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Abstract
The field of tissue engineering has been growing in the recent years as more products have made it
to the market and as new uses for the engineered tissues have emerged, motivating many
researchers to engage in this multidisciplinary field of research. Engineered tissues are now not
only considered as end products for regenerative medicine, but also have emerged as enabling
technologies for other fields of research ranging from drug discovery to biorobotics. This
widespread use necessitates a variety of methodologies for production of tissue engineered
constructs. In this review, these methods together with their non-clinical applications will be
described. First, we will focus on novel materials used in tissue engineering scaffolds; such as
recombinant proteins and synthetic, self assembling polypeptides. The recent advances in the
modular tissue engineering area will be discussed. Then scaffold-free production methods, based
on either cell sheets or cell aggregates will be described. Cell sources used in tissue engineering
and new methods that provide improved control over cell behavior such as pathway engineering
and biomimetic microenvironments for directing cell differentiation will be discussed. Finally, we
will summarize the emerging uses of engineered constructs such as model tissues for drug
discovery, cancer research and biorobotics applications.
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I.Introduction
Over the last 30 years tissue engineering has resulted in important breakthroughs in the
understanding of cell-material interactions and the host response to biodegradable materials
and their in vivo integration. There is now a deeper appreciation of the effect of physical
properties on cellular behavior such as material stiffness, surface roughness and porosity [1,
2]. From its early stages as single cell type/porous biomaterial constructs to more multi-
functional, multi-cellular biomimetic systems, tissue engineering has also provided
important insights on how the effects of biomaterials on cellular activities can be harnessed
for clinical aims [3].

The initial aim of tissue engineering was to develop tissue or organ substitutes, which are,
limited resources in an aging society with prevalent chronic diseases. Driven by the lack of
donor tissues and the inability of some tissues such as heart and parts of nervous system to
heal themselves, tissue engineering methods for replacement tissues and organs have
become a venue to overcome such problems. Despite limited success in some complex
organs, the promise of substitute tissues has been fulfilled for some targets. The clinical
successes in skin [4], cartilage [5] and more recently in bladder [6] and trachea [7] have
already shown that tissue engineering can fill a gap in the biomedical field. In addition,
developments due to trials in other target organs, such as cardiac tissue, have resulted in
systems that might not be suitable as implantable systems but can satisfy the ever growing
needs of biomedical field for complex organ and tissue models. Moreover, novel approaches
constantly arise to improve the current tissue engineering efforts by bringing in the
developments in other areas of biotechnology and nanotechnology such as pathway
engineering to control cell differentiation, nanoscale bioactive agent patterning or
noninvasive imaging techniques. Modular approaches, rapid prototyping methods and
advances in stem cell research have also contributed to the increasing versatility of tissue
engineered constructs. The interactions of different cell types with their surrounding
extracellular matrix (ECM) have been recognized as an important determinant of cell
behavior. Individual components of ECM have been widely used as scaffold materials in
tissue engineering with considerable success. However, the specific composition of ECM in
each organ has proven to be essential for better outcomes. Together with the discovery of
the importance of cellular microenvironment on stem cell differentiation, obtaining
biomimetic environments has become an important goal. Development of artificial ECM
structures either based on ECM components or synthetic materials is another area where
tissue engineering provides methods for development of cellular microenvironments. It also
benefits from advances in protein engineering and synthesis. This review aims to cover new
developments in these areas and the outlook of tissue engineering, as an expanding
interdisciplinary field.

II. Enhancing Tissue engineering scaffolds
Biodegradable synthetic polymers have been commonly used in tissue engineering
applications; however, the most commonly used polymers such as poly-L-lactic acid
(PLLA), poly L-lactic-co-glycolic acid (PLGA), poly-caprolactone (PCL), generally lack the
necessary signals for cells to reorganize them to generate functioning tissues [8]. Slow
remodeling of the scaffolds and prolonged immune response are general problems with such
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scaffolds [9-11]. Moreover, constructs made of a single synthetic polymer often have
isotropic structures which are in contrast to the hierarchical multicomponent organization of
tissues. Recently, novel synthetic materials such as engineered synthetic polypeptides have
been developed to advance structural complexity of the scaffolds. More conventional, yet
active, areas of natural scaffold production are the development of structures based on
natural polymers by using various combinations of ECM molecules or the use of
decellularized tissues.

A. Enhancing Base Materials
Natural polymer based structures—ECM components such as collagen, fibronectin,
laminin have been commonly used as components of natural scaffolds. Through these
molecules, cellular activities such as proliferation, differentiation, migration and secretion
can be modulated. Moreover, the multi-component nature of ECM environment has
prominent effects on cell behavior [12]. For example, the composition of ECM affects how
cells interact with it, such as the extent of integrin mediated cell adhesion [13]. These
interactions can be imitated by the development of artificial ECM from a mixture of natural
ECM components. In order to achieve this, commonly used natural polymers such as
hyaluronic acid, collagen and gelatin have been further modified to have additional
functionalities such as photocrosslinkable sites [14, 15]. These modifications enable
controllable crosslinking between different ECM components which can be used to regulate
cellular behavior better than single component scaffolds [16]. Aside from proteins and
polysaccharides of mammalian ECM, other natural polymers from different sources such as
alginate, chitosan and silk fibroin have also been used for obtaining scaffolds. These base
materials have been used in the development of novel natural polymers for tissue
engineering such as recombinant chimeric proteins [17]. For example, silk fibroin has been
functionalized for antimicrobial activity, conjugated or have been genetically modified to
have additional mechanical properties (such as silk-elastin like protein polymers) [18-20].
The versatility offered by recombinant proteins enables more biomimetic scaffolds [21].

