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Abstract—In this paper, the classic problem of field computation
for an infinitesimal dipole radiating above an impedance half-space
is revisited. The expressions for the traditional solution consist
of integrals of the Sommerfeld type that cannot be evaluated
in closed form and due to their highly oscillatory nature are
difficult to evaluate numerically. A method known as exact image
theory, which has previously been applied to vertical electric and
magnetic dipoles, is used to derive explicit expressions for dipoles of
arbitrary orientation above impedance surfaces. Starting from the
spectral representation of the field, the reflection coefficients are
cast in the form of exact Laplace transforms and then by changing
the order of integrations field expressions in terms of rapidly
converging integrals are obtained. These expressions are exact, and
valid for any arbitrary source alignment or observation position.
It is shown that the formulation for a horizontal dipole contains
an image in the conjugate complex plane resulting in a diverging
exponential term not previously addressed in the literature. It
is shown through further mathematical manipulations, that the
diverging term is a contribution of the mirror image which
can be extracted. Comparison of numerical results from exact
image theory and the original Sommerfeld-type expressions shows
good agreement as well as a speedup in computation time
of many orders of magnitude, which depends on the distance
between the transmitter and the receiver. This formulation can
effectively replace the approximate asymptotic expressions used
for predicting wave propagation over a smooth planar ground
(having different regions of validity). The exact image formulation
is also of practical use in evaluation of the Green’s function for
various applications in scattering problems where approximate
solutions are not sufficient.

Index Terms—Dipole antennas, impedance boundary condi-
tions.

I. INTRODUCTION

T HE ABILITY to accurately and efficiently predict the
effects of natural features on radio-wave propagation is

essential in the development and design of a communications
system. Accurate simulation of the propagation environment
allows for optimal system design in terms of parameters such as
power consumption and cost minimization by determining the
most efficient system configuration. The natural environment
consists of various scattering and diffraction mechanisms that
must be accounted for, including obstacles such as hills and
mountains, forested areas, and the effects of a lossy earth.
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The effects on the propagating wave by a lossy earth can be
modeled locally as a flat impedance surface. These effects can
be decomposed into the effects of the homogeneous surface and
the effect caused by some impedance transition in the surface
such as a river, sea/land interface, or swamp/dry land transition.
The effect of the impedance transition was addressed by Sara-
bandi and Casciato [1] in an analytic fashion for a transition
with a general one-dimensional (1-D) impedance variation and
small dipole excitation. The effect of the homogeneous surface,
which is the classic Sommerfeld problem of an infinitesimal
electric dipole radiating above a lossy half-space, is the focus
of this work.

The problem of a infinitesimal electric dipole radiating
above a lossy half-space was originally formulated by Arnold
Sommerfeld, in his classic work published in 1909 [2]. Since
then, it is an understatement to say that this problem has
received a significant amount of attention in the literature
with literally hundreds of papers published on the subject.
The inclusion of a sign error in the original work prompted
much debate over several decades on the existence of a Zenneck
type surface wave and its significance in the fields generated by
a vertical electric dipole. The complete history of the problem
is beyond the scope of this paper, but suffice to say that
independent derivations by Weyl [3], Sommerfeld [4], Van
der Pol and Niessen [5], and Wise [6] confirmed the sign error,
although Sommerfeld himself never admitted to any error in the
original 1909 work. The corrected formulation confirmed the
existence of a surface wave for certain values of impedance
and observation angles, but showed its contribution to the
total field only significant within a certain range of distances,
dependent on the impedance of the half-space (Sommerfeld
numerical distance). Readers are referred to the work of Norton
[7], [8] for a concise formulation of the problem, with the
correct sign, and Baños [9] for a complete perspective of the
historical development of the mathematics of the problem.

The Sommerfeld solution is expressed in terms of integrals
of the Sommerfeld type, which cannot be evaluated in closed
form and due to their highly oscillatory nature are difficult to
evaluate numerically. Numerous techniques, both analytic and
numeric, have been applied to evaluate the Sommerfeld integrals
in an approximate fashion. To evaluate the Sommerfeld integrals
analytically standard asymptotic techniques, such as the method
of steepest descent (saddle-point method), are typically applied
[10]–[12]. These techniques are valid when distance between
source and observation is large and contributions from poles
(surface wave) and branch cuts (lateral wave) must be accounted
for when deforming the contour. For source and observation
near the surface the direct and reflected waves (geometrical
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optics (GO) term, first-order saddle point) tend to cancel and
higher-order terms in the asymptotic expansion are dominate.
Note that these higher-order terms are typically referred to
in the literature as a Norton Surface Wave [7], [8]. For a
highly-lossy surface (small normalized impedance) the pole
approaches the saddle point and their contributions cannot
be separated. In this case, standard saddle-point techniques
cannot be applied and an alternate asymptotic technique is
necessary [10], [11]. To evaluate the Sommerfeld-type integrals
numerically, in an approximate fashion, several techniques
have been proposed. Parhamiet al. [13] proposed a method,
valid for a vertical electric dipole, in which the integration
contour is deformed to the steepest descent path. The integral
is then solved asymptotically when distance between image
and observation is large, and numerically when this distance is
small. Again poles and branch cuts must be accounted for when
the contour deformation encounters them and the technique
requires evaluation of Hankel functions of complex argument.
Michalski [14] improved this method by proposing a variation
in the way a branch cut is handled. Johnson and Dudley [15]
proposed a method, valid for small distances between image
and observation, in which an analytic technique is applied
to reduce the oscillatory nature of the Sommerfeld integrand.
While these techniques improve the convergence properties of
the Sommerfeld-type integrals, they require transformations
which increase the complexity of the formulation and, as in
the case of the asymptotic solutions, are not valid for all source
and observation positions, and electrical parameters.

