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Predictive Haemodynamics in a One-Dimensional
Human Carotid Artery Bifurcation. Part I: Application
to Stent Design

Vijaya B. Kolachalama, Neil W. Bressloff*, Prasanth B. Nair, and Clifford P. Shearman

Abstract—A.  diagnostic technique is proposed to identify
patients with carotid stenosis who could most benefit from angio-
plasty followed by stent implantation. This methodology involves
performing a parametric study to investigate the haemodynamic
behavior due to alterations in the stenosis shapes in the internal
carotid artery (ICA). A pulsatile 1-D Navier-Stokes solver in-
corporating fluid-wall interactions for a Newtonian fluid which
predicts pressure and flow in the human carotid artery bifurca-
tion is used for the numerical simulations. In order to assess the
performance of each individual geometry, we introduce pressure
variation factor as a metric to directly compare the global effect
of variations in the geometry. It is shown that the probability of
an overall catastrophic effect is higher when the stenosis is present
in the upstream segment of the ICA. Furthermore, maximum
pressure is used to quantify the local effects of geometry changes.
The location of the peak and extent of stenosis are found not to
influence maximum pressure. We also show how these metrics
respond after stent deployment into the stenosed part of the ICA.
In particular, it is found that localized pressure peaks do not
depend on the length of a stent. Finally, we demonstrate how these
metrics may be applied to cost-effectively predict the benefit of
stenting.

Index Terms—Carotid artery, diagnostic techniques, parametric
study, stent design, 1-D blood flow.

I. INTRODUCTION

N recent years, significant impetus has been given towards

the use of simplified models for understanding haemody-
namics of the cardiovascular system [1]-[4]. Research using
these models has been inclined towards improving patient
specific diagnosis and treatment, surgical planning [3] and
enhanced design of artificial organs and stents. These simpli-
fied mathematical and numerical models provide a reasonable
understanding of the disease at an economic computational cost
without compromising significantly on accuracy. Furthermore,
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Fig. 1. Duplex ultrasound scan illustrating stent deployment in the ICA. The
highlighted region shows the lattice shaped structure of the stent.

1-D blood flow simulations in compliant vessels can help us
to study the effects of disease of an artery on flow and wave
propagation patterns [4]. Diseased arteries are increasingly
being treated using interventional procedures such as balloon
angioplasty which involves dilation of the narrowed segment
followed by insertion of a stent (a lattice-shaped expandable
metallic tube as shown in Fig. 1). The stent acts as an ex-
panding scaffold and remains in place permanently. Due to
the presence of this foreign body, which is far more rigid than
the arterial tissue, the material properties change abruptly
and this may lead to alterations in pressure and flow patterns

[5]. Re-stenosis is a common problem occurring within six

months after stent implantation and has been observed through
follow-up procedures on many patients [6], [7]. Re-stenosis is
characterized by smooth muscle cells migration and prolifer-
ation and by endothelial cell proliferation. It often occurs at
the interface between the graft and native vessel or at points of
mechanical stress. Localized pressure peaks can be generated
by the cardiac pulse and the superposition of waves reflected
by the stent. Notwithstanding the impact of bio-chemical ef-
fects, 1-D flow models have been developed to understand the
effects of changes in geometry and in the material properties
of the blood vessel wall on the associated pressure patterns
[4]. These studies were performed on idealized models and
hence conclusions derived from them may be limited due
to inter/intra individual differences in the geometry and the
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mechanical properties. It is likely that a parametric study would
be beneficial to understand the impact of these differences on
the appearance and progression of the disease. We hypothesize
that this methodology may allow optimisation of stent design to
limit vascular injury and perhaps inhibit re-stenosis. These sort
of approaches may also provide guidelines on the suitability of
interventional options and in particular to identify patients on
whom angioplasty followed by stenting may be favorable.

In this paper, a 1-D deterministic numerical model which can
predict flow and pressure in a systemic elastic arterial bifurca-
tion using a pulsatile 1-D Navier-Stokes solver for a Newtonian
fluid is used [2], [8]. We selected the human carotid artery bi-
furcation as the anatomical site for analysis as it is a common
site for arterial disease to occur. A metric, pressure variation
factor (PVF) is defined and a parametric analysis is conducted to
understand how this metric behaves with respect to the param-
eters defining the stenosis in the internal carotid artery (ICA).
Throughout this study, we refer to stenosis as the percentage
of area reduction in a vessel and for simplicity, area stenosis
and stenosis will be used interchangeably. We then insert a stent
near the stenosed region in the ICA and show how PVF varies
due to variations in the length of the stent and its Young’s mod-
ulus. Similar results are also presented by considering maximum
pressure (p},) as the metric.

The next section discusses the theoretical and numerical as-
pects of the 1-D flow solver including the geometry and elas-
ticity of the vessel, the system of equations governing the flow,
the numerical technique used to solve the flow followed by a
discussion on the boundary conditions. Finally, key results are
presented and discussed.