One of the advantages of having artificial ECM system is to obtain highly controllable and
preferably reversible 3D systems that would provide an environment very similar to that of
natural ECM. For example, recently a mixture of collagen and alginate was developed where
the reversible gelation and dissolution of alginate can be controlled by the addition of ions to
regulate the dynamics of cellular spreading and migration [22] (Figure 1). Designed artificial
ECMs are advantageous as they allow for precise control over composition of the ECM the
cells will encounter. For mechanical reinforcement of such ECM-like structures, which are
mostly hydrogels, additional materials can be added such as carbon nanotubes [23]. Another
possible approach is to control the alignment of fibrillar ECM molecules such as collagen by
using magnetic fields or electrochemical processes. These structures better mimic the tissues
with highly oriented ECM structures [24, 25].

Synthetic polymer based structures—Synthetic biodegradable polymers can be
developed with a high level of control as many of their properties, such as molecular weight,
viscosity and degradability can be easily controlled by changing synthesis parameters. This
versatility has resulted in widespread use of several classes of biodegradable synthetic
polymers such as aliphatic polyesters, polycarbonates and polyphosphoesters in biomedical
fields [26]. However, as mentioned before, the interactions of synthetic polymers with cells
are generally indirect and limited. To improve cell response, several approaches are
available such as blending with natural polymers [27], addition of cell responsive segments
to the polymer backbone [28] and chemical functionalization of the polymer chains with
bioactive agents [29].

Zorlutuna et al. Page 3

IEEE Rev Biomed Eng. Author manuscript; available in PMC 2014 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The addition of biological signals to the synthetic materials is a useful tool to control cellular
behaviour [30]. By such modifications, existing biomaterials can be rendered remodellable
by cells. Poly(ethylene glycol) (PEG) has been widely used for such systems [31]. For
example, protease sensitive crosslinkers have been used to generate PEG hydrogels, which
improved cell proliferation and spreading due to the enzymatic degradation of the hydrogels
by secreted enzymes [32]. Also, the addition of RGD sequences and VEGF directly into
PEG hydrogels has promoted cell attachment and formation of tubules by endothelial cells
[33]. Angiogenic potential of growth factor modified PEG hydrogels has also been shown in
vivo [34].

Another important consideration for engineered scaffolds is mechanical properties. To have
more precise control over scaffolds’ mechanical compatibility with tissues, development of
new synthetic biomaterials with better defined mechanical, surface and biodegradation
properties is still important. One recent addition to such biocompatible and biodegradable
materials is poly(glycerol sebacate) (PGS). This elastomer, with its highly tailorable
mechanical properties, is especially suitable for soft tissue engineering applications, such as
cardiac tissue and cartilage [35, 36]. Its mechanical properties have been used to direct the
differentiation of bone mononuclear cells to smooth muscle cells rather than osteochondral
cells by producing a suitable biomechanical microenvironment [37]. Also an improved
secretion of elastin has been observed in porous PGS scaffolds compared to PLGA scaffolds
[38]. Moreover, it can be manufactured in a variety of structures such as electrospun
networks [39] or accordion-like scaffolds based on honeycomb architecture [40], which can
precisely mimic the anisotropic mechanical properties of soft tissues.

Synthetic polymers can also be produced from nature's building blocks, such as amino acids.
The fragile nature of natural polymers generally limits the possible techniques that can be
used for their processing. Synthetic polypeptides with functional sequences can overcome
this problem. By designing a polypeptide structure, structural or functional drawbacks of the
original ECM molecule such as high temperature sensitivity, high immunogenicity or high
enzymatic degradability can be avoided.

As the function and structure of crucial protein fragments are better understood, designed
polypeptides have become a feasible approach to obtain complex tissue engineering scaffold
base materials. The sequencing and the synthesis of polypeptides became easier and some of
the polypeptides are already commercially available such as Puramatrix™(RAD16I) [41].
Synthetic polypeptide based scaffolds can be formed from designed self-assembling
sequences based on naturally occurring proteins or novel sequences with multiple
functionalities [41]. The discovery of Arg-Gly-Asp (RGD), as well as other sequences such
as repeat sequences of elastin has shown that full proteins are not always necessary for
functional outcomes. Today, many synthetic polypeptides such as antimicrobial sequences
within some widespread proteins like ubiquitin [42] are commercially produced. Some of
these polypeptides can self-assemble into various forms. They can also be rendered
degradable by cellular activities at the same time. A functional peptide sequence can be as
small as three or seven amino acids. Smaller building blocks provide precise control of
architecture in the new generation of scaffolds. Even with such small segments it is possible
to obtain self-assembled hydrogels [43]. Different amino acid sequences with an inherent
ability to self-assemble can be used to form a wide variety of structures such as vesicles,
ribbons or fibers. Amphiphilicity is a strong tool in nature, as observed in the case of
phospholipids that can form vesicles, membrane or micelles in aqueous solutions. Peptides
designed similarly to phospholipids with a hydrophobic head and a hydrophilic tail can also
form nanoscale vesicles or tubes which can then assemble into networks. This provides
nanoscale control over the final scaffold properties. For a hexamer it is possible to define
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many peptide sequences that can self-assemble up to millimeter scale fibers, each of them
conferring different properties (Figure 2) [44].