As none of these analytical–numerical techniques are valid
for general source orientation and observation location or
arbitrary impedance values, a solution is sought which trans-
forms the Sommerfeld-type expressions into a form that retains
the rigor and generality of the original formulation, while
improving the computational efficiency to a degree which
makes evaluation of the resulting exact expressions practical
from a numerical standpoint.

In order to improve the convergence properties of the Som-
merfeld-type integrals, exact image theory is applied. In this
method, an integral transform in the form of a Laplace transform,
is applied to the reflection coefficients in the Sommerfeld-type
integrals. This results in expressions consisting of a double
integral, one in the original-spectral domain, and one in the
Laplace domain. Application of appropriate identities allows
for analytical evaluation of the integral in the spectral domain
and the remaining integral expressions in the Laplace domain
are dominated by a rapidly decaying exponential. These integral
expressions are exact with no approximations made and the
decaying exponential in the integrand results in significantly
improved convergence properties over the original formulation.
The form of these integral expressions can be interpreted as
a distributed line source, located at the image point of the
dipole source, and extending into the complex plane. Rep-
resentation of the reflection coefficients in the Sommerfeld
formulation in terms of a Laplace transform for a vertical
electric dipole, was apparently first introduced by Van der Pol
[16], and can also be seen in the work of Norton or Furutsu
[8] and [17]. Their intent in applying this type of integral
transformation was to simplify the asymptotic evaluation of

the Sommerfeld formulation by modifying the integrand into
a more well-behaved form.

The distributed image interpretation of a vertical dipole
source above an impedance surface can be seen in the work
of Arnold Sommerfeld [18]. Evaluating the Sommerfeld
expressions as a type of distributed image is also seen in the
work of Booker and Clemmow [19], while the Sommerfeld
formulation is also seen in the work of Felsen and Marcuvitz
[10], where the case of a vertical–electric dipole, represented as
a distributed image source, and located in the complex plane is
addressed. Keller, independently, derived at a similar solution
[20]. Lindell and Alanen extended the technique to that of
electric and magnetic dipoles of arbitrary orientation radiating
above a dielectric half-space [21]–[23]. For the dielectric case,
there is no exact transform for the reflection coefficient and
the formulation by Lindell and Alanen for the vertical electric
dipole involves a decomposition of the kernel function of the
Laplace transform. For the case of a horizontal electric dipole,
only a formal solution is presented, with no explicit expressions
or detailed interpretation of image behavior. This might have
been due to the fact that for a general half-space dielectric
medium, exact analytical expressions for the image currents
do not exist. However, such expressions can be obtained for
impedance surfaces and the behavior of the image currents for
arbitrary dipole orientation can be studied.

Lindell did examine the special case [24] of the impedance
surface and the convergence properties of a general exponential
integrand. He equated a diverging exponential term to a surface
wave contribution, resulting from a pole in the reflection coeffi-
cients. He only examined in detail the case of a vertical electric
dipole and noted a surface wave can only exist for an inductive
surface, for this case.

In this paper, exact image theory is studied in detail for
the problem of an electric dipole, of arbitrary orientation,
above an impedance half-space. In Section II, a spectral-
domain representation, which consists of Sommerfeld-type
integrals, is given for the dipole-electric fields, along with
appropriate identities necessary for the derivations that follow.
Next, the exact image transformations are applied to the case
of an infinitesimal electric current dipole radiating above
an impedance half-space. As mentioned, integral expressions
for the horizontal dipole show a diverging exponential term,
which is not apparent in the formulation by Lindell and
Alanen for a dielectric half-space [23]. In Section III, the
exact image expressions are further simplified and it is shown
that the diverging-exponential term vanishes. Section IV gives
results, including a comparison of field quantities generated
by evaluation of the exact image integrals, and the original
Sommerfeld-type expressions. In addition, a timing comparison
shows numerical evaluation of the exact image formulation to
be several orders of magnitude faster than numerical evaluation
of the corresponding Sommerfeld-type integrals. This makes
the exact image formulation of practical use in integral equation
(IE) techniques which require efficient numerical evaluation
of the Green’s function in various radiation and scattering
problems. Section V summarizes this work and conclusions
are drawn.
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II. EXACT IMAGE FORMULATION