II. PRELIMINARIES

A. Geometry and Elasticity of the Vessel

An individual large systemic artery has a geometry which
generally tapers along its length. The radius of the vessel follows
an exponential curve of the form

r(z) = ryexp(kz) (1)

where 7, (Units - cm) denotes the mean upstream cross-section
of the vessel, k (Units - cm™) signifies the tapering factor and
the length,  (Units - cm), varies between O and L, where L
(Units - cm) is the length of a vessel. The upstream cross-section
of the artery is greater than the downstream cross-section and
they are related to each other according to the tapering factor

k =log(ra/ru)/L @

where r4 (Units - cm) denotes the downstream cross-section of
the vessel. (The effect of variation in the value of k& can be seen

in Fig. 6). From the above equations, the radius of the vessel .

becomes

ro(z) = ru(ra/ra)™/* 3)

where r,(2) (Units - cm) is the radius of the vessel at zero trans-
mural pressure (p = p,) (Units - mm.Hg). The elastic proper-
ties of the vessel can be estimated from the Young’s modulus,
E (Units - g.cm™! s72), the wall thickness, A (Units - cm), and
the radius of the vessel, r,. An empirically estimated relation
between them was proposed in [8] which is as follows:

Eh/r, = ki exp(kar,) + ks. 4)

The empirical estimates of the constants ki, ko and ks
are taken as 2 x 107 g.em~l.s~2, —22.53 cm~! and
8.65 x 10° g.cm™!.s~2 respectively.

B. Governing Equations

The complete derivation of the governing equations can be
found in [2], [8]. However, we outline some details for com-
pleteness. The total system of continuity and momentum equa-
tions can be written in conservation form as

(A, 0 ( q
ot\q) " 0z \% + LVAA
0
= YT in (5)
(_25Ag+%(2\/2 (ﬁfﬁ-\/Aog—i%)—Afrf:) %)

where A (Units - cm?) is the cross-sectional area, q is the flow
(Units - cm®.s71), f(r,) = 4Eh/3r, (Units - g.cn™t.s™2),
A, (Units - cm?) is the cross-sectional area at zero transmural
pressure, ~ (Units - cm?.s71) is the kinematic viscosity, § (Units
- cm) is the boundary layer thickness, p (Units - g.cm™2) is the
density of blood and

dj 4
E?{j = §k1k2 exp(kars) 6)

with units of g.cm™2.572. An axi-symmetric flow without swirl
is assumed to derive these governing equations. In this deriva-
tion, only the radial viscous term is used and the longitudinal
viscous term is neglected because the ratio between the length
of a blood vessel with its radius is assumed to be very large. The
thickness of the boundary layer is estimated as

§ =+/vT/(2m) )

where T' (Units - sec) is the time period of one cycle. Also, the
Reynolds number is found using the characteristic parameters
as

R =q./(vre). 3
We assume a laminar flow in these tapered vessels and since the

flow is time dependent, the velocity profile is rather flat except
for a thin boundary layer of width § (Units - cm) in which the
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transition to zero velocity at the wall is made. Using (4), the
pressure (Units - mm.Hg) is related in the state equation as

p(z,t) — po = 4ER(1 — /Ao /A)[(3r,)

where p, is the zero transmural pressure or the diastolic pres-
sure. For further convenience, these equations are nondimen-
sionalized using the characteristic parameters r. = 1 cm (char-
acteristic radius of the vessels), g, = 10 cm3.s~! (character-
istic flow through the aorta) and p = 1.06 g.cm™ (density
of blood). Thus, the following nond1mens1ona1 quantities are
defined. & = z/r., t = tqc/r = 1o/Te, A= Alr,
i= Q1 b = pre/(pg), v = wc/qc, ki = kird/(pa?),
ko = kor. and k3 = ksr?/(pg?). Using these quantities and by
dropping tildes, the nondimensional continuity and momentum
equations can be written as

®

%G) " %<ﬂi+iqx/_>
(e (v g)-ag) &)

C. Numerical Method

In this section a Richtmyer’s two-step version of the Lax-
Wendroff explicit scheme is described [2], [8]. The continuity
and momentum equations should be in conservative form to nu-
merically solve this second-order method. Let the dependent
variables be represented by the vector

U=(4,9) an
the system flux by
F=(F,F)=(q,°/A+ fVAAlp) (12
and the right-hand side of (10) by
S =(51,52)
. 2rrq df
_<0, A (2\/_(\/"f+\/ )
af \ dr,
e w
Thus, (10) becomes
oU OF
%t 5= S. (14

By using an uniform grid, the flow at time-level (n+ 1) and grid
location m can be written as

At At fntl | ontd
U =Un, - (F::;%—F::’ )+ S (snth sty
(15)
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Fig.2. Inflow as a function of time (Time period = 0.917 s). Obtained from
the authors of [9].

where U?, = U(mAz,nAt) and similarly for F and S.
The unknowns in the above equation F;L:f(ll/ /22)), ant((ll/fz)),
an':f(ll/ /22)) and S"+((11//22)) at time-level (n + (1/2)) can be
determined usmg
N P e Bl
i 2
2 Az 2

forj = m+(1/2) and j = m — (1/2). For an uniform grid,
this method is stable if the CFL condition is fulfilled for both

choices of sign, such that
-1
At A dp
& <At 7o an

where ¢/A (Units - cm.s™1) is the mean velocity.

