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Efficient Calculation of the Fields of a Dipole
Radiating Above an Impedance Surface
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Abstract—in this paper, the classic problem of field computation The effects on the propagating wave by a lossy earth can be
foran infinitesimal dipole radiating above animpedance half-space modeled locally as a flat impedance surface. These effects can
is r_ewsned. The expressions for the traditional solution consist be decomposed into the effects of the homogeneous surface and
of integrals of the Sommerfeld type that cannot be evaluated . .
in closed form and due to their highly oscillatory nature are the effect ‘?aused by some impedance transition in the surface
difficult to evaluate numerically. A method known as exact image Such as ariver, sea/land interface, or swamp/dry land transition.
theory, which has previously been applied to vertical electric and The effect of the impedance transition was addressed by Sara-
magnetic dipoles, is used to derive explicit expressions for dipoles of pandi and Casciato [1] in an analytic fashion for a transition
arbitrary orientation above impedance surfaces. Starting from the - yith 5 general one-dimensional (1-D) impedance variation and
spectral representation of the field, the reflection coefficients are . o
cast in the form of exact Laplace transforms and then by changing sm_all d_lpole eXC|tat_|on. The effect of the homoge”‘?OPS_ su_rface,
the order of integrations field expressions in terms of rapidly Which is the classic Sommerfeld problem of an infinitesimal
converging integrals are obtained. These expressions are exact, andelectric dipole radiating above a lossy half-space, is the focus
valid for any arbitrary source alignment or observation position.  of this work.

It is shown that the formulation for a horizontal dipole contains — The proplem of a infinitesimal electric dipole radiating
an image in the conjugate complex plane resulting in a diverging .
exponential term not previously addressed in the literature. It above a Iossy_ hal_f-space_ was orlglna_lly formulated by Ar_nold
is shown through further mathematical manipulations, that the Sommerfeld, in his classic work published in 1909 [2]. Since
diverging term is a contribution of the mirror image which then, it is an understatement to say that this problem has
can be extracted. Comparison of numerical results from exact received a significant amount of attention in the literature
image theory and the original Sommerfeld-type expressions shows \iiyy jiterally hundreds of papers published on the subject.
good agreement as well as a speedup in computation time - . - - p
of many orders of magnitude, which depends on the distance The inclusion of a sign error in the orlglna_l work prompted
between the transmitter and the receiver. This formulation can Much debate over several decades on the existence of a Zenneck
effectively replace the approximate asymptotic expressions usedtype surface wave and its significance in the fields generated by
for predicting wave propagation over a smooth planar ground g vertical electric dipole. The complete history of the problem
_(havmg dn‘feren_t reglons_ofvalldlty).The exactlmag’eformu_latlon is beyond the scope of this paper, but suffice to say that
is also of practical use in evaluation of the Green'’s function for . N
various applications in scattering problems where approximate independent Fierlvatlons by Weyl [3], Sqmmerfeld [4]' van
solutions are not sufficient. der Pol and Niessen [5], and Wise [6] confirmed the sign error,
although Sommerfeld himself never admitted to any error in the
original 1909 work. The corrected formulation confirmed the
existence of a surface wave for certain values of impedance
and observation angles, but showed its contribution to the
. INTRODUCTION total field only significant within a certain range of distances,
HE ABILITY to accurately and efficiently predict the dependent on the impedance of the half-space (Sommerfeld
effects of natural features on radio-wave propagation fsimerical dlstance_). Readers are referred to the work of Norton
essential in the development and design of a communicatiddb [8] for a concise formulation of the problem, with the
system. Accurate simulation of the propagation environmeffrrect sign, and Bafios [9] for a complete perspective of the
allows for optimal system design in terms of parameters such/igtorical development of the mathematics of the problem.
power consumption and cost minimization by determining the The Sommerfeld solution is expressed in terms of integrals
most efficient system configuration. The natural environmeff the Sommerfeld type, which cannot be evaluated in closed
consists of various scattering and diffraction mechanisms tifafm and due to their highly oscillatory nature are difficult to
must be accounted for, including obstacles such as hills apifluate numerically. Numerous techniques, both analytic and
mountains, forested areas, and the effects of a lossy eaffmeric, have been applied to evaluate the Sommerfeld integrals
in an approximate fashion. To evaluate the Sommerfeld integrals
analytically standard asymptotic technigques, such as the method
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optics (GO) term, first-order saddle point) tend to cancel anlde Sommerfeld formulation by modifying the integrand into
higher-order terms in the asymptotic expansion are dominat.emore well-behaved form.

Note that these higher-order terms are typically referred toThe distributed image interpretation of a vertical dipole
in the literature as a Norton Surface Wave [7], [8]. For gource above an impedance surface can be seen in the work
highly-lossy surface (small normalized impedance) the poi# Arnold Sommerfeld [18]. Evaluating the Sommerfeld
approaches the saddle point and their contributions cangQpressions as a type of distributed image is also seen in the
be separated. In this case, standard saddle-point technigngf of Booker and Clemmow [19], while the Sommerfeld
cannot be applied and an alternate asymptotic techniquetdemulation is also seen in the work of Felsen and Marcuvitz
necessary [10], [11]. To evaluate the Sommerfeld-type integrgd®)), where the case of a vertical—electric dipole, represented as
numerically, in an approximate fashion, several techniqugsjistributed image source, and located in the complex plane is
have been proposed. Parhagtial. [13] proposed a method, aqdressed. Keller, independently, derived at a similar solution
valid for a vertical electric dipole, in which the integratiortzo. Lindell and Alanen extended the technique to that of
contour is deformed to the steepest descent path. The i.nte%rlée,tric and magnetic dipoles of arbitrary orientation radiating
is then solved asymptotically when distance between imaggoye a dielectric half-space [21]-[23]. For the dielectric case,
and observation is large, and numerically when this distancegige js no exact transform for the reflection coefficient and
small. Again poles and branch cuts must be accounted for WhgR formulation by Lindell and Alanen for the vertical electric
the contour deformation encounters them and the techniqygye involves a decomposition of the kernel function of the
requires evaluation of Hankel functions of complex argumenty|4ce transform. For the case of a horizontal electric dipole,
Michalski [14] improved this method by proposing a Va”at'o'anly a formal solution is presented, with no explicit expressions

in the way a branch cut is handled. Johnson and Dudley [l jetailed interpretation of image behavior. This might have
proposed a method, valid for small distances between im en due to the fact that for a general half-space dielectric

?nd gbsert\;]atlon, :In tWh'Ch tan ar;atlr)]/tlcstechnquuT:d IS tappll edium, exact analytical expressions for the image currents
0 reduce the osciflatory nature of the sommerield integra not exist. However, such expressions can be obtained for