Consider the problem geometry shown in Fig. 1. A small
dipole carrying current with orientation is radiating in free
space above an infinite, homogeneous impedance plane. The
characteristic impedance of free space and of the impedance
plane are defined as and , respectively. The total fields
above the impedance plane propagate with propagation constant

and can be decomposed into a direct wave and diffracted wave
given by

(1)

where is the distance to the observation
point and is the distance to the source
location. Also in (1), superscripts, , and are indicative of
the total, direct, and diffracted fields, respectively; the diffracted
fields being the perturbation in the total fields caused by the
impedance half-space. can be calculated directly and
the expression for it is given in the Appendix. Of interest in this
paper are the diffracted fields, expressions for which were orig-
inally derived by Sommerfeld [2]. As the focus of this work is
the transformation of the these expressions into a form more
compatible to numerical evaluation, the derivation will not be
repeated here. Interested readers are referred to the Appendix
for an explicit derivation of these expressions. The spectral rep-
resentation of the diffracted electric fields of a dipole of orien-
tation , where , located at the origin, and
radiating above an infinite impedance plane are given by

(2)

where and are the horizontal (TE to) and vertical (TM
to ) Fresnel reflection coefficients, respectively given by

(3)

Fig. 1. Problem geometry, dipole above an impedance plane.

Here is the normalized
impedance of the half-space and is the relative
complex permittivity of the lower half-space, approximated by
an impedance surface. In (2), is the dependent variable de-
fined as , and , and are Bessel functions
of order 0, 1, and 2, respectively. Also in (2),defines the
radial distance between source and observation points,the
height of the observation point, is the angle between and
the axis, with being the height of the source point, all of
which are seen in Fig. 1.

The integrals in (2) are Sommerfeld-type integrals and as
already stated, they are highly oscillatory in nature with poor
convergence properties making them difficult to evaluate nu-
merically, especially for the case of . To improve
the convergence behavior of these integrals, exact image theory
is applied by the application of integral transforms and appro-
priate identities. The method is exact with no approximations
made and the resulting expressions are valid for any arbitrary
source and observation position. The basic methodology is to
first rewrite the spectral domain formulation of (2) in terms
of zeroth-order Bessel functions only. Terms containing re-
flection coefficients in the resulting expressions are expanded
where necessary, and then rewritten in the form of a simple
Laplace transform. Order of integration is then exchanged
and the spectral domain integration over in (2) is per-
formed in an analytic fashion. The remaining expressions in
the Laplace domain contain integrals which are dominated
by rapidly decaying exponentials and exhibit significantly im-
proved convergence properties over the original Sommerfeld
expressions. In Section II-A, relevant transforms and identities
will be given that are needed for the derivations that follow.

A. Transforms and Identities

In this section, transforms and identities that are used
throughout the derivations that follow will be defined. To apply
exact image theory, and given in (3) must be defined in
terms of a Laplace transform. and can be rewritten as

(4)
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where and

(5)

where . Now recognizing that

(6)

where is some constant coefficient, we can rewriteand
in the form of a Laplace transform or

(7)

and

(8)

In the application of exact image theory to the case of a
horizontal dipole, several terms arise in the derivation which
contain and , however, they cannot be directly expressed as
the Laplace transform defined in (6). For the sake of simplicity
and in order to minimize the complexity of the resulting
expressions, it is desirable that all integral transforms applied
be in the form of this Laplace transform. For a horizontal
dipole, this is accomplished by expanding the terms where
necessary by partial fractions into a form that allows them
to be directly written in the form of (6).

In applying exact image theory to the Sommerfeld-type ex-
pressions for the fields of a dipole above an impedance surface,
an initial step in the derivation is to apply Bessel function iden-
tities in order to rewrite (2) in terms of only. To do this, the
following identities are needed:

(9)

(10)

(11)

(12)

(13)

(14)

An additional identity that will allow for the analytic evalua-
tion of the spectral-domain integrals overin the exact image
expressions is

(15)

where . The identity
in (15) relates the free-space Green’s function to an alternate

representation in the form of a Sommerfeld integral and is
appropriately referred to in the literature as the Sommerfeld-
integral identity.

B. Vertical-Electric Dipole

To find the diffracted fields generated by a vertical (
directed) dipole, the components of (2) containingare first
considered and are modified to include only zeroth-order Bessel
functions. The reflection coefficients are rewritten in terms
of their Laplace transform and then the order of integration
is changed in order to evaluate the integral in terms of
analytically, using the Sommerfeld-integral identity given by
(15).