D. Boundary Conditions

The governing equations in (10) are quasilinear and hyper-
bolic in nature. One boundary condition is required at the end
of any vessel since the characteristics point in opposite direc-
tions. The inflow boundary condition at the inlet of the common
carotid artery (CCA) is determined using the periodic pulse
function developed in [9] and shown in Fig. 2 as a function of
time. At the inlet [e.g., Fig. 3(i)], (15) requires the evaluation of
the term ¢_ (1(/2/) using

ntd

do (18)

(q 12 +41 )/2

where subscripts still signify the value of the spatial location.
Also, from (15)

ATt = A - Ay ((F )”*2 (F)™E )/A:z:
+At((S )”*2 R VEID
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Fig. 3. Computational molecules (i) Left boundary: At points marked with ‘e’,
all variables are known, at points marked with ‘o’, the flow is known and at
points marked with ‘¢’ the variables are unknown. At time n + (1/2), we
determine the values of qf/*;(l/ ) and APt using (18) and (19), respectively.
(ii) Right boundary: At points marked with ‘e’, all variables are known and at
point marked with ‘¢, the variables are unknown. Using fixed point iteration,
with an initial guess on p™**, firstly, outlet flow at time n + 1 is evaluated from
Eqn. (30). Then the outlet area at time n + 1 is evaluated using (31) and finally,
outlet pressure at time n - 1 is evaluated using (32).

where the inner subscripts on F' and S denote the first row in

(14) and ()72 = (ST = 0, (P =
gy hM and (F)ME04Y = 1147, Fig. 36) shows the left

boundary where the unknown variables at time step (n + 1) are
evaluated from the known values at time steps » and (n+(1/2)).
The unknown variables Ag+1 and pg‘“ are evaluated at the inlet
as shown in Algorithm 1.

Algorithm 1. Steps for evaluating the variables at the inlet

Evaluate g7 +(*/?

Evaluate qf/g(l/ D from (16)
Eliminate ¢”{}/> in (19) from (18)
Evaluate A7+ from (19)

Evaluate pg** from (9) where m = 0

n—+1

and ¢¢ " from the input pulse

The bifurcation occurs at a point where the outflow from the
CCA is balanced with the inflow from the ICA and the external
carotid artery (ECA). For simplicity, we use subscript p for the
CCA, d, for the ICA and dy for the ECA for describing the

bifurcation conditions. The evaluation of FZ;S({%) s Fﬁfé%)’

S:\L;_’(_l(ﬁ)z) and Sﬂ’il({%) requires introduction of ghost points

at the outlet of the CCA and at the inlets of the ICA and ECA.

Note that M = M is the outlet grid point for the CCA and
M = 0 for the inlet grid points for the ICA and ECA. Using
these ghost points, (q(i))nM“L(lﬂ) and (A(i))x{(l/z), where 7 =
p,d1, ds, can be found as

(q(i)y:% _ ((q())’:i + (q(n):f%) /2 (20)

and

(,4@)7;% _ ((A@)’:_%;(A(i));i) /2 @)

2

respectively.

The bifurcation conditions, at time levels (n + (1/2)) and
(n + 1) lead to the following equations. Conservation of flow
gives

(22

(), = @)+ (),

and assumption of continuous pressure across the bifurcation
gives

(23)

@Y = (pa) = (pen)’

(p >M - (p )o - (p )M

where § = (n+ (1/2)), (n+ 1). Using (9), (23) can be written
as

(), |1~
= (1) 24)
and
AP
(/) |1- ————(&(Z))éﬁ
= (£ (25)

where ¢ = dy,dy and f(r,) = 4Eh/(3r,). Fori = dy, dy, (15)
can be written for g and A as

()= 0%~ ()0 - ()7

+2 <(S§))::+1 + (Sé"’):f%) 26)
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TABLE I
GEOMETRY OF THE CCA, ICA AND ECA (UNITS: cm)
Tu Td L
CCA | 0370 | 0.370 | 20.8
ICA | 0.177 | 0.083 | 17.6
ECA | 0.177 | 0.083 17.7
and
(A(i)>n+1—«(A(i))" _ At (Fm)"*% - (79) nti
- 1 1 1
M M Az M+3 M-1
@n
as S; = 0. Egns. (20) to (27) com nsmg the un-

knowns (¢®)HL, (¢@)2 /2 (g (p))’”‘(l , (gt
(q (dl))n+(1/2) (q (d1) )n+(1/2) (q(dz))n+1 (q(dg))n+(1/2)

(q(dz))7i+l(1/)2), (A(P))n+1 (ADH/D), (A(P))X,}ES%{%),
(A(dl))n-i-l, (A(dl))n+(1/2) (A(dl))n+(1/)2), (A(dg))n+1

(A A2 and (4 (dz))n+(1/2) give rise to a system of
18 nonlinear equations wh1ch can be solved using Newton’s
method only if the Jacobian is nonsingular [2], [8].