While these techmqueg improve the convergence pmpert'?ﬁr%edance surfaces and the behavior of the image currents for
the Sommerfeld-type integrals, they require transformatio T:bitrary dipole orientation can be studied

which increase the complexity of the formulation and, as in . . . ) .
the case of the asymptotic solutions, are not valid for all sourceLmde” did examine the special case [24] of the impedance

and observation positions, and electrical parameters. ;urface and the convergence properties of a.general exponential
As none of these analytical-numerical techniques are Va"Hegrand. He equated a diverging exponential term to a surface

for general source orientation and observation location RVE contribution, resulting from a pole in the reflection coeffi-
arbitrary impedance values, a solution is sought which trar@_?nts' He only examined in detail the case 01_‘ avertlca_l elect_rlc
forms the Sommerfeld-type expressions into a form that retaifi®0!€ and noted a surface wave can only exist for an inductive
the rigor and generality of the original formulation, Wh”esurface_, for this case. ) ) o )
improving the computational efficiency to a degree which " this paper, exact image theory is studied in detail for
makes evaluation of the resulting exact expressions practilf Problem of an electric dipole, of arbitrary orientation,
from a numerical standpoint. above an impedance half-space. In Section IlI, a spectral-

In order to improve the convergence properties of the Soiiomain representation, which consists of Sommerfeld-type
merfeld-type integrals, exact image theory is applied. In thidtegrals, is given for the dipole-electric fields, along with
method, an integral transform in the form of a Laplace transfor@PPropriate |den't|t|es necessary fo_r the denvatpns that follow.
is applied to the reflection coefficients in the Sommerfeld-typd€xt, the exact image transformations are applied to the case
integrals. This results in expressions consisting of a doulle an infinitesimal electric current dipole radiating above
integral, one in the original-spectral domain, and one in tif impedance half-space. As mentioned, integral expressions
Laplace domain. Application of appropriate identities allow®r the horizontal dipole show a diverging exponential term,
for analytical evaluation of the integral in the spectral domaihich is not apparent in the formulation by Lindell and
and the remaining integral expressions in the Laplace domdilanen for a dielectric half-space [23]. In Section lll, the
are dominated by a rapidly decaying exponential. These integg¥RCt image expressions are further simplified and it is shown
expressions are exact with no approximations made and that the diverging-exponential term vanishes. Section IV gives
decaying exponential in the integrand results in significantf@sults, including a comparison of field quantities generated
improved convergence properties over the original formulatioby evaluation of the exact image integrals, and the original
The form of these integral expressions can be interpreted S@mmerfeld-type expressions. In addition, a timing comparison
a distributed line source, located at the image point of tiséiows numerical evaluation of the exact image formulation to
dipole source, and extending into the complex plane. Reépe several orders of magnitude faster than numerical evaluation
resentation of the reflection coefficients in the Sommerfelof the corresponding Sommerfeld-type integrals. This makes
formulation in terms of a Laplace transform for a verticahe exactimage formulation of practical use in integral equation
electric dipole, was apparently first introduced by Van der P@E) techniques which require efficient numerical evaluation
[16], and can also be seen in the work of Norton or Furutaf the Green’s function in various radiation and scattering
[8] and [17]. Their intent in applying this type of integralproblems. Section V summarizes this work and conclusions
transformation was to simplify the asymptotic evaluation cdre drawn.
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Il. EXACT IMAGE FORMULATION Observation

Consider the problem geometry shown in Fig. 1. A sma k, 7,

dipole carrying currenf with orientation/ is radiating in free z
space above an infinite, homogeneous impedance plane.
characteristic impedance of free space and of the impedal
plane are defined a%, and Z,, respectively. The total fields
above the impedance plane propagate with propagation cons
k and can be decomposed into a direct wave and diffracted we
given by

E7(r, ') = E(r, ') + E'(r, ¥') @)

where|r| = /22 + y2 + 22 is the distance to the observatior
point and|r’| = \/z'2 4+ y'2 + 2’2 is the distance to the source 4
location. Also in (1), superscriptg, i, andd are indicative of

the total, direct, and diffracted fields, respectively; the diffractdd® -
fields being the perturbation in the total fields caused by the
impedance half-spacE&'(r, r’) can be calculated directly andHere , = Z7,/Z, = /1/(¢ +ie") is the normalized
the expression for it is given in the Appendix. Of interest in thignpedance of the half-space and = &’ + ic” is the relative
paper are the diffracted fields, expressions for which were origemplex permittivity of the lower half-space, approximated by
inally derived by Sommerfeld [2]. As the focus of this work isan impedance surface. In (2), is the dependent variable de-
the transformation of the these expressions into a form mdieed ask? = k2 — k2 and.Jy, J, and.J; are Bessel functions
compatible to numerical evaluation, the derivation will not bef order 0, 1, and 2 respectively. Also in (2),defines the
repeated here. Interested readers are referred to the Appemgifial distance between source and observation paintse

for an explicit derivation of these expressions. The spectral rejeight of the observation poing, is the angle betweep and
resentation of the diffracted electric fields of a dipole of orienthe x axis, with 2’ being the height of the source point, all of
tation/, wherel = I3 + I, 9 + 1.2, located at the origin, and which are seen in Fig. 1.

Problem geometry, dipole above an impedance plane.

radiating above an infinite impedance plane are given by The integrals in (2) are Sommerfeld-type integrals and as
4 , already stated, they are highly oscillatory in nature with poor
Ef(r, r') convergence properties making them difficult to evaluate nu-
kZoI | . [ K, merically, especially for the case pf> (2 +2’). To improve
= Jj/0 2%, {Fh[ Lz (J2(kpp) cos 2¢ the convergence behavior of these integrals, exact image theory

is applied by the application of integral transforms and appro-

+Jo(kpp)) = Ly J2(kpp) sin 2¢)] priate identities. The method is exact with no approximations

T [2”‘"27% 1. cos pJ1 (k,p) + kf I made and the resulting expressions are valid for any arbitrary
v 1 ]C2 T . .. . .
source and observation position. The basic methodology is to
- (Jo(kpp) — J2(k,p) cos 2¢) first rewrite the spectral domain formulation of (2) in terms
k2 ) ik (=42") of zeroth-order Bessel functions only. Terms containing re-
T2 5 Ly Ja(kpp) sin 2¢ dk, flection coefficients in the resulting expressions are expanded
% I where necessary, and then rewritten in the form of a simple
+1j/ 2]: {Fh[—lmb(kpp) sin 2¢) Laplace transform. Order of integration is then exchanged
0 z and the spectral domain integration ovey in (2) is per-
=1y (Jo(k,pp) = J2(kyp) cos 29)] formed in an analytic fashion. The remaining expressions in

T, {Wﬁ kpl sin ¢.Jy (k,p) — k_ﬁl Jo(k,p) sin 26 the Lgplace dor_nain contain_integrals W_hi_ch _arg_domin_ated
by rapidly decaying exponentials and exhibit significantly im-
k2 ik (s4n proved convergence properties over the original Sommerfeld
T 3 ly(Jo(kop) + Ja(k,p) cos 2‘/’)] } e diy, expressions. In Section II-A, relevant transforms and identities
o 2 , will be given that are needed for the derivations that follow.
[, [+ ke
o kR =

