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Abstract— When using appearance-based recognition
for self-localization of mobile robots, the images ob-
tained during the exploration of the environment need
to be efficiently stored in the memory. PCA offers
means for representing the images in a low-dimensional
subspace, which allows for efficient matching and recog-
nition. For active exploration it is necessary to use an
incremental method for the computation of the sub-
space. While such methods have been considered be-
fore, only the on-line construction of eigenvectors has
been addressed. Representations of the images in the
subspace were computed only after the final subspace
had been built, requiring that all the images were kept
in the memory. In this paper we propose to use an in-
cremental PCA algorithm with the updating of partial
image representations in a way that allows the robot
to discard the acquired images immediately after the
update. Such a model is open-ended, meaning that we
can easily update it with new images. We show that the
performance of the proposed method is comparable to
the performance of the batch method in terms of com-
pression, computational cost and the precision of local-
ization. We also show that by applying the repetitive
learning, the subspace converges to that constructed
with the batch method.

Keywords—Robot localization, on-line visual learning,
PCA updating, view-based robot localization, repeti-
tive learning.

I. INTRODUCTION

In this paper we approach the problem of mobile
robot localization as a task of recognizing a panoramic
view from a set of panoramic views acquired in the
learning phase (Figure 1). The main motivation for
applying appearance-based recognition to the problem
of localization is the analogy between recognizing an
object in the scene and recognizing the environment.
In contrast to object recognition, the target to be rec-
ognized in the case of localization is not only a part of
the image (on a cluttered background), but rather the
complete image.

If we use panoramic images as representations of
locations, the views taken from nearby positions and
oriented in the same way will be strongly correlated
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as it is the case when looking at an object from two
nearby viewpoints. This allows us not only to design
an efficient strategy based on correlation, but also to
build a compact representation that eliminates redun-
dancy.

For building a compact model from a set of images,
the approach which constructs a space of eigenvectors
proved itself as a viable one [1], [2]. Therefore, several
researchers also in the area of robotics and computer
vision developed working localization algorithms and
tested them in real-world environments [3], [4], [5], [6].
This approach is basically a two-stage procedure: in
the learning stage, several panoramic snapshots are ac-
quired which together form a good depiction of the en-
vironment. Then, an orthonormal basis is computed
(Figure 2), which allows us to represent every image of
the training set with only a few parameters. Further-
more, intermediate images can be approximated by
a spline interpolation of parameters. In the localiza-
tion stage, the robot is acquiring momentary images,
which we then project into the low-dimensional sub-
space. We search for the nearest point in the subspace,
and associate it to the robot’s presumed location.

The approach applied in the standard way, however,
has its drawbacks. One of them is the fact that the
localization stage is strictly separated from the learn-
ing stage. In the learning stage we capture all images
first, and only then can we construct the model. The
model built in this way can not be modified unless we
keep the original images. To update the model with
new images, we have to construct a new one from the
scratch. Therefore, standard approaches are not op-
timal for performing simultaneous learning (environ-
ment exploration) and localization (SLAM [7]). Fur-
thermore, the original images take a lot of storage.

To overcome these problems, we can instead apply
an incremental method for building the subspace. In-
cremental computation of eigenvectors has been con-
sidered before [8], [9], [10], [11], [12]. However, for a
method to be completely on-line, we have to simul-
taneously update both the eigenvectors and the low-



Fig. 1. Three panoramic images from the sequence taken in-
side a laboratory. The images have been transformed into the
cylindrical form.

dimensional representations of images. In this way, we
can discard the original images immediately after the
updating of the subspace. One has to be aware, how-
ever, that the low-dimensional representations of the
images are only approximations of the originals.

In this paper we propose to use an incremental PCA
algorithm with the updating of partial image repre-
sentations without keeping the original images. We
discuss how to update the representation with a new
observation in order to keep the overall reconstruction
error bounded. We analyze how the incremental build-
ing influences the accuracy of the representation and
compare it to the batch method. We show that the
performance of the proposed method is comparable to
the performance of the batch method in terms of com-
pression, computational cost, and, most importantly,
precision of localization. We also examine the possi-
bility of improving the model with repetitive learning.

The paper is organized as follows. In Section 2 we
briefly review the standard procedure for building the
space of eigenvectors. In Section 3 we first describe
the incremental method for computing the space of
eigenvectors. We then introduce the method for the
on-line updating of the image representations and dis-
cuss how to efficiently update the model. In Section 4
we give a comparison to the batch method, examine
the improvement obtained by repetitive learning, and
test the localization on a large database. We conclude
with a summary and an outline of the work in progress.

II. PCA

In this section we briefly outline the standard proce-
dure of building the space of eigenvectors from a set of
training images. We represent images from the train-
ing set as normalized image vectors x; € R™*1: § =
1...n, where m is the number of pixels in the image
and n is the number of images.