For the outflow boundary condition at the outlets of the ICA
and ECA, a three-element Windkessel model [1] based on wave
transmission theory is used which represents the resistance of
the vessel by two resistances R, Rp and the compliance of the
vessel by a capacitor Cr. At a frequency w, the impedance of
this model is given by

Ry + Ry + iwCrR1 Ry
1+ iwCr Ry '

Z(0,w) = (28)

Transforming (28) into the time domain gives the following par-
tial differential equation

op 9¢ _p  aBr+tRy)
. 29
[ T ROy on @)
The above equation can be written in discretized form as
At N C -\ ) R RN A€ TR )
At ! At RoCr RyCr -
(30)

Note that the treatment here of the outflow boundary condition
is different when compared to the one used in [8]. Also, by dis-
cretising the mass conservation equation, we get

qgm“l) /Az.

In order to determine the unknowns at the outlet [e.g., Fig. 3(ii)],
(30), (31) and the discretized state equation

(1_

An+1

An ( ;tn—i-l

€19}

4 B

37,

n+l __ AO
mo 1
Ant

(32)
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are solved using a fixed-point iterative scheme by starting with
an initial guess for p’+! on each vessel. Fig. 3(ii) shows the right
boundary where the unknown variables at the time step (n + 1)
are evaluated as shown in Algorithm 2 using the known values
at the time step n.

Algorithm 2. Steps for evaluating the variables at the outlet using
fixed point iteration

PRt = ph.

k=0

while k < kmax do

Pold = P

Evaluate ¢ from (30)

Evaluate A from (31)

Evaluate p™™ from (32)

if [pora — Pt < 1077) then
break

end if

k=k+1.

end while

III. RESULTS AND DISCUSSION

A. Preliminary Simulations

At the outset, mesh and time dependence studies are per-
formed for flow in the 1-D human carotid artery bifurcation.
The physiological data taken for this study is based upon the
data described in [1], [8] and [10]. The geometry of the CCA,
ICA and ECA branches is summarized in Table I. Note that
L refers to the length of a vessel, r,, and r, signify the up-
stream and downstream cross-sections of a vessel, respectively.
It is worth noting here that in order to avoid simultaneous in-
teractions between the reflected waves, the difference in the
lengths of the ECA and ICA is taken as 0.1 cm [10]. Time period
T = 0.917 s is the period of one cycle and the kinematic vis-
cosity ¥ = 0.046 cm?.s™1. The values Ry, R, and Cr for the
outflow boundary condition are empirically estimated (so that
there is no pressure buildup after each cycle) and tabulated in
Table II. Furthermore, the wall thickness (k) and the Young’s
modulus () are calculated from the empirically estimated (4).
Also, the numerical method discussed in the previous sections
has been validated for a single vessel in [11]. We start the com-
putations by initialising values for all the variables in the first
cycle. Hence, the pressure and flow profiles obtained at the end
of the first cycle are not immediately reliable. Therefore, the
model needs a few periods to stabilise itself [8]. Henceforth, all
the numerical computations in this study are performed for four
cycles and the data was extracted for the fourth cycle.

Fig. 4 shows plots for three cases obtained by successively
doubling the grid points and the number of time steps starting
from an initial configuration having the space step Az = 0.2 cm
and time step At = 0.00002 s. Although the plots for all the
three cases overlap each other for the ICA and the ECA, by
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TABLE I
OUTFLOW CONSTANTS

Ry Ry Cp
13900 g.s~1.cm™* | 25300 g.s l.cm™*[1.3384 x 1076 cm?.s2.g~1

T Tx=03, ats GO0
+ Sxa 0,410 080001 120
© 3x7006, 4t=0000006
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Fig. 4. Mesh and time dependence results for the carotid bifurcation. The first
row are the plots for the CCA at locations 6.0 cm and 12.0 cm respectively.
Similarly, in the second row, plots for the ICA are shown at locations 6.0 cm
and 12.0 cm respectively. Finally, in the third row, plots for the ECA are shown
at the same locations. Units for Az - cm and for At - sec.

closer inspection, it can be seen that only the plots for the last
two cases overlap each other for the CCA. Hence, we decided
to choose the configuration with Az = 0.1 cm and At =
0.00001 s for all the subsequent simulations on the bifurcation.
Fig. 5 shows the variation of pressure in the CCA, ICA and ECA,
respectively, as a function of space and time. The pressure pro-
files of the CCA have all the characteristics as depicted in [2].
Additionally, we show the pressure profiles of the ICA and the
ECA by extending the numerical analysis to the bifurcation.