For a vertical dipole (2) reduces to

(16)

where the subscript in (16) designates a vertical dipole.
Applying the identities in Section II-A (16) can be rewritten as

(17)

Now rewriting in the form of (8) and substituting into (17)
gives

(18)

The integrals in (18) in terms of can be solved analytically
by applying (15), giving the final form of the diffracted-electric
fields for a vertical ( directed) dipole

(19)

where is as previously defined and
. The integrand in

the last term of (19) can be interpreted as a distributed image
source in the complex plane, located at as seen in Fig. 2.
In this integrand, both exponential factors and
decay rapidly as becomes large. Due to this, the integral in
(19) converges very rapidly, for all source and observation
locations.
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Fig. 2. Exact image inz plane.

C. Horizontal Electric Dipole

In a manner similar to that of the vertical dipole, appropriate
terms in the Sommerfeld-type expressions for a horizontal
dipole will be put in terms of only to facilitate evaluation of
the integral over analytically. Initially, the component of
the electric field is derived. The component is determined in
the same fashion, which for brevity will not be repeated and
only the final result is provided. Finally, the component of
the field generated by a horizontal-electric dipole is derived.

To derive the component of the diffracted-electric field for a
horizontal electric dipole, the identities of (9)–(14) are applied,
and noting that

(20)

where the subscript designates a horizontal dipole. Equation
(20) can be rewritten as

(21)

where

(22)

(23)

and

(24)

While can be evaluated directly by expressingin the form
of (8) as in [(17)–(19), Sec. II-B], the terms and
in and , cannot be directly written in terms of the Laplace
transform of (6), however, by applying partial fraction expan-

sion they can be put in the appropriate form. Defining these
terms as

(25)

writing and explicitly in terms of , and [see (4)
and (5)], and recognizing that ,

and can be written as

(26)

and

(27)

Expanding (26) and (27) by partial fractions gives expressions
of the following form for and :

(28)

(29)

where

(30)

where the coefficients in (30) are given explicitly in terms of
normalized impedanceand , which will be used in the final
expressions for the component of the diffracted electric fields.
Now representing each term of the partial fraction expansions
of (28) and (29), in the form of the Laplace transform of (6),
changing the order of integration as before, and applying (15)
to evaluate the integral over analytically, gives the following
expressions for and :

(31)

(32)

where .
Also, the expression for is given by

(33)
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Noting that , (21) can be rewritten as

(34)

In (34), an additional term is observed containing the exponen-
tial factor , which is not present in the expressions for
the vertical dipole and also is not evident in the formulation
by Lindell and Alanen for a horizontal dipole over a dielectric
half-space [23]. This denotes the image location in the conjugate
complex plane that results in an exponentially diverging factor.
While this term is an exponentially growing term, the image cur-
rent distribution, which depends on the surface impedance, is
exponentially decaying at a greater rate and dominates the in-
tegrand ( ). Because of this, the integral in the
first term of (34) still exhibits the rapid convergence properties
inherent in the integral expressions generated by the application
of exact image theory.

The component of the diffracted electric field generated
by a horizontal dipole is derived in a similar fashion and for
the sake of brevity is not repeated here. The expression for
it is given by

(35)

Derivation of the component of the diffracted electric
field generated by a horizontal dipole is rather straightforward.
Starting from

(36)

and recognizing the integral in (36) as, the component of
the electric field generated by a horizontal dipole is given by

(37)

III. SIMPLIFICATION OF THE EXACT-IMAGE FORMULATION

To explain the peculiar behavior of the exponentially di-
verging image current for a horizontal dipole, an alternative
representation is derived in this section. It is shown that the ex-
ponentially diverging image current represents the contribution
from the mirror image (or perfect conductor), which can be
extracted. The exact image formulation, derived in the previous
sections, can be further simplified by observing the behavior of
the component of the electric field expressions for the perfect
electric conducting (PEC) case, ( ). For the PEC case (19),
and (34) reduce to

(38)

According to image theory, this diffracted-field component
should be equal to thecomponent of the electric field radiated
from an image dipole, given by

(39)

where the superscript implies image source. Setting (38)
equal to (39) the following relationship is obtained:

(40)
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Applying (40), and after some algebraic manipulation the ex-
pressions for diffracted fields [(19), (34), (35), and (37)] can be
rewritten in a more compact form as

(41)

where is the electric field radiated from the image
source and given in (39), and , is given by

and can be interpreted as the electric field radiated from an elec-
trostatic image source.

