phantom is therefore more representative
of cable and electrode stray effects that adversely affect EIT
measurements during in vivo recording.

As our phantom is a resistor mesh with seventeen terminal
nodes, one could argue that it could be simplified to use
fewer resistor elements. While this is theoretically correct, the
main purpose of this phantom is to assess the performance of
EIT systems in a realistic predictable scenario. Although the
phantom and its simplified version would produce the same
EIT signals, contributions from error sources (stray effects,
electromagnetic interference) would be different because they
depend mainly on geometric factors. The simplified version
would also lose the ability to produce localized conductivity
perturbations which is very useful to compare reconstruction
algorithms as was done in a previous study [12] using an early
prototype version of the proposed phantom.

Since our phantom is composed entirely of resistors except
for the capacitors that are part of the electrode equivalent
model [see Fig. 7], its use to assess the performance of
multifrequency EIT systems is limited by the fact that the
conductivity distribution of the medium does not vary as a
function of frequency. This is not however a limitation of
the method since the proposed method is also applicable to
complex impedance elements that could be defined as parallel
or serial combinations of resistors, capacitors, and inductors,
although inductive effects are very seldom seen in biological
tissues.

Three performance indicators that can be computed from
measurements made with this phantom have been presented.
These performance indicators are function of the measurement
index. It is therefore mandatory to represent them graphically



10

or at least to specify minimum, mean, and maximum values
rather than mentioning an ambiguous scalar value. Many
factors influence the performance indicators of a system:
measurement strategy, operating frequency, frame rate, applied
current intensity, and inter-modulation distortion. Their values
should therefore be specified with all performance indicators
to better appreciate their significance.

The aim of this project was to build a phantom that produces
realistic signals while taking into account stray effects similar
to in vivo conditions. The phantom presented in this paper
approximates a 2D circular continuous homogeneous medium.
The amplitude dynamic range of the signals it produces is
therefore limited by an order of magnitude compared to signals
that would be obtained from a 3D conductive medium or
in vivo. The ability of the current phantom to assess the
performance of EIT systems in the small amplitude portion
of EIT signals is therefore limited. A solution would be to
modify the resistor values of the phantom to approximate a
3D circular homogeneous medium. The signals produced by
the phantom would then have an increased amplitude dynamic
range as expected from a 3D conductive medium. A further
improvement would be to design a 3D torso-shaped phantom
that would produce an even more realistic signal as far as
frequency and amplitude range are concerned.

We are currently working on improving the capability of
our phantom to assess the performance of EIT systems by
adding programmable active components that can simulate
contact impedance variations related to electrode movement
artifacts. This improvement would be useful to test if the input
impedance of the voltage amplifiers and the output impedance
and compliance of the current sources are high enough to cope
with the large contact impedance variations that are expected
to occur during long term in vivo recording.
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