B. Stenosis Model

Surgical decisions are often made with regard to when and
how to treat a particular patient depending upon the degree of
stenosis. This is observed on crude observational data of the cor-
relation of angiographically or ultrasound derived assessment of
stenosis. Provision of better understanding of haemodynamics
of a stenotic vessel will enhance the conventional wisdom re-
garding these decisions. Therefore, we introduce a metric, PVF

807

@

Pressure

Pressure:

3 % fom}

[

Fig. 5. Variation of pressure along the (a) common carotid, (b) internal carotid
and the (c) external carotid arteries, respectively, as a function of the length of the
corresponding vessel (x [cm]) and time (t [sec]) in the fourth cycle. Each of the
contour plots are shown from the inlet to the outlet of each vessels, respectively.
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and thereby provide a new indicator for analysing the flow be-
havior. It is defined as

t+4T L t+5T L

PVF = / / (ps — p)2dzdt | / / / pPdzdt
t 0 t 0

(33)
where ps(z,t + jT) = ps(z,t) and p(z,t + jT) = p(x,t)
(for j = 1,2,3,...) are respectively, the instantaneous pres-
sure in the presence of a stenosis and the instantaneous pressure
when there is no stenosis. This nondimensional metric quanti-
fies the extent of deviation of pressure from ideal behavior in
the entire cross-section of the vessel. Clearly, positive and neg-
ative changes in local pressure will affect PVF equally but we
are concerned with a measure of global variations.
Additionally, the nondimensional value of maximum pres-
sure

P = (Max [ps(=, 1)]) / (Max [p(=, 1)]) G4
was extracted for each case to gain a better insight into the
problem. The underlying assumption is that the metric PVF will
account for the global changes in the pressure whereas pf, is
more local and hence provides an estimate of the peak pres-
sure increment. Empirical stenosis models in previous studies
[1], [3] were used to incorporate the flow behavior through the
stenosis. However, in the present study, the governing equations
described in the previous section are numerically solved to study
the flow for all degrees of stenoses. It is believed that the gross
effects of the disease can be correctly captured through these
metrics. The area stenosis is modelled using a Hicks-Henne
bump function [12] which is defined as

r'(z) = asin (ww%’ﬁ%)tz ;foro<e <l (35)
where 7/(x) controls the radius of the vessel, a is the maximum
bump magnitude, £, controls the location of the maximum point
of the bump and ¢, controls the width of the bump. Fig. 6 shows
different shapes of stenoses obtained by varying the parameters
in (35) and for different tapering factors [e.g., (2)]. With refer-
ence to the radius of the arterial vessel (r(x)) defined in (1), the
effective radius of the vessel becomes

re(z) = 7(z) - '(z).

In accordance with this definition, the percentage of area
stenosis (as used in [1]) can be evaluated as

(36)

Pas = (1= rZ(z)/r*(z)) x 100. 37

It should be noted that the parameter a directly controls the per-
centage of area reduction of the vessel and hence for obtaining

physiologically realistic geometries, it should vary within -

[0,7(2)] cm. ¢; is however a nondimensionalized parameter
with respect to the length of the vessel and hence it varies
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a=0.121cm
~.— a=008cm

(i)

(iii)

Fig. 6. Two dimensional illustrations of the shapes of stenosis in the ICA for
different values of a, t; and t; in the Hicks-Henne bump function defined in
(35). () k = —0.043 cm~%, ¢; = 0.25,¢2 = 5.0, (i) k = —0.043 cm ™1,
t; = 0.25,t; = 15.0, (i) k = Oem™1, ¢, = 0.25,¢, = 5.0,({v) k =
Ocm™1, ¢ = 0.25,%4, = 15.0,( k = 0cm~%, ¢, = 0.75,t, = 5.0 and
(vi)k = 0em™%, ¢, = 0.75, ¢, = 15.0. In all the subplots, the dotted line
denotes the shape for 70% area stenosis and the solid line denotes the shape for
90% area stenosis. k denotes the tapering factor defined in (2). The length of
the vessel L = 17.6 cm and the inlet radius r,, = 0.177 cm.

within [0,1]. Furthermore, since ¢ appears as an exponent, it
takes any value >0. Note that as ¢, increases, the extent of
stenosis decreases.