Fig. 2. First three eigenvectors (eigenimages) created by PCA
from the laboratory sequence (Figure 1).

The most straightforward way for computing the
eigensystem is by solving the SVD of the covariance
matrix C' € R™*™ computed as

where x = 1 3" | x; is the mean image vector.

The eigenvectors u;, ¢ = 1...n corresponding to
non-zero eigenvalues of the covariance matrix span a
subspace of a maximum of min(m,n) dimensions. If
we sort the eigenvectors according to the correspond-
ing eigenvalues, we get an ordering which reflects the
principal directions of variance in the learning set of
images. We can therefore choose a subset of only &
eigenvectors with the largest eigenvalues to be included
in the model. Each image can thus be optimally ap-
proximated in the least-squares sense up to the degree
of error by taking into account the k£ most informa-
tive eigenvectors only. Namely, every model image x;
projects into some point a; in the k-dimensional sub-
space, spanned by the selected eigenvectors [1].

III. INCREMENTAL PCA

To overcome the inability of the batch method to
progressively acquire environment representation, and
the high storage demands, several algorithms were de-
veloped that allow for an incremental building of the
subspace of eigenvectors [8], [9], [10], [11], [12]. It was
shown in [12] that it is possible to merge two sets, (U,
A, %) and (V, p, ¥), where (U, A) and (V, p) are
(eigenvectors, eigenvalues) matrix pairs, and X and §
are mean vectors, into a single set (W, w, z) that forms
the new representation of all the input data, where W
is a novel set of eigenvectors, w the novel set of eigen-
values and Z the new average vector.

A special case of such merging is updating the eigen-
vectors, eigenvalues, and mean value by a single new



image. We assume we have already built a set of eigen-
vectors u;, j = 1...p, after having used the images x;,
i =1...n as an input. The corresponding eigenvalues
are A and the mean image is X. We would like to up-
date this information to take into account a new image
Xn+1-

Here we briefly summarize the method described in
[11]. First, we update the mean:

- 1 -
% = n+1(nx+xn+1) . (2)

The covariance matrix can be updated as well:

n n
= C
n+1 +(n+1

/
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We now have to update the set of eigenvectors in
order to reflect the additional image x,41. Since the
residual vector h,, 11 = (Ua,4+1 +X) —Xp,4+1 is orthogo-
nal to each eigenvector in U, its normalized equivalent
is a suitable candidate for the additional vector in the
basis:

hyii .
hypp =< [hetall if [[hns1fl2 # 0 . (4)
0 otherwise
We obtain the new m x (k+1) matrix of eigenvectors
U’ by appending h to the eigenvectors U and rotating
them:

lJ’::[U'ﬁn+1]}%, (5)

where R is a (k+1) x (k+1) rotation matrix. R is the
solution to the eigenproblem of the following form:

DR=RA . (6)

Dis a (k+1) x (k+ 1) matrix consisting of known
components of A and x,1, and A’ is a diagonal ma-
trix of the new eigenvalues. According to [11], we can
construct D as

n A O n aa' ~va
D= |:0T O]+7(n+1)2[7aT 72}7(7)

where v = ﬁn+1(xn+1 —%)and a=U"(x,41 — X).

There are other ways for constructing D. However,
only the method described in [11] allows for the up-
dating of mean. Other authors [13], [8], assume the
mean vector is at the origin.

A. Updating image representations

If we want to perform a true on-line incremental
algorithm that does not require keeping the original
images in the memory until the model has been con-
structed, we have to handle the image representations
accordingly. Note that in the process of learning, af-
ter we update the subset of eigenvectors, we also have
to update all of the representations of all the images
according to the new basis set. This is due to the fact
that these approximations are the only form in which
we store the images throughout the process. Our con-
tribution focuses on how to update and preserve these
approximations.

During the process of learning at a discrete time
n, we have learnt n images x;, ¢ = 1...n, which has
produced a space of k eigenvectors u;, j = 1...k.
The images are presented with coefficient vectors a;(,,),
1=1...n.

When a new observation x,41 arrives, we compute
the new mean X’ using (2), we construct the interme-
diate matrix D (7) and solve the eigenproblem (6).
Eq. (5) then produces an updated subspace base U,
but with no image representations.

In order to remap the coefficients a;(,,) into this new
subspace, we first have to reconstruct each image using
the old eigenvectors U :

Xin) = Uayy +X, i=1...n, (8)

and project it to the new subspace of eigenvectors:

a1y = (U) (xiny) —X'), i=1...

where X, 1(n) = Xn41-
We can combine (5) and (8) into (9) and compute
the new coefficients directly:

Qj(n
O i U R R

where 7 is a vector computed only once for all coeffi-
cients as

n=[Uhu] &-%). (1)

The transformations described above yield a model
that represents the input images with the same accu-
racy as the previous one, therefore we can now discard
the old subspace and the coefficients that represented
the images in it. x,41 is represented accurately as
well, so we can safely discard it. The representation
of all n + 1 images is possible because the subspace is
spanned by k + 1 eigenvectors, which is an increase of
the model’s dimensionality.



