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Abstract—Motivated by the need to cope with rapid and
random fluctuations of renewable generation, we presents a
model that augments the traditional Volt/VAR control through
switched controllers on a slow timescale with inverter control
on a fast timescale. The optimization problem is generally
nonconvex and therefore hard to solve. We propose a simple
convex relaxation and prove that it is exact provided over-
satisfaction of load is allowed. Hence Volt/VAR control over
radial networks is efficiently solvable. Simulations of a real-world
distribution circuit illustrates that the proposed inverter control
achieves significant improvement over the IEEE 1547 standard
in terms of power quality and power savings.

I. INTRODUCTION

Traditional VAR Control is achieved by reconfiguring shunt
capacitors, at a slow timescale, mainly to adapt to the gradual
changes of the aggregate load on a distribution system. Inter-
mittent sources such as solar and wind introduces rapid, large,
and random fluctuations in supply. As renewable penetration
increases, faster controllers such as inverters will be needed
to provide voltage regulation by controlling reactive power
flow in the circuit [1]. The advantage of an inverter relative
to a conventional circuit controllers, e.g. shunt capacitors,
is that they are much faster, can vary the supplied reactive
power continuously, and have very low operation costs. Large
photovoltaic systems are being deployed by many owners of
commercial buildings who have extensive rooftop sites on
large warehouses. This research was motivated by Southern
California Edison’s (SCE) plan to install 500MW of large
commercial rooftop PV plants (each a couple Megawatts) by
2015. In this scenario, centralized control scheme is feasible
due to relatively light requirement on telecommunication.

Volt/VAR control (VVC) in a distribution system has been
extensively studied in the literature. Most effort focus on
finding optimal switching schedules for shunt capacitors and
Under Load Tap Changer (ULTCs) to minimize system losses
[2], [3], [4]. Inverter control have been considered in some
recent works, e.g., [5], [6]. In [5], the authors consider
centralized reactive power flow control of inverters and use
DC power flow approximations. Although recent studies show
that deployment of Conservation Voltage Reduction (CVR)
plans on distribution feeders of United States can provide a
3.04% reduction in the annual national energy consumption
[7], almost all existing VVC solutions in the literature ignore
this and only aim to minimize systems losses.

In this paper, we formulate a VCC problem that minimizes
both the power loss and the power consumption by reducing
a weighted average of voltages across the feeder (Section II).
The overall two-timescale optimization over both switching of
the shunt capacitors and ULTCs and the VAR control at the
inverters can be formulated as a dynamic program, but here
we focus only on the fast timescale control of the inverters.
The optimization problem over the inverters is generally a
static nonconvex problem and therefore hard to solve. In
Section III, we propose a simple convex relaxation that can
be solved very efficiently. We prove that the relaxation is
exact provided over satisfaction of load is allowed, i.e., any
optimal solution of the relaxed problem is optimal for the
original (possibly nonconvex) VCC problem. This implies that
the optimal power flow problem over a tree network can be
efficiently solved. A similar observation through duality with
a different formulation is independently made in [8], [9]. In
Section IV, we present a simulation study of a real-world
distribution circuit in the Southern California Edison’s service
area and compare the performance of the proposed method
and the IEEE 1547 standard. Inverters under current IEEE
1547 are operated at unity power factor and do not participate
in VAR control. With our proposed scheme, not only is
power consumption reduced significantly, more importantly,
the circuit stays much less time in “infeasible regions” where
primary voltage and VAR flow constraints are violated. Hence
optimal inverter VAR control can significantly improve power
quality as well as saving energy consumption.

II. PROBLEM FORMULATION

In this section, we describe our model and formulate the
optimal Volt/VAR control (VCC) problem.