The self-assembly process either happens via alpha-helices, beta-hairpin forming structures
or beta-sheets. For example, by using ionic complementary properties of peptide sequences
beta-sheet structures with distinct hydrophobic and hydrophilic surfaces can be
manufactured [41]. Self-assembled peptide scaffolds, especially in the form of nanofibers,
have been used in in vitro and in vivo studies, such as repair of brain damage in hamsters
after injection of peptide scaffolds [45]. By using peptide moieties, delivery and growth
factor retention properties can be given to such scaffolds and they have been used in a wide
array of applications such as nucleus pulposus regeneration, stimulation of angiogenesis or
as composites with hydroxyapatite for induction of osteogenesis [46-49]. The self-assembly
properties can be used in the modeling of diseased states. It is possible to obtain amyloid
fiber-like structures with self-assembling synthetic proteins, which is observed in several
diseases like Alzheimer or Creutzfeld-Jacobs. However, these scaffolds are still single
component scaffolds which cannot imitate the multi-component nature of ECM. As each
part of ECM has different ways to direct cell behavior, for whole functionality of the native
ECM multi-component scaffolds are necessary. But, obtaining a structure that has all
functionalities of ECM by modulating each component can be difficult. One way to achieve
such complexity is by using the original tissues or whole organs as scaffolds through a
decellularization process. Also by using modular assembly methods microscale control over
scaffold architecture is possible.

B. Enhancing Architecture
Biomimicry has been one of the foci of tissue engineering research and it is recognized as an
important factor for the functionality of an engineered tissue. Many tissues in the body have
modular architectures [50]. Therefore, tissue engineers have been seeking ways to create
modular structures, which can be brought together through random-assembly, self-assembly
or directed-assembly. By this way, a macroscopic construct that possesses microscopic
features can be built. Other than being biomimetic, a modular approach can be used to
propagate the engineered tissue construct in a predetermined manner, making the modular
approach a high throughput and modular fabrication method.

Random-Assembly—Modularity in the context of tissue engineering can be at different
levels. As covered in the synthetic polypeptide section, the materials that are used for
fabricating the scaffolds can be modular as well as the scaffold itself. The motivation for
both approaches is the same: mimicking the native tissue structure, which is modular in both
macromolecular (i.e. ECM) and cellular (i.e. liver lobules) level. For example, Davis et al.
used genetically engineered protein-based polymers which have regular repeats of lysine and
glutamine that can be used for enzymatic crosslinking and hydrogel formation [51]. The
controllable nature of the repeating units (i.e. the modularity of its monomers) provided
tailorable mechanical and physical properties to the polymer and eventually to the gel
produced. In a more complex manner, multiple hyaluronic acid derivatives were used as
“puzzle pieces” to produce tunable composite hydrogels through exploiting the modularity
of the polymers comprising it [52]. The material commercialized as Extracel™, which
consists of 4 basic components to fabricate various gels with different properties by
changing the ratio of these building blocks. A similar approach for fabricating composite
hydrogels starting from modular polymers was done using PEG-based micron-sized
hydrogels [53]. In this study, PEG derivatives with different properties were crosslinked
around living HepG2 liver cells to control mechanical properties, degradation and bioactive
agent delivery. Same modular PEG-based system has also been used for encapsulation of
HL-1 cardiomyocytes, which resulted in long-term viability, growth and expression of
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functional cardiac markers as well as activation peak synchronization upon electrical
stimulation. Combination of PEG-based polymers and peptide sequences was also used to
produce modular macromolecules to fabricate synthetic ECM-like structures [54]. These
were used for introducing bioactive agents such as VEGF and RGD sequences and the gel
structure was able to accommodate HUVECs in a concentration dependent manner.

Modular tissues have also been proposed as a potential way of providing vasculature to the
engineered tissues. In one study, McGuigan et al. fabricated tissue parts using liver cell-
encapsulated collagen gels seeded with HUVECs on their exterior surface. The constructs
were cultured for 2-3 days until the endothelial cells became confluent and then allowed to
self-assemble inside a tube to form a network of interconnected channels (Figure 3) [55]. A
similar approach was used to fabricate constructs of umbilical cord vein smooth muscle cells
(UVSMCs) encapsulated in hydrogels prepared using a lactoyl poloxamine derivative mixed
with collagen. These constructs were then seeded with HUVECs to create the vasculature-
like interstitial spaces. Presence of UVSMCs in the hydrogels increased the HUVEC
attachment and proliferation on the surface compared to constructs containing HepG2 cells
[56]. Moreover, the presence of UVSMCs significantly affected the HUVEC phenotype as
determined by their nitric oxide production [57]. It was possible to perfuse fluids through the
interstitial spaces between the constructs confirming the interconnectivity of the pores [58].
When implanted, these modular constructs with endothelial cell lining were able to form a
stable, perfusable chimeric vascular bed [59]. The modular approach is a strong tool for the
development of vascularized tissues and it was also applied to cardiac tissue engineering. In
this example, cardiomyocytes were encapsulated in collagen type I-Matrigel mixture and the
fabricated constructs were seeded with endothelial cells to create a vascularized tissue [60].
Later on, these tissue constructs were assembled into functional, macroporous structures
with adequate contractile properties and gene expression. Presence of endothelial cells
resulted in nonthrombogenic properties and enabled continuous whole blood perfusion
without clogging [61]. Although interconnected, the flow path was torturous due to the
random assembly. This tortuous nature of the flow path was shown to adversely affect the
endothelial cell functionality , depending on the flow rate, due to promotion of disturbed
flow causing activated endothelial cells [62]. Therefore, using a random assembly approach
might not be the ideal way of achieving vasculature within modular engineered tissues.

Controlled-Assembly—Researchers have developed approaches that can give more
control over the architecture of the final construct compared to random assembly. Controlled
assembly of the tissue constructs is important for creating structures with higher biomimicry
that comprise defined architectures and can be used to engineer tissues in a bottom-up
manner. Towards this end, tissue constructs fabricated using photocrosslinkable polymers
were assembled by the aid of hydrophobic-hydrophilic interactions [63-67]. Depending on
the initial geometry of the constructs, various secondary structures were fabricated [66]. For
example, cell-laden PEG-based hydrogels were produced in arrays of micron-sized
predefined geometries and assembled in a directed manner to form macron-sized engineered
tissues [64]. To include a microvasculature, more intricate than the mere use of spaces
between randomly assembled constructs, microchannel networks were incorporated in
constructs by using photolithography. Encapsulated cells were viable after the fabrication
process and media perfusion through the microvasculature was possible. More control over
the assembly process can be achieved by choosing the construct geometries so that it would
allow them to be assembled in a directed way through a naturally occurring lock and key
mechanism that fit the right constructs together [63, 66-68]. Tissue engineering constructs
fabricated using controlled-assembly approaches have been shown to accommodate co-
culture of different cell types with high cell viability.