To further simplify the diffracted-field expressions in (41),
consider the integral

Integrating by parts and using the identity

an analytic expression in terms of the derivative ofwith respect
to is obtained

(42)

Therefore

(43)

Taking the derivative of (42) with respect toand using (43), it
can easily be shown that

(44)

In a source-free region, according to the Helmholtz equation

This expression can be used to simplify (41) by replacing ex-
pressions containing with

. Applying the identities of (43) and (44), the first two lines
in (41) are reduced to

(45)

where

and

In order to evaluate the and terms in (41),
they are rewritten as

(46)

Applying (43) and (44) to (45) and (46), the diffracted field
expressions of (41), can be expressed as

(47)

where

Now by applying the identity
, the last term in (47) can be rewritten as

(48)



SARABANDI et al.: EFFICIENT CALCULATION OF THE FIELDS OF A DIPOLE RADIATING ABOVE AN IMPEDANCE SURFACE 1229

The final simplified form of the exact image expressions for the
diffracted field from a small dipole of arbitrary orientation are
given by

(49)

where it is noted that the diverging exponential in the original
expressions for the diffracted fields from a horizontal dipole, as
well as the resulting static-image charge that appeared from this
expression has vanished in the final formulation given.

IV. A NALYSIS AND RESULTS

In this section, results generated by numerical evaluation of
the exact image-integral expressions are given and compared to
those generated by numerical evaluation of the original Som-
merfeld–type expressions. Also, a comparison will be made
of the computation time required to calculate field quantities
using both methods. In the results that follow, all integrals are
numerically evaluated using the Gaussian quadrature numerical
integration package Quadpack, contained in the Slatec mathe-
matical computation libraries. The Quadpack routines require
defining both an absolute- and relative-error parameter and
these were set at 0.0 and 0.001, respectively.

For the initial comparison of the exact image formulation
to the original Sommerfeld expression, consider an electric
dipole located 2 m above the impedance surface ( m), at
the coordinate origin ( ), and radiating at 30 MHz.
All field quantities are normalized to dipole current,and
wavelength, , for all cases. The geometry and
coordinates are again shown in Fig. 1. The observation is on a
radial line, 2 m above the impedance surface ( m), ranging
from 10 m to 10 010 m along the axis ( 10 10 010 m,

), and field values are calculated at 11-data points along
this line. The normalized surface impedance value is chosen
to be ; corresponding to the impedance of San
Antonio Gray Clay Loam with a 5% gravimetric moisture
content and a density of 1.4 g/cm, derived from the values
of permittivity and conductivity given by Hipp [25].

Fig. 3 shows the component of the diffracted-electric
field, for a vertical dipole, for this test case (no directfield
component in this case). In Fig. 3, results from numerical eval-
uation of the exact image expressions are compared to results

Fig. 3. x-component of total electric fields (diffracted only for this case) for
a vertical (̂z) electric dipole, exact image (——) compared with Sommerfeld
solution (- - - -). Dipole is located at� = 0, z = 2m and operating at 30 MHz.
Observation is atz = 2 m, � = 10 � 10010 m, along the� = 0 (x axis).
Normalized surface impedance value is� = 0:3� i0:1.

Fig. 4. z-component of diffracted [exact image ( ) and Sommerfeld
( )] and total electric fields [exact image (——) and Sommerfeld (- - - -)]
for a vertical (̂z) electric dipole. Dipole is located at� = 0, z = 2 m and
operating at 30 MHz. Observation is atz = 2 m, � = 10� 10010 m, along
the� = 0 (x axis). Normalized surface impedance value is� = 0:3� i0:1.

from numerical evaluation of the original Sommerfeld-type
expressions. As can be seen, the two results are in excellent
agreement. For the same test case, Fig. 4 shows the diffracted
and total (direct diffracted) electric field components for
a vertical ( directed) dipole, again comparing the exact image
calculation to those of the Sommerfeld formulation. As can
be seen in Fig. 4, the diffracted fields are in good agreement,
except for a slight discrepancy at 4000 m, where the Sommer-
feld calculation did not completely converge. The total fields
in Fig. 4 show increased error at 4000 m for the Sommerfeld
solution and also at distances beyond 6000 m. This is due to
the fact that the total field is the result of two large numbers
(direct and diffracted field), tending to cancel for source and
observation near the impedance surface. This has the effect of
highlighting the numerical error in the Sommerfeld solution
for the diffracted field, while the curves generated by the
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Fig. 5. y-component of total electric fields for a horizontal (ŷ) electric dipole,
exact image (——) compared with Sommerfeld solution (- - - -). Dipole is
located at� = 0,z = 2m and operating at 30 MHz. Observation is atz = 2m,
� = 10� 10010 m, along the� = 0 (x axis). Normalized surface impedance
value is� = 0:3 � i0:1.