A. Two timescales

As mentioned earlier, there are two types of control devices
with two different control timescales: shunt capacitors and the
voltage controllers that are controlled on a slow timescale,
say, hourly, and inverters that can be controlled on a fast
timescale, say, minutes. In practice, the switched controllers
are typically re-configured only a few times each day due to
their limited life cycle. As the aggregate load changes slowly,
the slow timescale control has been sufficient to provide
voltage support. As renewable penetration such as solar PV
and wind generation increases, fast timescale control of the
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Fig. 1. Two-timescale discretization of a day for switched controllers and
inverters.

inverters will become indispensable in order to adapt to the
large, rapid, and random fluctuations of their output.

Hence, in our model, we divide each day into M slots and
index these slots by T . Each of these M slots is further divided
into N slots indexed by t, as shown in Figure 1. For instance
we can choose each T -slot to be an hour and each t-slot a
minute, i.e. M = 24, N = 60. We will assume that the state
of the network (the voltages, real and reactive power at each
bus), and the input to the network (real and reactive power
generated or consumed at each bus) remain unchanged within
each t-slot, and may change only from t to t+ 1. As we will
explain below, the inverter control will be applied for each t to
match renewable output fluctuations, and the configuration of
the shunt capacitors and the substation voltage will be adjusted
for each T -slot to match load fluctuations.

B. Power flow equations and constraints

We will use the network model (Dist-Flow branch equa-
tions) first introduced in [2]. Let G({0} ∪ V,E) be a graph
representing a radial distribution circuit. Each node in {0}∪V
is a bus and each link in E is a line. We index the nodes by
i = 0, 1, . . . , |V |.

Node 0 denotes the substation bus and other nodes in V
denote branch buses. Let vi(t), i ≥ 0, denote the square of
the voltage magnitude at node i at time t. Node 0 is special in
that its voltage v0 is adjusted on the slow timescale T while
other voltages vi(t), i ≥ 1, are adjusted every t.

There are two types of nodes in V that generate reactive
power. Let Vc be the set of nodes with switched shunt
capacitors that are controlled at the slow timescale T , and the
remaining nodes in V \Vc have inverters that are controlled at
the fast timescale t. For notational simplicity only, we assume
without loss of generality that each node can have either a
shunt capacitor or an inverter, but not both nor neither. Let
pgi (t) and qgi (t) be the real and reactive power generation,
respectively, at node i at time t. For nodes i ∈ V \ Vc, pgi (t)
represent real power generated by renewable sources such as
solar PV that are connected to the grid via inverters. For nodes
i ∈ Vc that has (only) switched shunt capacitors, pgi (t) ≡ 0
for all t. For each i ∈ V , let pci (t) and qci (t) be the real
and reactive power demand, respectively, at time t. If there
is no load at node i, we assume pci (t) ≡ qci (t) ≡ 0 for
all t. Here, pci (t), q

c
i (t), and pgi (t) are assumed to be given

quantities, whereas the reactive power generated qgi (t) are the
control variables.

The shunt capacitor and inverter settings qgi (t), i ≥ 1,
and the substation voltage v0(t), together with the inputs

(pci (t), p
g
i (t), q

c
i (t)) determine the voltages and real and reac-

tive power flows on the network. Let Pij(t) and Qij(t) be the
real and reactive power flows from nodes i to j over link (i, j).
Then, from [2], these variables satisfy the following recursion
(Dist-Flow equations): for each link (i, j) in the distribution
circuit,

Pij(t) =
∑

k:(j,k)∈E

Pjk(t) + rij
P 2
ij(t) +Q2

ij(t)

vi(t)

+pcj(t)− p
g
j (t) (1)

Qij(t) =
∑

k:(j,k)∈E

Qjk(t) + xij
P 2
ij(t) +Q2

ij(t)

vi(t)

+qcj(t)− q
g
j (t) (2)

vj(t) = vi(t)− 2(rijPij(t) + xijQij(t))

+(r2
ij + x2

ij)
P 2
ij(t) +Q2

ij(t)

vj(t)
(3)

The end points of the feeder can be modeled through the
boundary condition that there is zero power flow downstream
from them. For this purpose, all the leaf nodes in our model
G = ({0} ∪ V,E) and the edges incident on these leaf nodes
are actually artificial nodes and edges added to each leaf node
(bus) in the real distribution circuit. Denote by V ′ ⊂ V the
set of leaf nodes. The the boundary constraints will force the
real and reactive power flows to be zero on each edge incident
to V ′: for all t