Iy cos ¢ + Ly sin ¢)Jy (k,p) eik;(z+z’)dkp ) In this section,_ trqnsforms and idgntities _that are used
throughout the derivations that follow will be defined. To apply
exact image theony,, andT’, given in (3) must be defined in

wherel’, andl’, are the horizontal (TE te) and vertical (TM  terms of a Laplace transforri, andT’, can be rewritten as
to z) Fresnel reflection coefficients, respectively given by

n—k/k. L onthe/k
n+k/k.’ Yotk /k

A. Transforms and Identities

2k/n 2a
D =1— —11  _—q_ 4
(3) ! k. + k/n k. + )

I'y =
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wherea = k/n and

26

1225

representation in the form of a Sommerfeld integral and is
appropriately referred to in the literature as the Sommerfeld-

r,=1- — 5) integral identity.
Ro4ak o k4B () integ y
wherefs = nk. Now recognizing that B. Vertical-Electric Dipole
.00 1 To find the diffracted fields generated by a vertical (
/ e ek e = [ (6) directed) dipole, the components of (2) containingre first
0 iz T

considered and are modified to include only zeroth-order Bessel
functions. The reflection coefficients are rewritten in terms
of their Laplace transform and then the order of integration
is changed in order to evaluate the integral in termskpf
analytically, using the Sommerfeld-integral identity given by
(15).

wherey is some constant coefficient, we can rewfiteandl",,
in the form of a Laplace transform or

T =1-2a / e (atk:)E ge 7)
J0

and - For a vertical dipole (2) reduces to
=1-28 / e (BFEIE ge . (8) .
0 Ed(r, ') _ k2ol lz/ Fop, kf cos ¢Jy (k,p)&
In the application of exact image theory to the case of a 4w o ks k

containl';, andl",,, however, they cannot be directly expressed as + Lkzzkp sin ¢J1(kpp)y — k—g Jo(kpp)Zz
the Laplace transform defined in (6). For the sake of simplicity

and in order to minimize the complexity of the resulting
expressions, it is desirable that all integral transforms applied
be in the form of this Laplace transform. For a horizontavhere the subscript in (16) designates a vertical dipole.
dip0|e, this is accompﬁshed by expanding the terms Whe.?@plylng the identities in Section II-A (16) can be rewritten as

necessary by partial fractions into a form that allows them 9 9 9 9
to be directly written in the form of (6). El(r, 1) = Ll [ 9 8_Q_ 8_+8_ P
v drk 7\ 0x0z Oyoz or?  0y?
<k 4 ,
- / k—pFL.JO(kpp)elkZ(z*'z)dkp. 17)
0 z

horizontal dipole, several terms arise in the derivation which P 12 }

etk g, (16)

In applying exact image theory to the Sommerfeld-type ex-
pressions for the fields of a dipole above an impedance surface,
an initial step in the derivation is to apply Bessel function iden-
tities in order to rewrite (2) in terms ofy only. To do this, the Now rewritingT'

» inthe f f (8) and substituting into (17
following identities are needed: In the form of (8) and substituting into (17)

gives
1 92 k2
=5 55 Jo(kpp) = =55 [Jo(kyp) — cos2¢ Ej(r, ')
k? Ox 2k
o (k)] @ - Al o 0 W+WA
) p , = T ark w0z T oy0:Y o2 Ta2)”
1 0
ﬁ 8—:[/2 Jo(kp/)) :—ﬁ [Jo(kp/)) +COS2¢ |:/ vp JO k p Lk (z+z dk —Zﬂ/ /
- Ja(kpp)] (10)
) - e PE i (4214 g, df} ) (18)
1 [ 02 0? ks
k2 <8a,’2 p) 2) Jo(kpp) = T2 Jo(k,p) (11)
The integrals in (18) in terms df, can be solved analytically
1 92 k2 by applying (15), giving the final form of the diffracted-electric
W2 0zdy Jo(kpp) = ka sin 2¢.J2(k,p) (12) fields for a vertical ¢ directed) dipole
1 0? kp PPN /19 SN (N Y A - L L W
- = Ed(r. = N ==
12 9w, Jokor) = —icosd =t hlkep)  (13) Eulrr) = ol g it g 5 i gt )P
1 0? kp o ik R'(€)
- 2 . 14 —B¢
W2 3,95 Jo(kop) = —ising —=2 Ji(kpp).  (14) R de| (19)

An additional identity that will allow for the analytic evalua-
. . . ) where R
tion of the spectral-domain integrals oveyin the exact image \/(x
expressions is

is as previously defined andR’(¢)
—2')2 4+ (y—y)?+ (2 + 2/ +i£)?. The integrand in

the last term of (19) can be interpreted as a distributed image
source in the complex plane, located atz’ as seen in Fig. 2.

In this integrand, both exponential factors3¢ and kR'()
decay rapidly ag becomes large. Due to this, the integral in
whereR = /(z —2/)2 + (y — y')? + (2 + 2/)2. The identity (19) converges very rapidly, for all source and observation
in (15) relates the free-space Green'’s function to an alternédeations.

eikR

R

=i / Jo(k,p)et=(+2) :” dk, (15)
J0
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Im][z] sion they can be put in the appropriate form. Defining these
13 terms as
r T,
z - plane _1h _ 1w 2
B = T (25)

writing I', andl",, explicitly in terms ofk, k., «, andg [see (4)

/l, Re[z] and (5)], and recognizing thaf = k* —k2 = (k—k.)(k+k.),

a andb can be written as

II imagel
k. —«
. . . a= (26)
Fig. 2. Exactimage in plane. (k= k) (k+k.)(k, + @)
and
C. Horizontal Electric Dipole b= ke = 27)
| i T =R+ k)1 B)

In a manner similar to that of the vertical dipole, appropriate
terms in the Sommerfeld-type expressions for a horizonfakpanding (26) and (27) by partial fractions gives expressions
dipole will be put in terms off, only to facilitate evaluation of of the following form fora andb:
the integral overk, analytically. Initially, thez component of

a a a:
the electric field is derived. Thg component is determined in =G —1k ) + G +2k ) + G ja) (28)
the same fashion, which for brevity will not be repeated and i i i
only the final result is provided. Finally, the component of b= b1 n bo n b3 (29)
the field generated by a horizontal-electric dipole is derived. (k—Fk.) (k+Fk) (k:4+0)
To derive ther component of the diffracted-electric field for a
horizontal electric dipole, the identities of (9)—(14) are applied’here
and noting thak? = k* — k2 n—1
ayp = —bl = —————
2k(n +1)
Ei(r7r/)"’i‘ 4o — by — n+1
B kzol/w L (p & K=k o 2T T %k(n - 1)
Toar Jy |\ "oy Y R 022 2
a3 =—by= —— (30)
l, K2 —k2\ 0% |k k(1 =mn?)
k2 Dot Do 5= ) gy | 7, Polker)
oY | Bz where the coefficients in (30) are given explicitly in terms of
. etk (+2") dk, (20) normalized impedancg andk, which will be used in the final

expressions for the component of the diffracted electric fields.
where the subscript designates a horizontal dipole. EquatioWNOW representing each term of the partial fraction expansions