First, we computed pressure and flow in the ICA by assuming
the tapering factor & = 0 for all the vessels and without any
stenosis. We keep these values of pressure and flow as the refer-
ence values (with no stenosis) for computing PVF and p}, in the
subsequent studies. Later, for exploring the effect of changes in
a, t; and t; on PVF and p},,, the Hicks-Henne function’s param-
eters are varied as a € [0,0.177] cm (so that the maximum bump
magnitude is not greater than the cross-section of the ICA),
t1 € [0, 1] (so that the peak of the stenosis occurs within the up-
stream and downstream ends of the ICA) and ¢, € [0,17.6] (so
that spiky stenosis shapes are avoided) only for the ICA keeping
the geometry of the CCA as r,, = 0.37 cm, r4 = 0.37 cm and
L = 20.8 cm and the ECA as r,, = 0.177 ¢cm, 74 = 0.177 cm
and L = 17.7 cm. Note that the stenosis is imposed on the
ICA geometry which has r, = 0.177 cm, r4 = 0.177 ¢cm and
L = 17.6 cm. In so doing, several geometries with varying de-
grees and shapes of stenoses in the ICA (or design points) are
created and a parametric analysis is conducted to understand the
behavior of PVF. For systematic exploration of the influence of
the shape of stenosis on PVF, a design of experiments (DoE)
technique was employed to generate 100 geometries [13], [14].
The DoE technique used in this paper is a well known method
in the field of aerospace design and is used to populate an n-di-
mensional space by maximising the minimum distance between
two design points. Due to the high perturbations assumed for the
parameters, numerical simulations were feasible on only 84 ge-
ometries.

By observing the plots of the first row in Fig. 7, we see that
PVF reaches its maximum value when the location of the peak of
stenosis is in the upstream segment of the ICA (¢; < 0.5). This
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Fig.7. Variation of PVF for different values of the Hicks-Henne bump function ~ Fig. 8. Variation of p, for different values of the Hicks-Henne bump function
parameters. In all the subplots PVF is shown along the y-axis. In the first row, ;  parameters. In all the subplots p%, is shown along the y-axis. In the first row, ¢,
is plotted along the x-axis for different values of a and ¢,. In the second row, t,  is plotted along the x-axis for different values of a and . In the second row, ty
is plotted along the x-axis for different values of @ and ¢, . In the third row, @ is  is plotted along the x-axis for different values of a and ¢, . In the third row, a is
plotted along the x-axis for different values of t; and ¢5. All the parameters are  plotted along the x-axis for different values of ¢; and t,. All the parameters are
appropriately normalized using their lower and upper bounds. Note that value  appropriately normalized using their lower and upper bounds. Note that value
of a = 0.08 cm corresponds to 70% area stenosis in the ICA, @ = 0.097 cm  of ¢ = 0.08 cm corresponds to 70% area stenosis in the ICA, ¢ = 0.097 cm
corresponds to 80% area stenosis and @ = 0.121 cm corresponds to 90% area  corresponds to 80% area stenosis and @ = 0.121 em corresponds to 90% area
stenosis. stenosis.

may also imply that the probability of an overall catastrophic ef-
fect such as plaque rupture is greater when the peak of stenosis
is further upstream in the ICA. Furthermore, from the second
row in Fig. 7, it can be clearly seen that PVF reaches its peak CCA
value when the extent of stenosis is maximum. From the third
rows in Figs. 7 and 8, we see that PVF and p}, increase with the
parameter a which directly suggests that they are directly pro-
portional to the percentage of stenosis. It can be seen that from
the first and second rows of Fig. 8 that p}, is almost insensitive
to changes in ¢; and ¢. A possible inference from this observa- Fig. 9. Schematic of the 1-D human carotid artery bifurcation with a stent of
tion is that local catastrophic effects do not depend on the extent  length I, placed in the ICA. Dimensions of the CCA are r,, = 0.37 crn, 74 =

of stenosis and the location of the peak of stenosis. 0.37 cm and L = 20.8 cm; for the ICA r,, = 0.177 cm, rq = 0.177 cm
and L = 17.6 cm and for the ECA r, = 0.177 ecm, 74 = 0.177 cm, and
L =17.7cm.

C. Stent Implanted Model

Now we consider a case where a stent is inserted in the region
of a stenosis to recover the shape of the original vessel and re-  to represent the elasticity along the length of the vessel based
duce the stenosis imposed by arterial disease. The geometry for on the work by Sherwin er al. (2003) [4]. Also, the value of
this case is shown in Fig. 9. As before, for both ICA and ECA A for this case is taken as [,/10. For exploring the impact of
Ty = 74 = 0.177 cm and for the CCA r, = r4 = 0.37 cm.  variations in ;s and E; on PVF and Py, respectively, 100 ge-
Also, the radius of the stent is taken as 7y = 0.177 cm. In  ometries are created using a DoE technique [13], [14] to ex-
this study, we determine the elasticity of the vessel from es- plore the effect of varying I € [0, 17.6) cm and E; €-[2.5 x
timates of Young’s modulus (E), the radius (r,) and the wall  10%,7.5 x 10%] g.cm™'.s~2. For this problem, the variables
thickness (h) from (4). We assume that a stent of length I, is  with a subscript s in (33) and (34) signify cases where there
placed in the region x € [A,l; + A]. For the region of in- is a stent placed inside the vessel and the variables without any
creased stiffness, the effective Young’s modulus (E;) is 5 X  subscript denote cases where there is no stent or stenosis inside
10® g.cm™!.s72 and the stent strut thickness is 0.01 cm [11].  the vessel. Fig. 10(A) depicts the complex behavior of PVF in
The elasticity along the length of the vessel is defined in (38), which the metric is found to be more sensitive to variations in
at the bottom of the next page, where Lica is the length of  Ej than [, for I, £ 0.8. In contrast, for [, < 0.5 and E, =< 0.5,
the ICA, and the cubic polynomial coefficients are employed it can be seen that variations in E, influence the metric more
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Fig. 10. (A) Variation of PVF with respect to /, and E, and (B) Variation of
i, with respect toZ, and E. Note that /, and E, are appropriately normalized
using their lower and upper bounds respectively. PVF and p, are calculated as
the increment in global and local pressures with respect to the healthy carotid
bifurcation and by choosing a tapering factor & = 0 cm™?.