∀(i, j) ∈ E with j ∈ V ′ : Pij(t) = Qij(t) = 0 (4)

The primary purpose of VVC on distribution circuits is to
maintain voltages in an acceptable range at customer level
without creating excessive VAR demand on transmission and
subtransmission systems under all operating conditions. This
is formulated as constraints on the voltage variables vi: for all
i 6∈ V ′ for all t,

v ≤ vi(t) ≤ v (5)

The total reactive power demand on the feeder is also con-
strained to within a range, modeled by

Q
0
(t) ≤

∑
j:(0,j)∈E Q0j(t) ≤ Q0(t) (6)

The lower limit Q
0
(t) and the upper limit Q0(t) on the reactive

power flow
∑

j Q0j(t) through substation need to be carefully
set for different seasons and different times of day considering
transmission VAR emergency cases, but this is outside the
scope of this paper. For our purpose, we assume these limits
are given.

C. Switched controller model

We consider switched shunt capacitors and substation Under
Load Tap Changer (ULTC) in our VVC scheme. Shunt capac-
itors generate reactive power when they are on. Since shunt
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capacitor settings are changed on slow timescale for each T ,
we represent this by:

qgi (t) = ci(T )qi ∀i ∈ Vc, t ∈ T

where ci(T ) ∈ {0, 1} is the switching control for period T .
That is, the capacitor at node i generates reactive power of qi
if it is on and no reactive power if it is off. The substation
ULTC regulates the voltage v0(T ) at the substation bus in
discrete steps corresponding to different tap levels. It is also
controlled at the slow timescale.

Let S denote the set of possible states for the discrete
controllers (v0(T ), ci(T ),∀i ∈ Vc). With k number of taps
for the substation’s ULTC and m number of switched ca-
pacitors, we will have |S| = k × 2m different states. Let
s(T ) := (v0(T ), c(T )) := (v0(T ), ci(t), i ∈ Vc) be the control
at time T . Then s(T ) ∈ S. The traditional Volt/VAR control
is to choose s(T ) so as to minimize a certain cost function
of the form J(s)+C(s′, s) where C(s′, s) represents the cost
of switching from the configuration s′ in the previous time
period to the new configuration s in the current period, and
J(s) represents the cost in the new state s, e.g., the loss in
the distribution circuit. Hence, the slow timescale control can
be formulated as the following optimization problem:

min
s(T )∈S

∑
T=1,...,M

{J(s(T )) + C(s(T − 1), s(T ))}

Given the cost functions J and C, this can be solved using
dynamic programming.

Typically each distribution feeder has a few number of
capacitors and hence searching through the state space for
the optimal setting of the discrete controllers should be com-
putationally tractable at the slow timescale with the current
processing power1.

D. Inverter model

Besides the slow timescale control, nodes i ∈ V \ Vc have
inverters that are controlled at the fast timescale t. We use
the inverter model of [5], [11]. For our purposes, the main
implication is that the magnitude of the reactive power qgi (t)
generated at an inverter is upper bounded by a quantity that
depends on the real power generated at node i: for all i ∈
V \ Vc,

|qgi (t)| ≤ qi(t) (7)

where the upper bound qi(t) :=

√
s2
i − (pgi (t))

2 is assumed
given for each t. 2 Here si represents the rated apparent power
capacity of PV panel at bus i and pgi (t) is the real power
generated at time t.

1For a large number of discrete controllers, we could consider reactive
power injection of capacitors and the substation voltage as continuous vari-
ables, find the optimal solution of the resulting optimization problem and then
determine On/Off and tap setting for the switched capacitors and substation
ULTC by projecting the solution to the discrete state space using thresholding.

2There is no loss of generality by assuming all nodes not in Vc have
inverters, because if node i has neither shunt capacitors nor inverter, we can
assume i ∈ V \ Vc with qi(t) = 0 for all t.