(20) can be rewritten as of (28) and (29), in the form of the Laplace transform of (6),
changing the order of integration as before, and applying (15)
k%o 92 92 1 92 to evaluate the integral ovéy, analytically, gives the following
Ej(r, r')- & = T { <8 5 fa— 922 Jo+ k2 o 2f€> expressions fof, and f;:

2

bl < )} oo ikR" (£) ikR'(£)
fa+ f f (21) — —k€ € e
T aay \ TR =i, [e (“1 mg R’(&))

where ot ik R (€)
+aze™® 06 d¢ (31)
> kp ik Iy
o= 2 Jo(k,p)et= G0 L g, 22
fo= [ 3 Rll)e gk @) f Ool ) (b e
b =—1 e 1 + bo
>k o (onny Ty /0 R'(€) R'(€)
fo = / = Jolkpp)e™= D 5 dk, (23) e
Jo L 2 e € 3
and +hse ¢ —; @ de. (32)
>k . ,
fe= / k—pJg(kpp)elkl(Z"'z T, dk,. (24)
0 z

where R"(§) = \/a:—:v (y—y')?+ (2 + 2" —i€)2.

While f. can be evaluated directly by expressingin the form AlSO, the expression fof, is g|ven by

of (8) as in [(17)—(19), Sec. II-B], the ternis, /%2 andT’, /k” . R
in f, andf,, cannot be directly written in terms of the Laplace i —pe € de b . (33)
transform of (6), however, by applying partial fraction expan- R'(§)
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Noting thath = —a, (21) can be rewritten as Derivation of thez component of the diffracted electric
field generated by a horizontal dipole is rather straightforward.

Starting from
El(r,r')- 2

02 82 Je')
=ikZoll. | —+—
7 0 { <8x2+8y2>,/0

147 e RO
e
2k(1—mn) 4 R (€)

1—n 4 eFR1© P | 0? d? > |
Ef(r, r') 2= —(lp—— 41— 2T, Jo(k
ity ¢ e ) i=gm\ b g, /0 F, LoTolkor)
277 /oo 'eikz(z-l-z') dk‘p (36)
E(1—n2%) Jo

+ dg—1y

92 kR (6) " 92 eikR(€) and recognizing the integral in (36) ds, the = component of
—af — [ d . . . . - .
9 TR +e 922 T RE) ¢ the electric field generated by a horizontal dipole is given by
1 82 82 eikR "0 2 2
S I ., ) — s 1 7] 7]
k2 ( o2 Tl 83:8;1;) AR n./o Ej(r,x') -2 = —ikZol {ﬁ <l$ 9202 T by 8y82>
ikR'(€) 92 2 i ikR -00 ikR'(€)
o e E | +1, —— <477 )/ e -pe ©
@R (© | T oy \K1-n®)) Jo Nwmr =), R | G
Caepey €FFO d 34
'(8 —€ ) 4’ITR/(£) E . ( )

I1l. SIMPLIFICATION OF THE EXACT-IMAGE FORMULATION

In (34), an additional term is observed containing the exponen—TO explain the peculiar behavior of the exponentially di-

tial factor R”(¢), which is not present in the expressions foyerging image current for a horizontal dipole, an alternative

the vertical dipole and also is not evident in the formulatiof?presematiqn Is F’e"Yed In this section. It is shown that fche ex-
by Lindell and Alanen for a horizontal dipole over a dielectri onentially diverging image current represents the contribution

half-space [23]. This denotes the image location in the conjug am the mirror image (or perfect conductor), which can be

complex plane that results in an exponentially diverging factoﬁxtracted. The exact image formulation, derived in the previous

While this term is an exponentially growing term, the image Cu§_ecti0ns, can be further simplified by observing the behavior of

rent distribution, which depends on the surface impedance,ﬂi@x component of the electric field expressions for the perfect

exponentially decaying at a greater rate and dominates the‘?rLP—CtriC conducting (PEC) case, £ 0). For the PEC case (19),

tegrand £ > Im[R"(&)]). Because of this, the integral in the@nd (34) reduce to

first term of (34) still exhibits the rapid convergence properties

inherent in the integral expressions generated by the applicatiq:gju(r ) A {—l 3_2_1’ 9? o 9* }6“1{
of exact image theory. ' k T ox2 Y oxdy T 0x0z|4mR
The y component of the diffracted electric field generated 1201 02 02 o
i inole is derived in a simi - R P B

by a horizontal dipole is derived in a similar fashion and for 9 oz2 0y ) J,

the sake of brevity is not repeated here. The expression for ikR” kR’

it is given by P L (38)
4w R"  An R’

Ej(r, 1) According to image theory, this diffracted-field component

) 92 92 Xl l-n . ¢ikR"(€) should be equal to thecomponent of the electric field radiated
= ikZoI{ly <@+3_y2>/0 2k(1+7) ¢ AT R"(€) from an image dipole, given by

L4y e PR 2n /°° ‘ iZol
+ c de—1, ——1 is(p. 1) . = 120
- ¢ R | C T wa= ), E¥(r, 1) &= —
2 2 2 ikR
92 (ikR'(©) 92 (iRR(€) -[—l <k2+a—>—l 0 —|—l 0% e (39)
. —af Y e x D) Yy N z
[ 922 A R/(€) te Dy dnR/(€) /3 ox Oxdy 0x0z | 4mR
1 > L 0? et ok o where the superscripts implies image source. Setting (38)
E2\Y0y? T Ox0y /)| 4R " 0 equal to (39) the following relationship is obtained:
ikR'(£) 0?2 2 e ;
] () | b e
G 0u0y \W(1=12) ) Jo (2t as) | et o te

eikR/(f) ikR H2 92 oo _ikR’
(e7 — 7P d¢ ¢ . (35) -t (L L / ¢ —kE de.
W R(E) 2k . 922 + o)), R e " d¢. (40)
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Applying (40), and after some algebraic manipulation the ex- In a source-free region, according to the Helmholtz equation
pressions for diffracted fields [(19), (34), (35), and (37)] can be

rewritten in a more compact form as

E¢(r, r')
is es ZZkZOIT]
=E“(r,r') +E®(r, r') + —
92 00 he 2, se ikR’
o2 [~ kR
- —k§ _ ,—agy
+ RYE / (e e )47rR’ d¢
92 [o° W ikR
i g | ) i
0% [ ke 2 —B¢ ek F
+0—y2/ (e7™ =n'e )4 T ¢
b [ ety el )
oxdy Jo 4R Y *
0? e’k
— 2iZInl, —B¢
ro (a 0z ayaz )/ 47er d
0? o
VA
+L0nz[166+y8y8 < )}0
etk R
e i % (41)

whereE®(r, ') is the electric field radiated from the image

source and given in (39), aifgr* (r, r’), is given by

2ikZoIn e*F
14+n 4nR

02 02
Tzt o2

82 5 eikR'
<8:E2 F ) 4rR
This expression can be used to simplify (41) by replacing ex-
pressions containing?/dz2) + (02 /0y?) with —(9%/92?) —
k2. Applying the identities of (43) and (44), the first two lines
in (41) are reduced to