Since we would often like to keep the size of the rep-
resentation low, we can decide to keep the dimension-
ality k. We do this by retaining the first k eigenvectors
of U’ (the eigenvectors are sorted by a decreasing order
of the eigenvalues). This, however, results in a reduc-
tion of the accuracy of the representations. In order
to balance the storage requirements with the level of
accuracy, we need a criterion which reflects the cost of
preservation of the dimensionality. Authors [11] have
used values, such us a fraction of the smallest eigen-
value in the sum of all eigenvalues. However, since in
our method each image influences the development of
the model separately when it is added, we propose two
additional criteria.

We decide to preserve the dimensionality if either
o the new observation can be represented with the cur-
rent (old) set of eigenvectors satisfactorily, or
« the overall increase of error does not exceed an ab-
solute threshold.

For the first criterion, we compute the size of the
residual vector h,; when we project x,41 into the
subspace spanned by U. If the size of the residual ex-
ceeds an absolute threshold, we conclude the increase
of the subspace is justified.

The second criterion is based on the sum of the re-
construction errors of the image representations. If
this sum exceeds a threshold, this indicates that dis-
carding the new dimension would significantly degrade
the approximation of the images. To compute this,
we would have to subtract each image x;(,) from the
approximation X;(,41) obtained by preserving the di-
mensionality, and sum the results for all k. But since
the difference is only in the last eigenimage,

k k+1
Xi(n) = Z ulaé(m = Z ufali<n+1) = Xi(n+1) T u;c+1af(<;il)
=1 =1
(12)
it therefore holds
_ .kt
AX; = Xi(n) = Xi(n41) = Wiy 100,50 1) 5 (13)
where af(';i_l) is the component k +1 of vector a;(,41)-
. k+1
Since |uj | = 1, then |[Ax;| = |ai(Z+1)\. The sum
Z?:ll |a§(21+1)| yields the required criterion value.

The computation of this criterion value can be de-
creased even further. By definition, each eigenvalue
A; represents the variance of the n coefficients in the
direction of eigenvector u;:

A =

S|

> (@))?. (14)
=1

Hence, in our case we can use the value (n +
1)Ait1(n+1) as our criterion value.
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Fig. 3. Comparison of the level of representation for batch
method and incremental method.

IV. EXPERIMENTAL RESULTS

We performed two sets of experiments. First we
tested the performance of the proposed method. We
compared the results with those of the batch method.
We investigated the effects of the model updating on
the representations of the images in the model and
analyzed the effect of repetitive learning.

The second set of experiments shows the perfor-
mance of the method in the real-world application,
where we acquire images at known locations and lo-
calize those taken at unknown locations.

A. Performance of the incremental method

We captured the input images for this set of exper-
iments with a Magellan Pro mobile robot equipped
with an omnidirectional sensor. The set contained 150
images. Each image was oriented in the same direc-
tion.

A useful measure for the performance of the PCA is
the compression ratio with respect to the reconstruc-
tion error. Fig. 3 shows the comparison between the
overall reconstruction error for the batch method and
the incremental method. In the experiment we used
135 input images. Using the batch method, we did a
single run of batch PCA on a set of input images to
compute all eigenvectors. Then we discarded the least
significant eigenvectors one by one. At each iteration,
we computed the overall reconstruction error.

When computing the same measure for the incre-
mental method, we forced the method to produce a
certain number of resulting eigenvectors. Initially, we
set the threshold to a low value such that the out-
put model had the same number of eigenvectors as
the number of input images. As a higher threshold
value means less eigenvectors, we gradually raised the



60
——  batch 50% energy
s0b batch 70% energy ra
***** batch 80% energy o
[ batch 90% energy o™ -
8 == == incremental, higher thresh. +?
8] L |mme L
<l>J 40 incremental, lower thresh. .'
c -
) <+’
.a_) 30 '-' -
5 ! -
e (AN -
[0 =L 7
o 20f -~ J—; =
E - o KLY EE Ll
S -* IRTTT TR ottt
4 'l S~ RLE Lo )
- e’
10 '{/,';’....ia-v
o
0 10 20 30 40 50 60 70 80 90 100
Number of images added

Fig. 4. Comparison of batch method and incremental method
by the number of eigenvectors. The curves for the batch method
represent the number of eigenvectors containing a certain per-
centage of the overall eigenvalue energy.

threshold, running the method each time. After each
run we computed the reconstruction error.