E. Real power consumption model

We will now approximate total real power consumption of
loads as a function of voltage on the feeder. Recall that vi
represents the square of the voltage magnitude at node i. A
model of a voltage-dependent load pci is the following: for
0 ≤ n ≤ 2

pci (t) = pci · (vi(t))ni/2 (8)
qci (t) = qci · (vi(t))ni/2 (9)

where
√
vi(t) is the per unit value of the load’s voltage

magnitude at time t, and the constants pci and qci are the real
and reactive power consumed by the load at the reference
voltage, assumed given.3 Three special cases are of particular
interest: n = 0 for constant power loads, n = 1 for constant
current loads, and n = 2 for constant impedance loads.

The real power consumption at a load at per unit volt-
age vi(t) can be approximated as: pci · (vi(t))ni/2 ≈
pci
(
1 + ni

2 (vi(t)− 1)
)
=
∑

i αivi + constant, where αi =
(ni/2)p

c
i and the constant can be neglected in the power

consumption minimization (see below). Here we have used
the fact that for all loads, vi(t) ≈ 1. It is also common to
model a load as a combination of above three models:

pci (t) = pci

(
a0
i + a1

i

√
vi(t) + a2

i vi(t)
)

qci (t) = qci

(
a0
i + a1

i

√
vi(t) + a2

i vi(t)
)

where a0
i +a

1
i +a

2
i = 1. The real power consumption of such a

load can again be approximated as
∑

i αivi + constant, where
αi = pci

(
a1
i /2 + a2

i

)
. Hence for our purposes, minimizing

real power consumption (CVR) is equivalent to minimizing
a weighted sum of the vi values over all voltage dependent
loads.

F. VVC optimization problem

We are now ready to state the the VVC optimization
problem.

As explained in Section II-C, the switched controllers are
controlled at the timescale T . Within each period T , the
control s(T ) is fixed and the reactive power qgi (t), i ∈ V \ Vc
generated by inverters are adjusted at the fast timescale t ∈ T .
The daily operation is then represented by a hierarchical
optimization problem, where the slow timescale control solves

min
s(T )∈S

∑
T=1,...,M

{J(s(T )) + C(s(T − 1), s(T ))} (10)

and the cost J(s(T )) in period T is the sum of cost J(s(T ), t)
in each period t ∈ T under the fast timescale control:

J(s(T )) =
∑
t∈T

J(s(T ), t)

Here, for each t, the optimal cost J(s(T ), t) is the sum of the
loss in the distribution circuit and the weighted voltages as

3If there is no load at node i, then pci = qci = 0.
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explained in Section II-E: given the switched control s(T ) =
(v0(T ), c(T )),

J(ST , t) = min
∑

(i,j)∈E

rij
P 2
ij(t) +Q2

ij(t)

vi(t)
+
∑
i

αivi(t)

(11)
subject to (18)–(9) (12)

v0(t) = v0(T ) (13)
qgi (t) = ci(T )qi, i ∈ Vc (14)

over P (t), Q(t), v(t), qg(t) (15)

In this paper, we focus on the fast timescale inverter control,
i.e., we assume a given s(T ) and consider solving (11)–(15)
for a fixed t ∈ T .

III. FAST-TIMESCALE CONTROL: INVERTER OPTIMIZATION

In this section we propose a convex relaxation for the
problem (11)–(15) that is solved at each time t within a
larger time period T , given a switched control s(T ). Since
the problem is solved for each time t separately, given s(T ),
we will drop t from the notation in this section.

Define the variables:

∀(i, j) ∈ E : `ij =
P 2
ij +Q2

ij

vi
(16)

Note that this variable corresponds to the square of the current
magnitude at each link, i.e. |Iij |2, that appears in the power
loss and voltage drop equations. If we substitute (16) into (11)–
(15), then, with the additional optimization variables `ij , the
objective function becomes linear and all constraints become
linear except the equality constraint (16). This nonlinear
equality constraint is in general the source of non-convexity,
which we propose to relax (21). This will be equivalent to
relaxing the magnitude of currents on all links. We will later
prove these inequalities will be tight in the optimal solution.