9? o A
(g + ) e+ L) 4T (RD) @)
where
B a9 . B oo ke ot sz'
Vt—axx"i' 0yy fl_/o (6 >47TR/d€7
and
S Cac 2 e eikR’
fo= [ e e

In order to evaluate thg?/9x0z and9?/dydz terms in (41),
they are rewritten as

ikR’'

2 2 oo
; ; - ¢ 4
<8x82 v 0yoz y) /0 IR 3
0 [ 4 ik R/
— Pe——d
=V i ®

1kR

:m(

= df) (46)

Applying (43) and (44) to (45) and (46), the diffracted field

expressions of (41), can be expressed as

and can be interpreted as the electric field radiated from an ele@®?(r, r’)

trostatic image source.

To further simplify the diffracted-field expressions in (41),

consider the integral

Integratingl by parts and using the identity

b ev‘,kR' ;) eqth’
€ 4rR ~ "9z xR
an analytic expression in terms of the derivativé wfith respect
to z is obtained
1 oo LkR o e’ikR ol
I=—- eTPEdE = — . 42
p/0 ey T <4R+Za> (42)
Therefore
oI eikR
— =1 —ipl. 43
9z "arr "7 (43)

Taking the derivative of (42) with respect tand using (43), it

can easily be shown that

0
(2

(44)

ik R )
I.
+ p) 4T R -

2LZOI7’]

=E*(r, v') + E“(r, v') — i 5 (L% +1y9)
—n?
[ cikR ) b [ ik R’
_ _ _ —ag
(k=) S~ ~a )'/0 e e
i kR
270Inl.V —— — 2iZyInl 2
+_ oln V47TR 1ZoInl.z
5 pikr ) /oo - oikR "
4dmr 0 4m R/

2iZ01n
1—n?

- ikR R
[ (Sgl) +o{evin- v w}] @

hz%m

Now by applying the identity x (a2 — bf) = b(l.4 — I,2) +

ViVy - (fal) — 2Z0n

where

ikR’
—pe €

AT R dc.

a(l.g —1,2), the last term in (47) can be rewritten as

1.V fs — 2V - (fal) =

AX EA_
a9

Goi) B G9)
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The final simplified form of the exact image expressions for th 40 ! , i !
diffracted field from a small dipole of arbitrary orientation are : ‘ ;
given by D0 e ................. R e e 1
El(r, 1) 0
=E"(r, v') + 2ikZo1 —
(5, ©) +2ikZl , @ _20
esz 0o ot esz ) ) ] . =
x 47TR_a_/0 € 47TR/ d£ (lw‘p—i_l?ly)_ZLZOIanZ !_Eé_40_ ....................................................................................
[/ 9 ik R oo ik R 60!
i — 4B ) =+ (k=3 / —pe d
X (L 8z+[>47rR+( p )_0 ¢ 4T R’ ¢
- B b T
7] 0]
+2ZpInl x | — 22— —9 : : : :
8 (9.’17 -100 L ) L H
ro - 0 2000 4000 6000 8000 10000
y etk R 5 /°° o etk R g+ 2iZoln p (meters)
arR " J, 4 R! 1—n?

Fig. 3. x-component of total electric fields (diffracted only for this case) for

82 ) 82 ) 82 R R o] . N . R . .
% { L i+ lyy+ (ly:v-l- l.ry) / a vertical €) electric dipole, exact image (——) compared with Sommerfeld
0

ox2 " Oy? Oxdy solution (- - - -). Dipole is located at = 0, 2’ = 2 m and operating at 30 MHz.
kR Observationisat = 2 m,p = 10 — 10010 m, along thep = 0 (x axis).
( —at 2 —ﬂg) e’ dé (49) Normalized surface impedance valuejis= 0.3 — 70.1.
. (e —n’e -
4T R’

40 ! ! ‘ )

where it is noted that the diverging exponential in the origina
expressions for the diffracted fields from a horizontal dipole, a
well as the resulting static-image charge that appeared from tt
expression has vanished in the final formulation given.

IV. ANALYSIS AND RESULTS

In this section, results generated by numerical evaluation 1
the exact image-integral expressions are given and comparec
those generated by numerical evaluation of the original Son
merfeld—type expressions. Also, a comparison will be mad
of the computation time required to calculate field quantitie:
using both methods. In the results that follow, all integrals ar : : :
numerically evaluated using the Gaussian quadrature numeri -100, 2000 4000 6000 8000 10000
integration package Quadpack, contained in the Slatec matt p (meters)
matical computation libraries. The Quadpack routines require
defining both an absolute- and relative-error parameter afid. 4. =-component of diffracted [exact image ¢ <) and Sommerfeld
these were set at 0.0 and 0.001, respectively. gooooo)] and total electric fields [exact image (—) and Sor/nmerfeld (----)

. . . . _for a vertical €) electric dipole. Dipole is located at = 0, 2/ = 2 m and

For the initial comparison of the exact image formulatioBperating at 30 MHz. Observation isat= 2 m, p = 10 — 10010 m, along
to the original Sommerfeld expression, consider an electtie¢ = 0 (» axis). Normalized surface impedance valug is 0.3 — i0.1.
dipole located 2 m above the impedance surfate=(2 m), at
the coordinate origina( = ¢’ = 0), and radiating at 30 MHz. from numerical evaluation of the original Sommerfeld-type
All field quantities are normalized to dipole current,and expressions. As can be seen, the two results are in excellent
wavelength,A (E/(I/X)), for all cases. The geometry andagreement. For the same test case, Fig. 4 shows the diffracted
coordinates are again shown in Fig. 1. The observation is omad total (direct+ diffracted) = electric field components for
radial line, 2 m above the impedance surface-(2 m), ranging a vertical ¢ directed) dipole, again comparing the exact image
from 10 m to 10010 m along the axis (p = 10 — 10010 m, calculation to those of the Sommerfeld formulation. As can
¢ = 0), and field values are calculated at 11-data points alobg seen in Fig. 4, the diffracted fields are in good agreement,
this line. The normalized surface impedance value is chosexcept for a slight discrepancy at 4000 m, where the Sommer-
to ben = 0.3 —40.1; corresponding to the impedance of Safeld calculation did not completely converge. The total fields
Antonio Gray Clay Loam with a 5% gravimetric moisturan Fig. 4 show increased error at 4000 m for the Sommerfeld
content and a density of 1.4 g/émderived from the values solution and also at distances beyond 6000 m. This is due to
of permittivity and conductivity given by Hipp [25]. the fact that the total field is the result of two large numbers