than the changes in /. Much simpler behavior is manifested by
D}y, as shown in Fig. 10(B) in which the metric is less sensitive to
variations in [ than F;. This observation directly suggests that
localized pressure peaks can be generated due to the presence
of even an infinitesimally short length of a body which has low
compliance relative to the arterial wall.
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D. Test Problems

So far, this work has investigated the variation of pressure-
based metrics through stenosed and stent-implanted arterial bi-
furcations. We now hypothesize that stent implantation may be
beneficial if it reduced the magnitude of these metrics. In prac-
tice, diagnostic information could be provided for individual
subjects with a certain degree of stenosis by first evaluating
the values of PVF and pj,, in a model of the stenosed geom-
etry and then selecting a stent with suitable /5 and E;, only if
the corresponding metrics are reduced after the insertion. To
make the model patient-specific, powerful tools such as mag-
netic resonance imaging (MRI) techniques can be used for ex-
tracting realistic geometries, inflow and outflow boundary con-
ditions [15], [16]. To demonstrate the range of applicability of
this approach, a test case is conducted using the Hicks-Henne
function with the parameters ¢; and 2 [e.g., (35)] fixed at 0.25
and 5.0, respectively, representing a stenosis closer to the en-
trance of the ICA [e.g., Fig. 6(iii)]. The values of PVF and p},
are extracted for varying degrees of area stenosis first for a fixed
value of E; = 5 x 10% g.cm™' s~ and then for a fixed value of
s = 8.8 cm. Fig. 11 shows the variation of /; and F, plotted for
positive differences in PVF and p;, against percentage of area
stenosis. Recall that the differences in the metrics indicate their
changes after subsequent insertion of the stent. The evidence

(—99.5452° + 119.452% 4 1.1658) x 10* V oz e[0,24]

Eh  } 2.8249 x 107 YV oz e[24,1] 1 2

To ) (9.95452% — 131.402 + 573.38z — 825.55) x 105 ¥ w € [I,,l, +24] & S (38)
1.2358 x 10° V z€[ls+2A,Lical



KOLACHALAMA et al.: PREDICTIVE HAEMODYNAMICS IN A 1-D HUMAN CAROTID ARTERY BIFURCATION 811

sou0] 008
1880} #5467
60 2006
£ S
£
gma g"‘“
gmo- §“‘°“
oot st
ol 8;
0
150}
166
140,
140
s
g!“ iﬂ.
Em . tortessing, g”‘
H 6 . £
£ 60 2 6
x =
fo fo
5 in
[’
i
20
0. » 0

w ) 0 )
Perceatége of stancais Percaniage of wevsais

Fig. 12. Case2:t, = 0.75 andt> = 5.0.(A) and (B) Predictions on the length
(Units - cm) of the stent for varying degrees of stenosis. (C) and (D) Predictions
on the Young’s modulus of the stent (Units - g.cm~*.s~2) for varying degrees
of stenosis. On the y-axis of (A) and (C), APVF = PVFienosis — P VFgtent
and on the y-axis of (B) and (D), Apy;, = p7,

*
stenosis ET—

from clinical studies suggests that intervention (surgery or stent
deployment) may be beneficial if the stenosis >70%. This prin-
ciple may not be entirely general as it does not specifically ac-
count for the haemodynamic changes inside the arterial vessel.
The computational study presented here offers guidelines which
are physiologically reasonable and can be used in conjunction
with the clinical indication to provide additional validation for
a surgical decision. For example, it can be seen from Fig. 11(A)
that intervention could be beneficial (as measured by a posi-
tive APVEF = PVFgicnosis — PVFgtent) for stenotic geome-
tries whose percentage of area stenosis Z23. Furthermore, if the
percentage of area stenosis Z60, then a stent which can cover
the entire length of the vessel could also be chosen. However,
clinical factors may demand a higher threshold for APVF pre-
cluding stent implantation below this level. Consider the line
OB [Fig. 11(A)] indicating the threshold value at percentage of
area stenosis = 70. Hence, for all stenoses € [23,70]%, the
range for the length of the stent is reduced. For example, the
suitable range at 65% area stenosis is now DE as opposed to
DF. The limited range for [ [Fig. 11(B)] confirms the inference
made from the second plot of Fig. 10 that p}, is less sensitive
towards variations in the length of the stent. Fig. 11(C) and (D)
shows a suitable range of Young’s modulus for a fixed [ of 8.8
cm. In this paper, it is assumed that the Young’s modulus of
any stent cannot be less than that of the arterial wall. Fig. 11(C)
shows that any value of E, within the bounds can be chosen for
the stent if the percentage of area stenosis £60. Furthermore,
from Fig. 11(D), we can infer that if percentage of area stenosis
%50, then any value of E, will give rise to positive differences
inApy, = P~ D - AnOther test case is considered
with the parameters £, and 5 fixed at 0.75 and 5.0, respectively,
representing a stenosis closer to the downstream end of the ICA
[e.g., Fig. 6(v)]. By considering the same threshold (indicated