Zorlutuna et al. Page 6

IEEE Rev Biomed Eng. Author manuscript; available in PMC 2014 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



As an alternative approach for controlling assembly, Yamaguchi et al exploited molecular
recognition to achieve photoregulation of the assembly process [69]. In this study
polyacrylamide was modified with an azobenzene moiety, which can interact differently
with cyclodextrin groups (again added on polyacrylamide) upon photoisomerization.
Through exploiting the different affinities of trans-azobenzene and cisazobenzene to
cyclodextrin, adhesion and dissociation of the constructs could be controlled via
photoirradiation. In another study, either cyclodextrin (host gels) or small hydrocarbon-
groups (guest gels) were used to modify acrylamide-based gels and used for directing their
assembly through their mutual molecular recognition [70]. It was also possible to create, sort
and selectively assemble subpopulations by modifying the size and shape of the gels (Figure
4).

In addition to tissue constructs of cell-laden or cell-seeded materials, constructs that
comprise of only cells have also been created and assembled towards modular tissue
engineering. One approach for directed assembly of such structures that comprise only cells
is to use complementary DNA sequences [71]. In order to modify cell surfaces, azide sugars
(i.e. N-azidoacetylmannosamine) were added to cell culture media, which did not show any
detectable adverse affects in cellular metabolism, yet could be incorporated to extracellular
glycocalyx [72]. It was possible to assemble cells, which are covalently modified using
complementary oligonucleotides, in a controllable manner through the ratio of cells with the
different oligonucleotides [71]. For example, with a ratio of 1 to 50 it was possible to
assemble cell aggregates within rosette geometry; cells with the less common
oligonucleotide were in the middle of more abundant cells. Similar DNA oligonucleotide
modification of the cell surfaces was also achieved through modification of the cell surface
using phosphoramidites in a protein and glycan independent manner [73]. In another study,
modification of cell surfaces was achieved through liposome fusion and selective delivery of
ketone and oxyamine groups to desired subpopulation of cells [74]. Assembly was achieved
through oxime ligation and was shown to be effective in controlling the formation of cell
aggregates and cell layers to form 3D multilayered structures.

As an alternative approach to chemical modification of cell or cell aggregate surfaces, Brat-
Leal et al used physical means for the assembly of cell aggregates by incorporating magnetic
microparticles into them [75]. By this way, it was possible to immobilize, translocate and
assemble the aggregates and control these processes temporally.

Decellularized tissues as scaffolds—As long as it can be rendered non-immunogenic
an allogenic or xenogenic tissue contains all the necessary ECM components in the right
architecture. Although decellularized tissues have been in use in the field for a long time, the
recent mild decellularization processes [76] that preserve the ECM architecture have
improved their effectiveness. Since, the intricate structure of the native tissue can be
preserved, the differentiation and orientation of the seeded cells can be directed. When
applied to whole organs, this also ensures the presence of well-defined vascular networks
that can be filled faster by endothelial cells in vivo. Some common sources of the
decellularized matrices are adipose tissue, porcine small intestine submucosa and skin,
pericardium, trachea and heart valves [77-79].

Decellularization is generally achieved by a combination of physical and chemical
techniques to induce minimal damage to the ECM structures. This can be achieved either by
hyper/hypotonic solutions, treatment with acids and bases or detergent treatments. Physical
methods including freeze-thawing and pressure application have been also used to minimize
chemical use. Decellularized tissues have already achieved success in whole organ
replacements in esophagus and trachea [7,80]. However, decellularization is often lengthy
and also a slightly deteriorating protocol for the ECM. Moreover, incomplete

Zorlutuna et al. Page 7

IEEE Rev Biomed Eng. Author manuscript; available in PMC 2014 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



decellularization can lead to immunogenicity and adverse side effects [81]. In addition, the
initial degradation of ECM-based structures is fast and results in rapid loss of mechanical
properties [82].

Alternatively, there have been efforts to use cell culture techniques to obtain newly
synthesized ECM with a higher level of control over its structure [83]. With the help of
bioreactors and biochemical control of cell behavior, a completely autologous tissue with
properties close to that of the native tissue can be developed. This and similar methods will
be covered in the following section.

III. Scaffold Free Approaches
On the opposite end of the spectrum, cell-based engineered tissues, without any scaffolding
material have been under investigation for their potential use in regenerative medicine. Cells
are physically not robust enough when they are isolated from their ECM and other
neighboring cells. Thus many attempts using cell suspension injections to the site of a
deficient tissue (i.e. infarcted myocardium) have resulted in poor viability, low retention and
limited integration with the host tissue [84]. To avoid these drawbacks, sheets or aggregates
of cells that were cultured in vitro for some time prior to their in vivo application have been
tried. Aggregation and sheet formation can increase the physical stability of the cells
through cell-cell interactions as well as accumulation of secreted ECM molecules by the
cells.

To generate cell aggregates many different substrates have been used including agarose [85],
PEG [86, 87], polydimethylsiloxane (PDMS) [88] and poly(N-isopropylacrylamide)
(PNIPAAm) [89]. Often, these substrates are prepared using soft lithographical approaches
[90], through which the material of choice is cast into a template with desired patterns (i.e.
sphere, toroid, cube), and then solidified upon crosslinking or polymerization. Aggregation
of the seeded cells on these substrates occurs after a certain incubation time, which is
specific for different cell types.