Fig. 3 shows thex component of the diffracted-electric(direct and diffracted field), tending to cancel for source and
field, for a vertical dipole, for this test case (no diracfield observation near the impedance surface. This has the effect of
component in this case). In Fig. 3, results from numerical evdlighlighting the numerical error in the Sommerfeld solution
uation of the exact image expressions are compared to restdtsthe diffracted field, while the curves generated by the
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Fig. 5. y-component of total electric fields for a horizontg) glectric dipole,
exact image ( ) compared with Sommerfeld solution (- - - -). Dipole i
locatedap = 0,2z’ = 2 mand operating at 30 MHz. Observationisat 2 m,

p =10—-10010 m, along thep = 0 (= axis). Normalized surface impedance
value isy = 0.3 — {0.1.

gig. 6. Time (in seconds) to calculate all electric field components, at each
Observation point, for a verticak) electric dipole, exact image (—) and
Sommerfeld solution (- - - -). Dipole is locatedat= 0, 2’ = 2 mand operating

at 30 MHz. Observationisat= 2 m,p = 10 — 10010 m, along thep = 0

(z axis). Normalized surface impedance valug is 0.3 — ¢0.1.

exact image formulation decay smoothly as expected, tht {2 _
indicating better convergence in the numerical solution. Thi

in fact is the case where higher-order terms (Norton surfac
wave) in the approximate asymptotic solutions dominate th @
total fields for R > (z + 2’). The expression foff. given in
(24), is simply thez directed potential for a vertical dipole.
Defining this potential ad/., the asymptotic solution of/,
can be decomposed as

10’

o

U, = U + U 4 U (50)

Execution time (second
S)

where superscript indicates the direct wavejo is the GO
term, equivalent to first-order saddle point, andv indicates
the Norton surface-wave component of the asymptotic solutio

. . . . . . -2 : : : :
which is simply the higher-order terms in the saddle-poin 10 0 2000 4000 6000 8000 10000

expansion. The first two terms in (50) are given by p (meters)
. ¢ikRo cikR
U, + U2 = + Ty sp—5 (51) Fig. 7. Time (in seconds) to calculate all electric field components, at each
47 Ry P AT R observation point, for a horizontaf) electric dipole, exact image (—) and

Sommerfeld solution (- - - -). Dipole is locatedat= 0, = = 2 m and operating
where Ry = \/(z —2/)2 + (y —y')2+ (2 — 2/)? and [, ,, at30 MHz. Observation is at= 2 m, p = 10 — 10010 m, along thep = 0

is the vertical Fresnel reflection coefficient evaluated at tHg axis). Normalized surface impedance valug s 0.3 —i0.1.
saddle point, given by

where in (54), it is assumed thpf| > cos # and that any pole

Uy = cost) — nm (52) is not in the vicinity of the saddle point. Fig. 5 shows the
’ cosf +n components of the total electric field for a horizontatl{rected)
In (52), cosf = (z+ 2/)/R and 6 is as defined in Fig. 1. dipole and for the same test case. Again, the_ convergence
Equation (51) can be rewritten as problems of the Sommerfeld integral are apparentin Fig. 5 in the
- . degradation of the appropriate curve beyond 2000 m. In Figs. 6
Ui+ U — e~ € n 2cosf ' (53) and 7, the computation time (in seconds), required to calculate
# # drRy 4mR ~ cosf+n all field components at each observation point is plotted for

As source and observation move near the impedance surfdfis test case. The curves in Fig. 6 compare the time required
the first two terms in (53) tend to cancel and the third terfi@r numerical evaluation of the Sommerfeld-type solution for
tends to zero as — oo, # — x/2 and thus, higher-order the case of a vertical dipole, to the time required for the
terms in the asymptotic expansion (Norton surface wave) £xactimage formulation to perform the same field calculations.

dominant. These higher-order terms are given by Fig. 7_sho_ws asimil_ar comparison for a horizontab{rected)
electric dipole. As is obvious from both sets of curves, the

w1 1 1 4 computation time required for the exact image calculations
# 2 k2R? are significantly faster than the time required to calculate the

ey — =+ —
4= 9 2
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Sommerfeld integrals, in fact over two orders of magnitude TABLE |

faster as the observation distance goes beyond 2000 m. NO(%EED-UP IN COMPUTATION TIME OF EXACT IMAGE CALCULATION OVER
. MMERFELD FORMULATION FOR NORMALIZED SURFACE IMPEDANCE OF

that for both methods, only necessary integrals were evaluated,s — 0.1, ELeven Data POINTS FROM p = 10 — 10010, = 0 AND

for example, the integrals containilg were not called if the VARYING SOURCHOBSERVATION HEIGHTS

dipole was strictly: directed {, component only). In continuing

with a comparison of computation time between exact imac

Z(m) [ z(m) | Speed-up, Vertical Dipole | Speed-up, Horizontal Dipole
2

) _ 2 303.92 565.96
and the Sommerfeld integrals, Table | shows a comparison —5 300 54.89 106.92
the speed-up in computation time required by the exact imar 200 | 2 56.11 107.00
formulation over the original Sommerfeld-type expressions _200 | 200 65.00 110.00

Speed-up is defined as the ratio of the time required to calculate
the Sommerfeld expressions to that required to perform the TABLE I
exact-image calculations [Sommerfeld time (seconds)/eXacteeepUp N CoMPUTATION TIME OF EXACT IMAGE CALCULATION OVER
image time (seconds)]. In Table I, the computation time for eaSGhMMERFELD FORMULATION FOR VARYING COMPLEX IMPEDANCE, 17. SOURCE
method is the time required to calculate all field components afN RECEIVERARE 2 m ABOVE SURFACE FOR ALL CASES ELEVEN DATA

. .. . . POINTS ARE CALCULATED FROM p = 10 — 10010, = 0
all observation positions (still eleven data points, frem 10—

10010 mg = 0), again for the case of = 0.3—10.1, but with n Speed-up, Vertical Dipole | Speed-up, Horizontal Dipole
varying source and observation heights. As seen in Table _ 00-i0.0 5.41 13.86

the exact image calculations exhibit a significant speed-uj _2-1-19-0 282.00 613.80

. . : 0.350.0 318.17 624.60

in convergence time over the Sommerfeld-type expression fc —55555 29033 715.00
numerical evaluation of the integrals. As a final comparison of 76.603-0.1 9.81 31.03
computation times, Table Il shows the speed up in computatio 0.003-i0.3 10.03 18.3

time of the exact image formulation over the Sommerfeld-type 03)(1)3,'301'5 22;?39 :2“5‘5612
expressions, for varying normalized complex impedance value: 0:3:;0:3 26600 5230

again for 11 data points, from= 10 — 10010 m,¢ = 0, 0.5-10.5 34825 510.28

and for source and observation 2 m above the impedance
surface. Again, the exact image calculations are at least an
order of magnitude faster than the Sommerfeld calculatior
for all cases except that of a (PEC).