as OB in Fig. 12(A) as taken for the previous test case [e.g.,
Fig. 11(A)], we see that stent implantation may not be favor-
able even at 70% area stenosis. Fig. 12(B) also confirms that
pr, is less sensitive towards variations in the length of the stent.
Since the location of the peak of stenosis is closer to the down-
stream of the ICA for this case, the option of choosing any value
of E; within the bounds is now possible only if the percentage
of area stenosis 270 and not 60 [e.g., Figs. 11(C) and 12(C)].
Contrastingly, Figs. 11(D) and 12(D) reveal the same observa-
tion regarding positive differences in Ap?,.

It can be clearly seen from Figs. 11 and 12 that APVF and
Ap?, increase with the percentage of stenosis. An interesting
observation which can be derived from these figures is that for
a given percentage of stenosis, APVF and Ap, need to be as
high as possible which may allow the possibility of choosing a
stent configuration that has minimum values for the length and
Young’s modulus. It should be noted that these ranges are pre-
dicted by only accounting for the pressure changes in the ICA.
Additional information involving the pressure changes in the
CCA and the ECA can be found in a similar fashion which gives
rise to six exclusive indicators. For a given patient, we could
propose a score based on whether there would be an increase or
a decrease in each of these metrics after stent deployment, and
suitable values of F; and [, could be extracted. Alternatively,
stratification by these predictive scores can be helpful for de-
termining the likely overall benefit from stenting and drawing
conclusions on the efficacy of surgery [17].

IV. CONCLUSION

A 1-D time dependent Navier-Stokes solver incorporating
fluid-wall interactions was implemented for studying blood flow
in the human carotid artery bifurcation. A design of experiments
technique was used to create geometries for a parametric study
in order to investigate the alterations in pressure profiles due to

* the presence of a stenosis in the ICA. The stenotic geometry

was parameterized using a Hicks-Henne bump function. We in-
troduced a PVF as a metric for quantifying global alterations
in haemodynamics due to changes in the stenotic geometry. It
was shown that the probability of an overall catastrophic effect
may be higher when the stenosis is located in the upstream seg-
ment of the internal carotid. For quantifying local changes in
the haemodynamics, maximum pressure was used as the metric.
This metric was found to be less sensitive towards variations
in the location of the peak and extent of stenosis. Furthermore,
we showed how these metrics respond after stent deployment
into the stenosed part of the internal carotid. In particular, it was
shown that localized pressure peaks may be generated even in
the presence of an infinitesimally short length of a stent. Finally,
we proposed and discussed potential diagnostic tools based on
these parametric analyses and demonstrated how they could be
used (once they have been shown to accurately predict arte-
rial behavior through experimental validation) as cost effective
methods to predict the effect of stenting for an individual pa-
tient rather than relying solely on the percentage of stenosis in a
vessel. It is worth noting here that although PVF quantifies the
global increment in pressure, both positive and negative changes
in local pressure will affect PVF equally whereas it might be
thought that positive and negative pressures will have different
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effects on the physiology of the artery. We hope to look into
these differences in our future work.

These studies can be further benefited by considering addi-
tional aspects of stent design methodology such as risk factor
modelling, cost-effectiveness of this procedure and comparing
the scope of stenting with other available interventional tech-
niques [17], [18]. Most importantly, these simplified models can
be used in a multi-scale approach to represent the global dy-
namics of the arterial system where detailed three dimensional
simulations are used only in regions which are of particular in-
terest [19]. However, in addition to the need for experimental
validation, the 1-D model will require verification against 3-D
simulations; a key weakness of the lower fidelity model used
here concerns the inability to predict shear stress, separation,
and energy loss due to vorticity. Nonetheless, the approach pre-
sented in this paper highlights the potential usefulness of a para-
metric study and its subsequent application to predict the benefit
of stenting in a diseased patient. Alternatively, statistical tech-
niques [14] which can reasonably quantify the uncertainty in-
volved with inter/intra individual differences in the geometry
and material properties could be used.
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