The results indicate that the reconstruction error
is slightly higher for the incremental method than for
the batch method. In our case, the error was higher
by 10% on the average.

Another way of comparing the incremental method
with the batch method is by observing the distribu-
tion of the energy of eigenspectrum (which reflects the
reconstruction error). If we use the batch method,
we often decide to keep a certain number of eigenvec-
tors such that the accumulation of the corresponding
eigenvalues contains a stipulated percentage of the en-
tire eigenspectrum energy. By running the incremental
method, we can observe how the number of preserved
eigenvectors changes according to the criteria as we
add new data vectors.

Fig. 4 shows two superimposed charts, one for the
batch method and the other one for the incremental
method. The same images have been used in both
experiments. In the case of the incremental method,
two runs were carried out, differing only in the value
of the threshold. We can see how the results fit: in the
case of a lower threshold, the growth of the number of
eigenvectors was very similar to the growth of the same
value for the batch method, where 90% of the energy
was retained. In the second run of the incremental
method we raised the threshold, and the curve became
comparable to the one for batch method with 70% of
eigenvalue energy retained.

B. Repetitive learning

In practice, when we explore the environment and
learn the model, we can come across the same observa-
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Fig. 5. Average reconstruction error as we repeatedly update
the model with the same sequence of 150 images. The boundary
denoted as ‘batch method’ represents the reconstruction error
of the batch method where the number of eigenvectors is the
same as the number of eigenvectors produced by the incremental
method. The shaded regions depict the repeating sequences.

tion multiple times. Therefore, we experimented with
the effect of revising the observations. We took a se-
quence of 150 images and used it multiple times in a
row as the input of our method. We thus simulated
the robot repeatedly exploring on the same path. We
observed the average reconstruction error of the obser-
vations.

Fig. 5 shows the result of the experiment. Each
shaded area of the graph represents one run of the
sequence. As the images are introduced for the first
time (image numbers 1 through 150), we can see how
the average reconstruction error makes several rises
and falls.

When we update the model with the same images
for the second time (image numbers 151 through 300),
keeping only the representations of the new images, we
can see that the reconstruction error decreases. In the
following sequences, the reconstruction error decreases
steadily. We can see that it converges towards the
reconstruction error obtained by the batch method at
the same level of compression. These results suggest
that the model is improving, if it gets updated with
the same set of images.

C. Localization

A true test for the algorithm is solving a task of lo-
calization. Fig. 6 shows a setup and results of such
an experiment. Inside a laboratory, we used a sparse,
equally spaced grid of 62 locations separated by 60 cm
for a set of training images. We used another collection
of 100 test images taken at locations surrounded by
at least four neighboring locations previously used for
training. We ran the updating algorithm which pro-
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Fig. 6. Localization with incremental PCA. The the circles and
x marks on the map denote the locations where images have
been taken. The lines connect each test image location with the
training image location found by the algorithm.

duced a subspace spanned by 14 eigenvectors, which
is 23% of the number of training images. We then
interpolated the coefficients in the subspace in order
to get an approximation of the environment sampled
4 cm apart in each direction. Test images were then
projected into this subspace, and they were matched
with the closest interpolated coefficient vector.

Table I shows the results of the localization for both
incremental and batch method with 14 eigenvectors.
The error is computed as a distance in cm between
the closest training position and the matched one. We
can see the results are below the sampling distance of
60 cm, and they are comparable for the two methods.

TABLE 1

Comparison of localization results

Incremental | Batch
Average error 14 cm 13 cm
Peak error 42 cm 51 cm
Cases under 25 cm 86% 91%

V. CONCLUSION

In this paper we discussed the problem of mobile
robot self-localization using appearance-based recog-
nition of panoramic images. We use PCA in order to
represent images in a low-dimensional subspace. As
the robot should be capable of incrementally learning
and updating its model of the world, we adopt the in-
cremental computation of PCA. Previous research ad-
dressed the on-line construction of eigenvectors only,
while representations of the images were computed
only after the final eigenspace was built. This requires

keeping all the images until the final step of the com-
putation.

We therefore proposed to use an incremental PCA
algorithm with the updating of partial image represen-
tations in a way that allows discarding the acquired
images immediately after the update. The results of
our tests indicate that the proposed method is com-
parable to the batch method in terms of compression,
computational cost, and the precision of localization.
We also tested how our algorithm performs when im-
ages are learnt repetitively, e.g., when the robot comes
across the same positions multiple times. We show
that in this case the properties of the incrementally
built subspace converge to that constructed with the
batch method.

Currently, we are exploring various advantages of
the on-line learning to the mobile robot localization,
e.g. the capability of actively selecting the next learn-
ing position or the strategies for on-line building of
multiple subspaces.
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