The properties of the substrate used should enable the retrieval of the cellular constructs.
Temperature responsive polymers such as PNIPAAm are very suitable for this process as
PNIPAAm becomes hydrophilic and swells when the temperature is changed from 37°C to
room temperature. By using this reversible property, aggregates can be retrieved with a high
yield from substrate (Figure 5) [89]. PNIPAAm can be either used as a mold or as a coating
material to modify molds that were made out of other polymers (i.e. PDMS). For example,
PDMS molds possessing microgrooves have been coated with PNIPAAm through chemical
crosslinking and used to form tissue fibers [91].

Usually substrates that have been used for cell aggregation have a flat and smooth structure.
This can result in additional diffusion constraints in a system that has already limitations due
to bulkiness of cell aggregates. To avoid this, electrospinning techniques have been
combined with micromolding approaches to achieve PCL substrates with a permeable
bottom made of a nanofibrous sheet [92]. Using this system, aggregates of HepG2 cells,
embryonic stem cells (ESCs), pancreatic cells and cardiomyocytes have been produced. As
an alternative approach, toroid-shaped cell aggregates have been proposed as a possible
remedy for diffusion and/or vascularization limitations. In this approach, rat hepatocytes
were seeded into agarose microwells to form toroid shaped aggregates after 2 days of
incubation [93]. These aggregates spontaneously combined with each other to form tubular
or double-lumen structures.

Cell aggregates have also been used for studying cellular phenotype in a 3D environment
[94, 95], and for controlling the differentiation of ESCs [86, 87, 96]. For example, primary
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hepatocyte aggregates produced in a size controlled manner using PDMS concave microwell
arrays have shown higher albumin secretion and higher enzymatic activity when they were
co-aggregated with hepatic stellate cells compared to single cell aggregates [94]. In another
study, it was shown that primary ventricular cardiac cell aggregates demonstrated
phenotypical differences specifically in expression of tissue maturation markers and under
hormonal stimuli compared to 2D culture [95].

One of the most exploited aggregate types is ESC aggregates. Since in their natural state,
ESCs are in an aggregated configuration, many researchers have tried to mimic this embryo-
like structure in vitro, which is named as embryoid body (EB). These structures have been
utilized to achieve effective differentiation of the ESCs to the desired cell types [97].
Although there are other means of creating ESC aggregates such as hanging drop or
suspension culture method, using microwells for aggregation purposes is beneficial since
this method enables production of more uniform and size-controllable aggregates [97, 98].
Especially the size of the EBs is important since it has been shown that the aggregate size
can influence their differentiation [87]. A number of materials including PEG [86] and
hyaluronic acid [99] have been used to fabricate microwells to produce ESC aggregates or
EBs. Moeller et al. have examined the effect of various PEG types on aggregation and
attachment of ESCs, and for their EB production capacity [100]. Soon after, other high
throughput and facile approaches for EB formation were developed using PDMS [101] and
polyesters [102]. Also, recently, it was shown that the incorporation of biomaterials to cell
aggregates could manipulate stem cell behavior [103].

Another widely used and successful approach for tissue engineering in the last decade is the
use of cell sheets. Cell sheets provide more control over the architecture of the formed tissue
compared to cell aggregates since it is possible to align the cells in a particular manner using
molds with predetermined topological cues [104]. For cell sheet production, again
PNIPAAm has been widely used. It is possible to produce cell sheets, pattern the constituent
cells of the sheet, and also stack the sheets to form thicker tissues [105]. For example, cell
sheets were used to create tissue engineered blood vessel with adequate and biomimetic
mechanical properties [106]. Towards this end, circumferential orientation of ECM in the
native vessel was replicated using pNIPAAM coated micropatterned PDMS molds (with
grooves and ridges patterns) as templates for production of aligned cell sheets. By this
method, it was possible to obtain cell sheets of several layers with aligned cells and ECM,
which affected the mechanical properties of the engineered tissue rendering it anisotropic as
in the natural tissue (i.e. stronger in the direction of the alignment).

In other studies, cardiac tissue engineering was attempted using this cell sheet-based
approach [107, 108]. For example, cardiomyocyte cell sheets were stacked together to form
3D tissue structures, which could improve the myocardial function upon implantation
following a myocardial infarction [109]. Although cell sheets gave better in vivo results
compared to single cell injection, the cell source used to fabricate the cell sheets was
neonatal rat cardiomyocytes, which is not a sustainable cell source for clinical applications.
In order to find a clinically more relevant cell source, ESC-derived cardiomyocytes have
been used [110]. In this process, the ESCs were cultured in suspension culture in the
presence of growth factors and then enriched for cardiomyocytes. Although ESC-derived
cardiomyocytes did not form sheets, co-culturing with cardiac fibroblasts resulted in cell
sheets, which were able to beat spontaneously, synchronize and express Connexin 43. In
another study, ESCs were used for producing cell sheets without prior selection for
cardiomyocytes [111]. Cell sheet formation was shown to enhance cardiomyogenic
differentiation. The individual cell sheets were used for fabricating 3D scaffolds by
sandwiching these cell sheets in between porous scaffolds.
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Cell sheet-based approaches were also tried for liver tissue engineering and characterized
both in vivo and in vitro for their survival, engraftment with the host tissue and functionality
[112, 113]. In an attempt to preserve functionality of the hepatocytes for longer periods,
hepatocyte sheets were stacked with endothelial sheets [113]. Cell sheet co-cultures resulted
in bile canaliculi network development and higher liver specific gene expression compared
to hepatocyte sheets. Co-culture of endothelial and hepatocyte cell sheets preserved albumin
secretion for 28 days while the single culture of hepatocyte cell sheets showed a decrease in
albumin secretion.