exact image formulation decay smoothly as expected, thus
indicating better convergence in the numerical solution. This
in fact is the case where higher-order terms (Norton surface
wave) in the approximate asymptotic solutions dominate the
total fields for . The expression for given in
(24), is simply the directed potential for a vertical dipole.
Defining this potential as , the asymptotic solution of
can be decomposed as

(50)

where superscript indicates the direct wave, is the GO
term, equivalent to first-order saddle point, and indicates
the Norton surface-wave component of the asymptotic solution,
which is simply the higher-order terms in the saddle-point
expansion. The first two terms in (50) are given by

(51)

where and
is the vertical Fresnel reflection coefficient evaluated at the
saddle point, given by

(52)

In (52), and is as defined in Fig. 1.
Equation (51) can be rewritten as

(53)

As source and observation move near the impedance surface,
the first two terms in (53) tend to cancel and the third term
tends to zero as , and thus, higher-order
terms in the asymptotic expansion (Norton surface wave) are
dominant. These higher-order terms are given by

(54)

Fig. 6. Time (in seconds) to calculate all electric field components, at each
observation point, for a vertical (ẑ) electric dipole, exact image (——) and
Sommerfeld solution (- - - -). Dipole is located at� = 0,z = 2m and operating
at 30 MHz. Observation is atz = 2 m, � = 10� 10010 m, along the� = 0

(x axis). Normalized surface impedance value is� = 0:3� i0:1.

Fig. 7. Time (in seconds) to calculate all electric field components, at each
observation point, for a horizontal (ŷ) electric dipole, exact image (——) and
Sommerfeld solution (- - - -). Dipole is located at� = 0,z = 2m and operating
at 30 MHz. Observation is atz = 2 m, � = 10� 10010 m, along the� = 0

(x axis). Normalized surface impedance value is� = 0:3� i0:1.

where in (54), it is assumed that and that any pole
is not in the vicinity of the saddle point. Fig. 5 shows the
components of the total electric field for a horizontal (directed)
dipole and for the same test case. Again, the convergence
problems of the Sommerfeld integral are apparent in Fig. 5 in the
degradation of the appropriate curve beyond 2000 m. In Figs. 6
and 7, the computation time (in seconds), required to calculate
all field components at each observation point is plotted for
this test case. The curves in Fig. 6 compare the time required
for numerical evaluation of the Sommerfeld-type solution for
the case of a vertical dipole, to the time required for the
exact image formulation to perform the same field calculations.
Fig. 7 shows a similar comparison for a horizontal (directed)
electric dipole. As is obvious from both sets of curves, the
computation time required for the exact image calculations
are significantly faster than the time required to calculate the
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Sommerfeld integrals, in fact over two orders of magnitude
faster as the observation distance goes beyond 2000 m. Note
that for both methods, only necessary integrals were evaluated,
for example, the integrals containing were not called if the
dipole was strictly directed ( component only). In continuing
with a comparison of computation time between exact image
and the Sommerfeld integrals, Table I shows a comparison of
the speed-up in computation time required by the exact image
formulation over the original Sommerfeld-type expressions.
Speed-up is defined as the ratio of the time required to calculate
the Sommerfeld expressions to that required to perform the
exact-image calculations [Sommerfeld time (seconds)/exact
image time (seconds)]. In Table I, the computation time for each
method is the time required to calculate all field components at
all observation positions (still eleven data points, from 10
10 010 m, ), again for the case of , but with
varying source and observation heights. As seen in Table I,
the exact image calculations exhibit a significant speed-up
in convergence time over the Sommerfeld-type expression for
numerical evaluation of the integrals. As a final comparison of
computation times, Table II shows the speed up in computation
time of the exact image formulation over the Sommerfeld-type
expressions, for varying normalized complex impedance values,
again for 11 data points, from 10 10 010 m, ,
and for source and observation 2 m above the impedance
surface. Again, the exact image calculations are at least an
order of magnitude faster than the Sommerfeld calculations
for all cases except that of a (PEC).

Also in this section, the effects of varying soil moisture
on the total electric fields of a vertical dipole, are presented.
The dipole is again radiating at 30 MHz, with source 2 m
above the impedance surface, observation also 2 m above the
impedance surface, and again along theaxis from to

m. Fig. 8 shows a comparison of thecomponent
of the total electric fields for the same San Antonio Gray Clay
Loam previously described, again with a density of 1.4 g/cm.
The curves show field levels for gravimetric moisture contents
of 0%, 2.5%, 5%, 10%, and 20%, corresponding to normalized
surface impedances () of , , ,

, and , respectively. As can be seen in
Fig. 8, the effect of increasing moisture content is to increase
the vertical component of the total electric fields by as much as
20 dB over the range shown. A similar analysis for a horizontal
dipole ( directed and again observation along theaxis) show
the total field levels to be essentially insensitive to varying soil
moisture.