Given the switched control s(T ) = (v0(T ), c(T )), consider
the following relaxation of the original problem (11)–(15),
dropping t from the notation:

minimize
∑

(i,j)∈E

rij`ij +
∑
i

αivi (17)

subject to Pij =
∑

k:(j,k)∈E

Pjk + rij`ij + pcj − p
g
j (18)

Qij =
∑

k:(j,k)∈E

Qjk + xij`ij + qcj − q
g
j (19)

vj = vi − 2(rijPij + xijQij) + (r2
ij + x2

ij)`ij
(20)

∀(i, j) ∈ E : `ij ≥
P 2
ij +Q2

ij

vi
(21)

pc
i
≤ pci , qc

i
≤ qci (22)

pg
i
≤ pgi ≤ p

g
i , qg

i
≤ qgi ≤ q

g
i (23)

vi ≤ vi ≤ vi (24)
over X := (P,Q, pg, pc, qg, qc, v, `) (25)

Here, v0 = v0(T ), q
g
i = ci(T )qi,∀i ∈ Vc are determined by

the slow timescale control, and ∀(i, j) with j ∈ V ′ : Pij =
Qij = 0. We have made two relaxations. First the equalities
in the original problem are relaxed to inequalities in (21).
Second we allow over-satisfaction of all active and reactive
loads (22)–(23). This assumption has been made in several
other works (see [9] and references therein for a justification),
as it is expected to reach to the same solution point with and
without the over-satisfaction assumption for loads. Our key
result is

Theorem 1: The relaxed problem (17)–(25) is convex.
Moreover, it is exact, i.e., an optimal solution of (17)–(25)
is also optimal for the original problem (11)–(15).

Proof: (Sketch) We first note that the relaxed problem is a
Second Order Cone Program (SOCP) and hence convex, since
the non-linear inequalities (21) can be written as the following
second order cone constraint:∥∥∥∥∥∥

2Pij

2Qij

`ij − vi

∥∥∥∥∥∥
2

≤ `ij + vi

To prove that the relaxation is exact, it suffices to show
that any optimal solution of (17)–(25) has equality in
(21). Assume for the sake of contradiction that X∗ :=
(P ∗, Q∗, pg∗, pc∗, qg∗, qc∗, v∗, `∗) is optimal but (i, j) ∈ E has
strict inequality, i.e.,

`∗ij >
P ∗ij

2 +Q∗ij
2

v∗i

Now for some ε > 0, consider another point X̃ =
(P̃ , Q̃, p̃g, p̃c, q̃g, q̃c, ṽ, ˜̀) defined by:

ṽ = v∗ , p̃g = p∗g , q̃g = q∗g

˜̀
ij = `∗ij − ε , ˜̀−ij = `∗−ij

P̃ij = P ∗ij − rijε/2 , P̃−ij = P ∗−ij

Q̃ij = Q∗ij − xijε/2 , Q̃−ij = Q∗−ij

p̃ci = p∗ci + rijε/2 , p̃cj = p∗cj + rijε/2 , p̃c−(i,j) = p∗c−(i,j)

q̃ci = q∗ci + xijε/2 , q̃cj = q∗cj + xijε/2 , q̃c−(i,j) = q∗c−(i,j)

where the negative indices mean excluding elements from a
vector. It can be verified that X̃ satisfies all constraints (18–25)
and hence is a feasible point. Moreover, since ˜̀

ij = `∗ij − ε,
the X̃ has a strictly smaller objective value than X∗. This
contradicts the optimality of X∗.

Theorem 1 says that the optimal power flow problem over
a radial network can be efficiently solved, provided over-
satisfaction of load is allowed. A similar observation through
duality with a different formulation is independently made in
[8], [9]. Taylor [13] has proposed a SOCP relaxation for an
approximation of DistFlow equations in radial networks, by
omitting the last non-liner term in voltage drop equations (3).
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Fig. 2. Schematic diagram of a distribution feeder with high penetration of Photovoltaics. Bus No. 1 is the substation bus and the 6 loads attached to it
model other feeders on this substation.