Also in this section, the effects of varying soil moisture

on the total electric fields of a vertical dipole, are presentec 0
The dipole is again radiating at 30 MHz, with source 2 m _
above the impedance surface, observation also 2 m above = 8§ -20
impedance surface, and again alongthexis fromp = 10 to =
p = 10010 m. Fig. 8 shows a comparison of thecomponent W
of the total electric fields for the same San Antonio Gray Cla)
Loam previously described, again with a density of 1.4 ¢lcm

The curves show field levels for gravimetric moisture content _g.|

of 0%, 2.5%, 5%, 10%, and 20%, corresponding to normalize

surface impedances)X of 0.53, 0.38 — ¢0.09, 0.3 — 0.1, 100 ; ; i ; —
0.15 — 40.09, and0.12 — 0.07, respectively. As can be seen in 0 2000 4°g?mete?3(;oo 8000 10000

Fig. 8, the effect of increasing moisture content is to increasc
the vertical component of the total electric fields by as much a%. 8. Effect of varying soil moisture on-component of total electric fields
20 dB over the range shown. A similar analysis for a horizont@k a vertical ¢) dipole éocated tar: th:t %ggmimoa&oe\ﬁ ;:10 inmi;s)?lggczems:rbfg\clg,
=0,z =2m)an rati .
:jl‘llzotloetg glerlzcltee\?e?sng)al‘ggealensglejiﬁgllf tion along thexis) show (qe su(:face and ex)tearl1ds ?ggi;w fgrom the source alongthe0 (x axis) from
y insensitive to varying sojl = 15 — 19010 m. Results are for soil moisture of 0% & 0.53, (—)),
moisture. 25% @ = 0.38 — i0.09, (bo000)), 5% (9 = 0.3 — 0.1, (- - - -)), 10%
As a final example, the frequency response of the field of(#= 0-15 = i0.09, (ccc0c)) and 20% § = 0.12 —i0.07, ( = — - —~ ):
vertical dipole over the impedance half-space is examined. The
frequency response is indicative of the dispersive effects of ttiee length is set at 0.2307 m\(10 at 130 MHz). As the
half-space and these effects are of significant interest in thermalized impedance of the surface varies with frequency,
point to point transmission of wide-band radio signals over thibe appropriate real component of the relative permittiwity (
earth. For this example, the source and observation are plaeed conductivity §) are selected from the tables given by
2 m above the surface and the frequency response is examilgep [25] and the normalized impedance calculated from these
at radial distancep = 300 m from the source. Frequency isparameters at each frequency. As these values are slowing,
swept from 30 to 130 MHz in steps of 142.86 KHz. For obviougarying functions of frequency, values at the center of the
reasons, the electric field quantities are not normalizef/to frequency band (80 MHz) are chosen and assumed to be
as in the previous examples. Also, field expressions must benstant across the band. The normalized impedancet
multiplied by the dipole length (in meters) and in this exampleach frequency is then given hy = 1/v/¢’ + i”, where
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) ) ) . . . Fig.11. Comparison of the phase of the frequency response of the direct field
Fig. 9. Comparison of potentials from asymptotic solution and exact-image—) to total field (- - - -) (in radians), for a verticak] dipole located at
theory for a vertical £) dipole located at the origin, 0.1 m above the surfacgne origin, 2.0m above the impedance surfage=( 0, 2’ = 2.0 m) with real
(p =0, 2" = 0.1 m) with normalized impedanog= 0.3 —:0.1 and operating permittivity =’ = 22.0, conductivityc = 8 x 10~2. Frequency sweep is from

at 30 MHz. Observation is also 0.1 m above the surface and extends radigyto 130 MHz in steps of 142.86. Observation is also 2.0 m above the surface
from the source along thg = 0 (x axis) fromp = 1 — 1001 m. Second-order along thes = 0 (« axis) and 300 m from the source & 300 m).
saddle point (——) compared with exact image ¢« o o).
corresponding to different moisture content, with the exception
-20 ' . ; T ; . T . T of the case of either source or observation raised significantly
1 ' above the surface where there is significant difference in path
delay between the direct and ground (diffracted) waves.

V. SUMMARY AND CONCLUSION

In this paper, exact image theory is applied to improve
the convergence properties of the Sommerfeld-type integrals
contained in the spectral domain representation of the fields of
an infinitesimal electric dipole above an impedance surface. The
: : ; v : Sommerfeld expressions are written in terms of zeroth-order
hS - E } : Bessel functions and the reflection coefficients in the form of a
—A5f e o B simple Laplace transform. Where necessary, terms are expanded
' I it e S : E by partial fractions so they can be expressed in this form. Order
of integration is then exchanged and the inverse transform from
the spectral domain is performed analytically. The remaining
expressions consist of integrals whose integrand is dominated
Fig. 10. Comparison of the magnitude of the frequency response of the dirw a decaying exponentia| and exhibits rapid convergence

field (—) to total field (- - - -), for a vertical £) dipole located at the origin, . . . .
2.0 m above the impedance surfape< 0, z’ = 2.0 m) with real permittivity qualities. Numencal evaluatl(_)n of these mte.grals ShOW_ good
& = 22.0, conductivitys = 8 x 10-2. Frequency sweep is from 30 to 130agreement with results obtained by numerical evaluation of

MH; in steps of 142.86 KHz. Observation is also 2.0 m above the surface alcthe Sommerfeld-type integrals, while exhibiting a speed up
the¢ = 0 (v axis) and 300 m from the source € 300 m). in the computation time of several orders of magnitude.

In conclusion, a brief discussion is appropriate on the appli-
e” = o/(wep) andey = 8.85 x 1071% is the permittivity of cations of this exact image formulation to problems of practical
free space. For this example, these values were chosen tdriberest. For obstacles of moderate electric size, IE techniques
¢’ =22.0 ando = 8 x 1072, which correspond to valuescan be applied, however these techniques require evaluation
for San Antonio Gray Clay Loam with a 20% gravimetricof the Green’s function of the problem. As is well known, the
moisture content and a density of 1.4 gfcririgs. 10 and 11 Sommerfeld solution for the fields of an infinitesimal dipole
compare the magnitude and phase of the frequency responseadfating above an impedance surface is, except for some
the direct dipole field to that of the total field. It is shown thatonstant coefficients, the Green’s function of the impedance
the magnitude of the frequency response for the total field iglf-space. Numerical evaluation of this Green’s function is
monotonic and slowing varying while the phase is essentiailppractical due to the prohibitive computational time required
linear and almost identical to the phase of the direct field. The evaluate the highly oscillatory Sommerfeld integrals for
phase behavior indicates that there is little or no dispersieach element of the IE matrix solution. IE techniques require
of the broad-band signal in such communications channedecurate evaluation of the Green’s function for all source and
This was found to be true for various complex impedancebservation positions and, therefore, approximate solutions to