Cell sheets of mesenchymal stem cells (MSCs) from different sources such as periodontal
ligament, bone marrow and umbilical cord have also been produced [114, 115]. In vivo
studies using a swine model showed that periodontal ligament stem cell sheets were more
effective in regeneration of periodontal defects compared to cell suspension application
[114]. Cell sheet formation can be further improved by the addition of exogenous factors.
For example, it has been shown that ascorbic acid (Vitamin C) enhanced the cell sheet
formation by increasing ECM production [114]. Also, incorporation of gelatin microspheres
loaded with transforming growth factor β1 (TGF-β1) facilitated chondrogenic differentiation
and cell sheet formation.

As an alternative to thermo-responsive polymer based substrates, polyelectrolyte multilayers
have been used to produce cell sheets [116]. In this study, myoblast cell sheets were created
on poly-l-(lysine)/ hyaluronic acid multilayers with a fibronectin top layer. Cell sheets were
collected after dissolution of the polyelectrolyte multilayers by addition of divalent ions to
the culture media.

IV. Cell Sources and Controlling Cell Behavior
A. Stem Cells and Induced Pluripotent Cells

One of the most important aspects of an engineered tissue construct is the cell source. As,
over time it has been proven that the primary cells cannot be a sufficient cell source for
some target tissues, other cell sources such as ESCs have been proposed. ESCs can be
expanded in culture indefinitely under proper conditions [117, 118]. ESCs have the potential
to differentiate into all the cell types in the body. ESCs have been successfully differentiated
into many cell types such as cardiomyocytes [119-121], endothelial cells [122], hepatocytes
[123-125], pancreatic beta cells [126], osteoblasts [127, 128], and neural cells [129-133].
Despite these properties, ESCs have been the focus of many ethical questions and concerns
as well as scientific concerns regarding directing their differentiation in a controlled manner
and without tumour formation [134].

A relatively recent development in the area of genetic manipulation of adult cells resulted in
the development of induced pluripotent stem cells (iPSCs). This cell source has most of the
advantageous properties of the ESCs [135], while being patient-specific and less
controversial [136-138]. It has been shown that these cells can be differentiated to many cell
types including hepatocytes [139] and cardiomyocytes [140]. Also, there are few studies that
use iPSCs for tissue engineering purposes in the literature. For example, there is a recent
study where the cell source used for cardiac tissue engineering was iPSC-derived
cardiomyocytes [141].

Despite initial promising results with iPSCs, there are concerns on issues such as the
efficacy of their differentiation [142] and the additional risk of introduction of somatic
coding mutations [143]. For these cells to be routinely used in tissue engineering and
regenerative medicine applications, these problems should be addressed [144]. To use these
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cell sources more efficiently, controlled differentiation of stem cells using biomimetic
environments and pathway engineering are promising approaches.

B. Controlled Differentiation
Cell preparation and differentiation are multi-step and time-consuming procedures, while the
yield of the target cell type is usually low. This makes off-the-shelf tissue engineering
products hard to achieve; especially for multicellular tissues. Therefore, controlled
differentiation of stem cells using biomaterials has become an actively researched topic in
the tissue engineering field [145].

Differentiation of stem cells using biomaterials has the advantage of providing a biomimetic
environment, which can potentially increase the efficacy of the differentiation. Other
advantages include reducing the processing steps in tissue fabrication by combining cell
differentiation and incorporation as well as enabling simultaneous differentiation of multiple
cell types in a single platform for engineering complex tissues. Towards this end, a number
of studies have been conducted to control the stem cell differentiation using physical [146]
and chemical [147] properties of the biomaterials.

As the substrate physical properties (i.e. elastic modulus) can affect the lineage commitment
of the stem cells [1], many researchers have investigated ways to exploit this phenomena for
potential tissue engineering applications. For example, MSCs were encapsulated in an
injectable hyaluronic acid-tyramine (HA-Tyr) hydrogel system with tunable mechanical
properties for potential use in cartilage tissue engineering [148]. Hydrogels with lower
crosslinking degrees yielded more chondrogenic differentiation, with enhanced ECM
deposition. On the other hand, higher crosslinking degrees resulted in generation of cells
with fibrous phenotypes that generated fibrocartilage and fibrous tissue. In another study,
collagen and fibronectin functionalized polyacrylamide substrates with mechanical
properties mimicking tendon and bone tissue were used to modulate bone marrow MSC
differentiation towards these tissues [149]. It was shown that differentiation could be
modulated using the substrate mechanical properties, but it was interdependent to
biochemical cues as well. Differentiation of MSCs towards endothelial cells was also
studied in 3D using fibrinogen modified with PEG derivatives [150]. MSCs encapsulated in
various PEGylated fibrinogen hydrogels showed alterations in their differentiation towards
endothelial cells in gels with different mechanical properties. Similarly, when nerve
progenitor cells (NPCs) were cultured in hyaluronic acid with tunable mechanical properties
ranging from that of neonatal brain to adult brain, it was possible to change the NPC
phenotype from mature neuronal to astroglial [151].

Another recent way to control stem cell differentiation is to incorporate proteins or peptide
sequences to the scaffold, preferably in specific patterns to achieve biomimetic structures.
For example, insulin-like growth factor binding protein 4 (IGFBP4) was immobilized on
polystyrene substrates using elastin-like polypeptides in order to direct the differentiation of
ESCs towards cardiogenic lineage [152]. In another study, differentiation factors sonic
hedgehog (SHH) and ciliary neurotrophic factor (CNTF) were patterned in 3D through
modification of hydrogel chemistry using two-photon laser scanning technology (Figure 6)
[153]. Barnase-barstar and streptavidin-biotin chemistries were used for simultaneous
patterning of two different growth factors. Patterning of growth factors with high precision
in 3D can be a promising approach for controlling stem cell differentiation.