TABLE I
NETWORK OF FIG. 2: LINE IMPEDANCES, PEAK SPOT LOAD KVA, CAPACITORS AND PV GENERATION’S NAMEPLATE RATINGS.

Network Data
Line Data Line Data Line Data Load Data Load Data PV Generators

From To R X From To R X From To R X Bus Peak Bus Peak Bus Nameplate
Bus. Bus. (Ω) (Ω) Bus. Bus. (Ω) (Ω) Bus. Bus. (Ω) (Ω) No. MVA No. MVAR No. Capacity

1 2 0.259 0.808 8 41 0.107 0.031 21 22 0.198 0.046 1 30 34 0.2
2 13 0 0 8 35 0.076 0.015 22 23 0 0 11 0.67 36 0.27 13 1.5MW
2 3 0.031 0.092 8 9 0.031 0.031 27 31 0.046 0.015 12 0.45 38 0.45 17 0.4MW
3 4 0.046 0.092 9 10 0.015 0.015 27 28 0.107 0.031 14 0.89 39 1.34 19 1.5 MW
3 14 0.092 0.031 9 42 0.153 0.046 28 29 0.107 0.031 16 0.07 40 0.13 23 1 MW
3 15 0.214 0.046 10 11 0.107 0.076 29 30 0.061 0.015 18 0.67 41 0.67 24 2 MW
4 20 0.336 0.061 10 46 0.229 0.122 32 33 0.046 0.015 21 0.45 42 0.13
4 5 0.107 0.183 11 47 0.031 0.015 33 34 0.031 0 22 2.23 44 0.45 Shunt Capacitors
5 26 0.061 0.015 11 12 0.076 0.046 35 36 0.076 0.015 25 0.45 45 0.2 Bus Nameplate
5 6 0.015 0.031 15 18 0.046 0.015 35 37 0.076 0.046 26 0.2 46 0.45 No. Capacity
6 27 0.168 0.061 15 16 0.107 0.015 35 38 0.107 0.015 28 0.13
6 7 0.031 0.046 16 17 0 0 42 43 0.061 0.015 29 0.13 Base Voltage (KV) = 12.35 1 6000 KVAR
7 32 0.076 0.015 18 19 0 0 43 44 0.061 0.015 30 0.2 Base KVA = 1000 3 1200 KVAR
7 8 0.015 0.015 20 21 0.122 0.092 43 45 0.061 0.015 31 0.07 Substation Voltage = 12.35 37 1800 KVAR
8 40 0.046 0.015 20 25 0.214 0.046 32 0.13 47 1800 KVAR
8 39 0.244 0.046 21 24 0 0 33 0.27

IV. SIMULATION RESULTS

In this section we present an example to illustrate the
effectiveness of our fast-timescale VVC control, compared
with the current PV integration standards IEEE 1547 which
requires all the inverters to operate at unity power factor and
not participate in VAR control of the distribution circuit [11].

We use the 47-bus distribution feeder shown in Fig. 2
in our simulations. This circuit is a simplified model of an
industrial distribution feeder of SCE with high penetration of
renewables, integrated with 5 large PV plants. The network
data, including line impedances, peak MVA demand of loads,
and the nameplate capacity of the shunt capacitors and the
PV generations are listed in table I. For all the loads in this
industrial area, we assume a constant power factor of 0.8.