As a final example, the frequency response of the field of a
vertical dipole over the impedance half-space is examined. The
frequency response is indicative of the dispersive effects of the
half-space and these effects are of significant interest in the
point to point transmission of wide-band radio signals over the
earth. For this example, the source and observation are placed
2 m above the surface and the frequency response is examined
at radial distance m from the source. Frequency is
swept from 30 to 130 MHz in steps of 142.86 KHz. For obvious
reasons, the electric field quantities are not normalized to
as in the previous examples. Also, field expressions must be
multiplied by the dipole length (in meters) and in this example,

TABLE I
SPEED-UP IN COMPUTATION TIME OF EXACT IMAGE CALCULATION OVER

SOMMERFELD FORMULATION FOR NORMALIZED SURFACE IMPEDANCE OF

0:3 � i0:1, ELEVEN DATA POINTS FROM � = 10! 10 010,� = 0 AND

VARYING SOURCE/OBSERVATION HEIGHTS

TABLE II
SPEED-UP IN COMPUTATION TIME OF EXACT IMAGE CALCULATION OVER

SOMMERFELD FORMULATION FOR VARYING COMPLEX IMPEDANCE, �. SOURCE

AND RECEIVER ARE 2 m ABOVE SURFACE FOR ALL CASES. ELEVEN DATA

POINTS ARE CALCULATED FROM � = 10! 10 010,� = 0

Fig. 8. Effect of varying soil moisture onz-component of total electric fields
for a vertical (̂z) dipole located at the origin, 2m above an impedance surface,
(� = 0; z = 2 m) and operating at 30 MHz. Observation is also 2m above
the surface and extends radially from the source along the� = 0 (x axis) from
� = 10� 10010 m. Results are for soil moisture of 0% (� = 0:53, (——)),
2.5% (� = 0:38 � i0:09, ( )), 5% (� = 0:3 � i0:1, (- - - -)), 10%
(� = 0:15� i0:09, ( )) and 20% (� = 0:12� i0:07, (� � � � � � �)).

the length is set at 0.2307 m ( at 130 MHz). As the
normalized impedance of the surface varies with frequency,
the appropriate real component of the relative permittivity ()
and conductivity ( ) are selected from the tables given by
Hipp [25] and the normalized impedance calculated from these
parameters at each frequency. As these values are slowing,
varying functions of frequency, values at the center of the
frequency band (80 MHz) are chosen and assumed to be
constant across the band. The normalized impedance,, at
each frequency is then given by , where
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Fig. 9. Comparison of potentials from asymptotic solution and exact-image
theory for a vertical (̂z) dipole located at the origin, 0.1 m above the surface
(� = 0; z = 0:1m) with normalized impedance� = 0:3�i0:1 and operating
at 30 MHz. Observation is also 0.1 m above the surface and extends radially
from the source along the� = 0 (x axis) from� = 1� 1001m. Second-order
saddle point (——) compared with exact image ( ).

Fig. 10. Comparison of the magnitude of the frequency response of the direct
field (——) to total field (- - - -), for a vertical (̂z) dipole located at the origin,
2.0 m above the impedance surface (� = 0; z = 2:0 m) with real permittivity
" = 22:0, conductivity� = 8� 10 . Frequency sweep is from 30 to 130
MHz in steps of 142.86 KHz. Observation is also 2.0 m above the surface along
the� = 0 (x axis) and 300 m from the source (� = 300 m).

and 8.85 10 is the permittivity of
free space. For this example, these values were chosen to be

and 8 10 , which correspond to values
for San Antonio Gray Clay Loam with a 20% gravimetric
moisture content and a density of 1.4 g/cm. Figs. 10 and 11
compare the magnitude and phase of the frequency response of
the direct dipole field to that of the total field. It is shown that
the magnitude of the frequency response for the total field is
monotonic and slowing varying while the phase is essentially
linear and almost identical to the phase of the direct field. The
phase behavior indicates that there is little or no dispersion
of the broad-band signal in such communications channels.
This was found to be true for various complex impedances

Fig. 11. Comparison of the phase of the frequency response of the direct field
(——) to total field (- - - -) (in radians), for a vertical (̂z) dipole located at
the origin, 2.0m above the impedance surface (� = 0; z = 2:0 m) with real
permittivity " = 22:0, conductivity� = 8� 10 . Frequency sweep is from
30 to 130 MHz in steps of 142.86. Observation is also 2.0 m above the surface
along the� = 0 (x axis) and 300 m from the source (� = 300 m).

corresponding to different moisture content, with the exception
of the case of either source or observation raised significantly
above the surface where there is significant difference in path
delay between the direct and ground (diffracted) waves.