_5%0 40 50 60 70 80 90 100 110 120 130
Frequency (MHz)



SARABANDI et al: EFFICIENT CALCULATION OF THE FIELDS OF A DIPOLE RADIATING ABOVE AN IMPEDANCE SURFACE 1233

the Sommerfeld integrals also cannot be applied. As an exherey is the normalized surface impedanges Z;/Z,. The
ample of this, Fig. 9 shows the directed potential for a terms containind’, andI’,, to the left of the+ signs in (A.1)
vertical dipole generated by exact-image theory, comparedrapresent the effects of the impedance surface on the total field
the potential generated by evaluating the Sommerfeld integeaid are designated as the diffracted fields, with those to the right
in an approximate manner using second-order saddle pomitthe + sign representing the direct dipole fields. The direct
As can be seen in Fig. 9, the expected degradation in ttipole electric fields are more conveniently evaluated in the spa-
accuracy of the saddle-point technique is observed as the tiht domain and are given in dyadic form by

servation position approaches the source and the assumption P

of the large distance from source to observation point is Vi-  gi (¢ v/) = —ikZ,I [I+ S VV} c [ (A5)
olated, thus making it of no practical use in IE applications. k2 4T Ry

Note that for these curves, the normalized surface impedancg B \/ﬁ the dist to the ob i
was 7 = 0.3 — 0.1 and source and observation were placed erefr| = /2% +y® + 2% is the distance to the observation

0.1m above the surface as might be found in a typical jointandr’| = /z'2 +y'2 + 22 is the distance to the source

formulation. Also, for this surface impedance value, the pogecatiog_. Elxp]:'_:\nlging (A.5) gives the more useful form of the
is isolated from the saddle point for all observation position !rect Ipoie Tields or

thus making standard saddle-point techniques applicable [101. 3 3
. . . . . . / — a7l
Because of the discussed limitations, application of the Sofl-(r, ') = ikZoI {<_k2R§ " kRy

- 1) Ro(l - Ro)
merfeld solution to IE techniques has been impractical. The p 1 ikRo
significant improvement in the convergence properties of the +<1+L— ﬁ>l} ¢ (A.6)
Sommerfeld solution by application of the exact-image trans- kRo  k*Rg Am Ro
forms, and the resulting speed up in the computation timghere
now makes the Sommerfeld solution of practical use in IE
applications. Ro=lr—r|=\(@—-2)+y—y)+(z-2)°
and
APPENDIX ~ r—r
SPECTRAL REPRESENTATION OF THEFIELDS OF A SMALL o v — /|
DIPOLE OF ARBITRARY ORIENTATION, RADIATING
ABOVE AN INFINITE IMPEDANCE SURFACE

To derive the Sommerfeld expressions for the diffracted elec-
tric fields above the impedance surface we first apply the stan-

In this section, the general formulation for the electric fielddard change of variables to (A.1)
of an infinitesimal electric dipole radiating above a homoge-
neous, infinite impedance surface is provided. The geometry of ke =k, cosv z —1a' = pcos
the problem is as shown in Fig. 1. First, the spectral domain rep-
resentation of the dipole fields is given. A change of variables
is then applied and appropriate application of Bessel identitiggsulting in the following expression for the diffracted dipole
will result in the final form of the dipole fields. fields

The spectral-domain representation for the total-electric or oo
fields of a small-electric dipole radiating above an impedance El(r, ') = kZOI/ / %

0 0 z

ky =k,sinv y—1y = psing (A.7)

half-space, with orientatiohand carrying current, is given by 8m?
[26], as shown in (A.1) at the bottom of the next page. In (A.1), . [Fh(}} . i)fz +Ty(0(—k2) - i)ﬁ(kz)]
k = k.2 + k,y + k.2 with dependent variabld;. defined as
k. = ,/k? — k2 — k2, and the branch cut defined as- /1. ke () gikop cos(v=0) gy df;, (A.8)
The polarization unit vectors andv are given by In (A.8), (h-1)h and(9(—k.)-1)o(k.) can be rewritten in terms
Iy (k) x K of the new variables as

j il (k) = URz) X X o

hik:) = [k x 2| o(k=) = k (A-2) (h-1)h = (I, sin® v — l, sin v cos v) i
and R +(=lysinvcosv + lycos® v)g  (A.9)

. K x 2 X h(=Fk-) x K

h( kz) - |K X ZA| U( kz) -
where /i indicates horizontal polarization [transverse electric (v(_kz) 'l) o(k=)
(TE) to z] and® indicates vertical polarization [transverse mag-
netic (TM)toz], andK =k — 2(k - 2) 2 = k& + k,y — k. 2.
The reflection coefficient¥,, andT', (horizontal and vertical — k. sinv [kpl. + k. (I cosv + 1, sinv)] g
reflection coefficients, respectively) in (A.1) are defined as + kp[kpl. + ko(lpcosv + Iy sinv)] 2} . (A.10)

1
=1z {—=k.cosvkyl, + k.(ly cosv + I, sinv] &

_n—k/k. r _ " +k./k Substituting (A.9) and (A.10) into (A.8) and recognizing that

th = n+k/k. Yo+ ke /k AD o2y = (1 + cos2v)/2, sin®v = (1 — cos2v)/2, and
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sinvcosv = (1/2)sin2v and by applying the following two
identities

27
/ cos(nw)e®eP s =2) gy, — 2 (7Y cos(ng) Jn (k,p)
0
(A.11)

2T
/ sin(nw)e™ e «=2) gy = 27(3)" sin(n¢) . (k,p)
0
(A.12)
the diffracted electric fields in (A.8) can be rewritten as

(1]

[2]
(3]
(4]
(5]

E‘(r, ') [6]

= ittt sz )
+ Jo(kop)) = Ly Jo(k,p) sin 26)]

e [Qiizzkp Iz cos ¢Ji(kpp) + ]Z—glz [9)

(Jo(kyp) = Jo(kyp) cos 2) [10]

: : : [11]

— 52 b 2(kpp) sin 2¢] } k=20 g, w1

+?’9/000 Zk].c {Fh[ Ly Jo(k,p) sin 2¢ [13]
—ly(Jo(kpp) — J2(k,p) cos 2¢)]

+T, [222 kpl sin ¢J1(kpp) — :zl Jo(k,p) sin 2¢ a4l

: [15]

+25 lw(Jo(kop) + J2(kpp) cos 2¢)] } eik=(+) g,
> 2 : [16]
-(lz cos ¢ + 1, sin ‘/’)Jl(k‘pp)] piks(z+2") dkp} ((AL3) g

The expressions contained in (A.13) are of the form derived byi9]
Sommerfeld and the integrals contained within are defined as
Sommerfeld type integrals.
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