To focus on the fast-timescale control, we fix the trajectory
of slow-timescale control (v0(T ), c(T ), T = 1, . . . ,M) to be
the settings used in practice, and only solve problem (11)–(12)
for each time t. We use real data for load and solar generation
over the course of a year. Using minute based data for one year,
the empirical joint probability distribution of the load and solar

Fig. 3. Joint distribution of the normalized solar output level and the
normalized load level

output levels is shown in Figure 3. We have used a hot color
scale, with hotter colors representing a higher probability for
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Fig. 4. Overall power savings in MW, for different load and solar output
levels assuming a 3% voltage drop tolerance.

the system to spend time in. The axes are scaled to the peak
power demand and total capacity of installed PV generation,
respectively. We assume ni = 1 for all loads, corresponding
to a constant current load model for this feeder. We further
constraint the reactive power flow through substation bus to
be less than 2MVAR at all times. To compare the cost of
the operation under the IEEE 1547 standard and our proposed
algorithm, we choose a fixed voltage drop tolerance.

We implemented the proposed convex relaxation of the
original VVC optimization problem and solved it using CVX
optimization toolbox [10] in Matlab. In all our simulations,
we checked the inequality constraint in condition (21) for
optimal solutions of the relaxed problem and confirmed that
the inequality constraints were all active. Figure 4 shows the
difference in the objective function between current standard
IEEE 1547 standard and our proposed solution for different
load and solar output levels, given a 3% voltage drop tolerance.
This can be interpreted as the overall power savings achieved
by optimal control of inverter’s VAR dispatch. Interestingly,
in typical loading conditions, optimal inverter control can
save more than 200KW in overall power consumption, even
at nights. The missing region in figure 4 is the set of the
infeasible settings of load and solar for the IEEE 1547
operation mode in the relaxed problem formulation, therefore
also infeasible for the original problem. The feasible operation
region for the proposed method is considerably a superset
of that of IEEE 1547 operation mode. This demonstrates
significant power qulity benefits achieved by optimal inverter
control. Table II summarizes the overall time that the feeder
can save not spending outside feasible region, and the overall
operation cost benefits for the whole year, for different voltage
drop tolerances. The results show more than 3% savings
achieved by optimal reactive power dispatch for the inverters.

V. CONCLUSION

Expanding renewable capacity of today’s distribution cir-
cuits requires design of more advanced and efficient opera-
tion and control schemes. We proposed a general hierarchial

TABLE II
SIMULATION RESULTS FOR SOME VOLTAGE TOLERANCE THRESHOLDS

Voltage Drop Annual Hours Saved Spending Average Power
Tolerance Outside Feasibility Region Saving

3% 842.9h 3.93%
4% 160.7h 3.67%
5% 14.5h 3.62%

framework for optimal reactive power dispatch of inverters
and switched controllers in radial networks by considering
different time scale of variations in load and the output of
intermittent renewable sources. We introduced a centralized
solution for the fast time-scale subproblem and illustrated its
effectiveness using simulations on a typical distribution feeders
with high penetration of Photovoltaics and demonstrating
significant power quality and efficiency benefits.

ACKNOWLEDGMENT

We would like to thank Jeff Gooding, Russel Neal, Percy
Haralson, Michael Montoya, Bryan Pham, Robert Yinger and
Marshall Parsons in the Advanced Technology Division of the
Southern California Edison’s (SCE) Transmission and Distri-
bution Business Unit (TDBU) for multiple fruitful discussions.

REFERENCES

[1] A. Ipakchi and F. Albuyeh, “Grid of the future”, IEEE Power and Energy
Magazine, pp. 52-62, Mar. 2009.

[2] Mesut E. Baran and Felix F Wu, “Optimal sizing of capacitors placed on
a radial distribution system,” IEEE Transactions on Power Delivery, Vol.
4, No. 1, January 1989.

[3] J. J. Grainger, S. Civanlar,“Volt/Var Control on Distribution Systems with
Lateral Branches Using Switched Capacitors and Voltage Regulators, Part
I, II, III, IEEE Transactions on Power Apparatus and Systems, vol.PAS-
104, no.11, pp.3278-3297, Nov. 1985.

[4] T. Niknam, A. M. Ranjbar, A. R. Shirani, “Impact of distributed genera-
tion on Volt/Var control in distribution networks,” Power Tech Conference
Proceedings, 2003 IEEE Bologna , vol.3, no., pp. 7 pp. Vol.3, 23-26 June
2003.
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