V. SUMMARY AND CONCLUSION

In this paper, exact image theory is applied to improve
the convergence properties of the Sommerfeld-type integrals
contained in the spectral domain representation of the fields of
an infinitesimal electric dipole above an impedance surface. The
Sommerfeld expressions are written in terms of zeroth-order
Bessel functions and the reflection coefficients in the form of a
simple Laplace transform. Where necessary, terms are expanded
by partial fractions so they can be expressed in this form. Order
of integration is then exchanged and the inverse transform from
the spectral domain is performed analytically. The remaining
expressions consist of integrals whose integrand is dominated
by a decaying exponential and exhibits rapid convergence
qualities. Numerical evaluation of these integrals show good
agreement with results obtained by numerical evaluation of
the Sommerfeld-type integrals, while exhibiting a speed up
in the computation time of several orders of magnitude.

In conclusion, a brief discussion is appropriate on the appli-
cations of this exact image formulation to problems of practical
interest. For obstacles of moderate electric size, IE techniques
can be applied, however these techniques require evaluation
of the Green’s function of the problem. As is well known, the
Sommerfeld solution for the fields of an infinitesimal dipole
radiating above an impedance surface is, except for some
constant coefficients, the Green’s function of the impedance
half-space. Numerical evaluation of this Green’s function is
impractical due to the prohibitive computational time required
to evaluate the highly oscillatory Sommerfeld integrals for
each element of the IE matrix solution. IE techniques require
accurate evaluation of the Green’s function for all source and
observation positions and, therefore, approximate solutions to
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the Sommerfeld integrals also cannot be applied. As an ex-
ample of this, Fig. 9 shows the directed potential for a
vertical dipole generated by exact-image theory, compared to
the potential generated by evaluating the Sommerfeld integral
in an approximate manner using second-order saddle point.
As can be seen in Fig. 9, the expected degradation in the
accuracy of the saddle-point technique is observed as the ob-
servation position approaches the source and the assumption
of the large distance from source to observation point is vi-
olated, thus making it of no practical use in IE applications.
Note that for these curves, the normalized surface impedance
was and source and observation were placed
0.1m above the surface as might be found in a typical IE
formulation. Also, for this surface impedance value, the pole
is isolated from the saddle point for all observation positions,
thus making standard saddle-point techniques applicable [10].
Because of the discussed limitations, application of the Som-
merfeld solution to IE techniques has been impractical. The
significant improvement in the convergence properties of the
Sommerfeld solution by application of the exact-image trans-
forms, and the resulting speed up in the computation time
now makes the Sommerfeld solution of practical use in IE
applications.

APPENDIX

SPECTRAL REPRESENTATION OF THEFIELDS OF A SMALL

DIPOLE OF ARBITRARY ORIENTATION, RADIATING

ABOVE AN INFINITE IMPEDANCE SURFACE

In this section, the general formulation for the electric fields
of an infinitesimal electric dipole radiating above a homoge-
neous, infinite impedance surface is provided. The geometry of
the problem is as shown in Fig. 1. First, the spectral domain rep-
resentation of the dipole fields is given. A change of variables
is then applied and appropriate application of Bessel identities
will result in the final form of the dipole fields.

The spectral-domain representation for the total-electric
fields of a small-electric dipole radiating above an impedance
half-space, with orientationand carrying current, is given by
[26], as shown in (A.1) at the bottom of the next page. In (A.1),

with dependent variable, defined as

, and the branch cut defined as .

The polarization unit vectors and are given by

(A.2)

and

(A.3)

where indicates horizontal polarization [transverse electric
(TE) to ] and indicates vertical polarization [transverse mag-
netic (TM) to ], and .
The reflection coefficients and (horizontal and vertical
reflection coefficients, respectively) in (A.1) are defined as

(A.4)

where is the normalized surface impedance, . The
terms containing and , to the left of the signs in (A.1)
represent the effects of the impedance surface on the total field
and are designated as the diffracted fields, with those to the right
of the sign representing the direct dipole fields. The direct
dipole electric fields are more conveniently evaluated in the spa-
tial domain and are given in dyadic form by

(A.5)

where is the distance to the observation
point and is the distance to the source
location. Expanding (A.5) gives the more useful form of the
direct dipole fields or

(A.6)

where

and

To derive the Sommerfeld expressions for the diffracted elec-
tric fields above the impedance surface we first apply the stan-
dard change of variables to (A.1)

(A.7)

resulting in the following expression for the diffracted dipole
fields

(A.8)

In (A.8), and can be rewritten in terms
of the new variables as

(A.9)

and

(A.10)

Substituting (A.9) and (A.10) into (A.8) and recognizing that
, , and
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and by applying the following two
identities

(A.11)

(A.12)

the diffracted electric fields in (A.8) can be rewritten as

(A.13)

The expressions contained in (A.13) are of the form derived by
Sommerfeld and the integrals contained within are defined as
Sommerfeld type integrals.
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