C. Pathway engineering
Pathway engineering is the science of understanding cells’ major pathways, especially the
metabolic ones, and manipulating them through genetic modifications [154]. Pathway
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engineering has been exploited on yeast [155], bacteria [156] and plants [157] for
overproduction of desired metabolites for nearly two decades. This generally involves the
enhancement of the expression of a key enzyme in a certain pathway usually by the aid of
transcription factors [158]. More elaborate approaches have emerged such as knocking other
pathways simultaneously while enhancing one or altering more than one enzyme in a given
pathway to have exponential effects. Moreover, with the manipulation of correct pathways,
cells could be reprogrammed to a desired phenotype [159].

As a result of the growing knowledge on signaling and metabolic pathways in mammalian
cells, pathway engineering approaches have recently been extended to mammalian cells
[160-162]. It has also been considered for tissue engineering and regenerative medicine
applications [163]. Currently, the studies in mammalian pathway engineering are for
utilization of mammalian cells for production of therapeutic proteins [164]. However,
reprogramming a cell through pathway engineering can also be used for controlled and
sustainable differentiation of stem cells with high yields as well as for directing other
cellular behaviors such as expression and/or secretion of a specific protein. By this way cells
can be manipulated utilizing the knowledge on the signaling pathways for chondrogenic
differentiation of MSCs [165], skin aging [166], fracture healing of the bone [167], liver
regeneration [168] or cellular apoptosis [169], in order to provide solutions for engineering
complex tissues. For example, human pluripotent stem cells were reprogrammed into
multipotent neural crest cells through activation of the canonical Wnt signaling and
suppression of the Activin A/Nodal pathway simultaneously [170]. It was also possible to
control cell migration and homing through engineering the pathways for surface glycans,
which could have profound effects in wound healing and tissue regeneration [171].
Although they are few in number, such promising studies suggest that pathway engineering
and cellular reprogramming can potentially be used for solving the existing problems in
tissue engineering and regenerative medicine.

V. Emerging Tissue engineering Applications
Aside from the demand for organ substitutes, there is also a growing need for relevant tissue
models of diseases for basic science purposes or pharmaceutical trials. The most prominent
of these efforts based on tissue engineering methods are drug models and cancer models.

A. Tissue Models for Drug Testing
Despite the developments in other areas, drug discovery and development still constitute the
biggest portion of the biomedical field. However, as the regulations tighten and the cost of
drug discovery constantly increases, the drug developers are looking for more intelligent
ways to test drug candidates. There is a great need for biomimetic testing systems and the
current developments in tissue engineering provide a means to help drug discovery and toxin
screening via microtissue based diagnostics and testing [172].

Although, high throughput drug testing systems based only on enzymes have been used for
testing cytotoxicity and drug conversion, they cannot demonstrate the whole metabolic
effect of a drug on liver [173]. The incorporation of cells in microfluidic systems has
improved such drug platforms. However, 3D effects of drug distribution cannot be evaluated
by 2D culture systems. 3D models developed based on cell encapsulated hydrogels would be
a better model of drug distribution [174]. For example, an alginate-based hydrogel system
has been developed for measuring the toxicity of drugs on encapsulated liver cells with
results comparable to LD50 values in vivo [175]. This system was further modified with the
addition of a cancer cell line, thus simultaneously the toxicity and the anticancer drug
efficacy could be tested. The comparison of several widely used drugs’ LD50 values in mice
and CT50 values in culture has shown that 3D structures provide a better estimate (R2=0.97)
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than 2D cultures (R2=0.85) [175]. This implies that tissue-like 3D models were a better
method for assessing drug effects. Such systems are also important for assessment of
toxicity for growing number of new materials and chemicals in biomedical engineering
field, which cannot be tested effectively and economically with the currently available tests.
Another advantage of miniaturized 3D models is the packing of cells in a smaller volume
compared to a 2D surface. This is a better mimic of cell densities in tissues in vivo.
Moreover such artificial constructs would also be an answer to the prevailing questions
surrounding animal use in experiments, particularly for drug and cosmetic tests.

Another aspect of host reaction to drugs is the immune response, which can be unpredictable
with standard in vitro and animal models. Utilization of humanized mice has improved the
test outcomes [176], but still cheaper and animal test-free systems would be desirable. For
this end, microorganoids resembling the lymph nodes have been developed which can be
kept alive and exposed to drugs for several weeks [177]. Analysis of cellular immunity by
cytokine release can be done simultaneously with monitoring of other cellular events, such
as proliferation and apoptosis, in this system. Another attempt to provide alternatives to
animal testing via tissue engineering was the development of multicell type artificial cornea
mimics. Such structures could replace Draize test which utilizes rabbit eyes to test the
allergic reactions to new chemicals [178].

The complex, multicellular structure of some organs is hard to imitate. Especially the
problems related to the vascularization of engineered construct above volumes of several
mm3 limit organ production at macro scale. However, with the developments in
microfluidics-based systems, miniaturized organs can be produced. With the help of
microfabrication techniques these miniaturized organs can be produced as valuable drug
development tools.

These tissue-on-a-chip or organ on-a-chip structures can be viewed as miniaturized organs
where all the physiological activities pertinent to the metabolization of a drug or a toxin can
be closely mimicked. Microscale tissues are advantageous for monitoring due to decreased
amount of reagent use, smaller sample size and the possibility of high throughput analysis.
Moreover, via miniaturization, it is possible to mimic physiological shear stress conditions
better as well as to provide relevant physiological fluid composition spatially and
temporally. Analysis of drug candidates with microtissues can both increase the reliability of
the tests and enable detection of candidates that can be eliminated in animal tests due to
false negative results.

Even though microengineered tissue based tests would be an important improvement, it
cannot answer the questions related to another important aspect of drug testing and
monitoring which are the short and long term systemic effects of the drugs. For example, a
single toxicity test based on an artificial liver system would not account for the possible side
effects of the metabolic by-products of the hepatocyte activity on the drug on other tissues.
A possible solution proposed for this problem is the body-on a chip systems. By connecting
several organs, it is possible to obtain a body-on-a-chip system where the effect of one drug
or therapy on multiple organs can be elaborated. Already, there are several such systems
available, such as gastrointestinal tract models, kidney models and lung air sac models [179,
180]. In such systems, reciprocal interactions of the cells can be monitored, such as increase
in hepatic glucose synthesis by hepatocytes in the presence of endothelial cells [181].

A body-on-a-chip will offer multiple advantages: i) metabolization of the drugs and their
possible systemic effects can be monitored and the sequence of the events can be elucidated,
ii) small scale effects that can be missed in animal tests which can result in negative
outcomes in later clinical trials can be detected, iii) testing of drug-drug interactions can be
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done in a cheaper and more efficient way for several organs at the same time [182]. They
will also allow elaboration of the mechanisms of the drug toxicity and side effects without
animal studies and in a more complex manner than cell culture studies.

However, having many cell types in a small system creates some practical problems, such as
the composition of the culture medium [183]. Some solutions have already been available
such as development of a blood surrogate which would be suitable for all cell types. Other
options are the separation of the feeding of each microorgan so that they can be in contact
with their own medium where metabolite exchange between microorgans is achieved by
separate connections or addition of controlled delivery functions into the chip for specific
growth factor delivery to each compartment [181, 184, 185].

Another important issue in the development of such systems is the utilization of suitable
methodologies for their monitoring. Since the aim is to observe long-term effects and also
temporal changes in responses, noninvasive methods for visualization of tissue integration
and cellular activity at high resolutions are necessary. The microscopy methods such as
Lens-free microscopy [186], Coherent Anti-Stokes Raman Microscopy (CARS) and
Secondary Harmonic Generation (SHG) [187, 188] can provide real-time information about
the model ECM and cells (Figure 7).

As for monitoring of metabolic activity, since in such small volumes collection of analytes is
problematic, general choice of analysis is electrical or optical methods [189], such as
cellular impedance measurements via surface plasmon resonance. Also, in addition to
microscopy methods such as time lapse microscopy, by using fluorogenic molecules specific
interactions of cells with drugs or metabolites can be monitored. For example,
autofluorescence of doxorubicin allows monitoring of its uptake [190]. Correlation of cell's
physical properties with their activities is a strong indicator of their health that can be
incorporated into long term monitoring of cellular activities.

Other possible outcomes of tissue engineering would be disease models, such as robust in
vitro 3D models which can closely mimic the in vivo condition. These models can be used
for basic science research and also for therapeutic drug testing [191]. Especially with the
strong indications of non-applicability of animal test results for human trials, 3D artificial,
diseased human tissues might be a reliable model for drug testing.

B. Cancer Models
The ability to develop healthy and diseased tissue at the same time, possibly from the same
cell source is a strong tool to understand the onset and propagation of diseases such as
cancer. The large variation of cancer cells from patient to patient such as differences in their
metastasis behavior, requires models that can reflect these discrepancies with high fidelity.

In vitro 2D culture of cancer cells cannot provide information about their movement in 3D.
A tissue engineering-based cancer model can reflect the invasive properties of the
carcinomas. It can also be used to monitor the feedback mechanisms between tumor and
stromal cells and also the interactions of cancer cells with different cytokines.

For modeling metastasis, the 3D cell migration process needs to be imitated. There are new
techniques available for achieving control over the cell migration and spreading in 3D
structures. Tumorogenesis can be accurately imitated in systems which contain all relevant
cell types together with a biomimetic ECM structure. For example, for breast cancer models,
2D culturing of epithelial cells will give an incomplete picture as epithelial-stroma
interaction is an important part of tumor progression. The addition of ECM components via
a natural scaffold would also be necessary to reinforce the robustness of the model. In the
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absence of ECM, 3D cancer models have been produced with spheroid cultures, which can
be prepared from epithelial tumors (homotypic aggregation) and can be rendered also multi-
cellular (via heterotypic aggregation) to model the interactions of stroma and the cancer cells
[192]. Such structures not only can be used to model tumor architecture but also provide all
the necessary autocrine and paracrine effects to better mimic the tumor microenvironment.
Mesenchymal induction of basement membrane deposition by epithelial cells [193] has been
shown to be an important determinant in development of epithelium based cancer models.
For example, laminin rich ECM was previously used to distinguish the differences between
normal and malignant breast cells. The healthy cells formed polarized colonies and the
cancerous cells grow into proliferative colonies with no definite organization. This model
can be used to elaborate the differences between healthy and diseased structures which will
give a more complete understanding of how the disease progresses than 2D culture models
[194].

Another important factor during embryonic development and cancer metastasis is the
epithelial to mesenchyme transition. The interaction of mesenchyme and the epithelium
defines their function and structure in a reciprocal way during development. Understanding
the underlying principles of this transition via co-cultures in scaffold systems would help in
understanding the complex interactions between these cell types. For example, it has been
shown that epithelialmesenchyme transition resulted in cells that demonstrate stem cell-like
properties [195]. Imitation of the microenvironment that leads to this event would be
beneficial both for cancer research and standard tissue engineering applications [196].

These developments in artificial disease models would also help in optimization of surgical
protocols. Cryosurgery is a growing field in the cancer resection area as it is a minimally
invasive technique with high efficiency. But the microenvironment induced by the
application of extremely low temperatures, which is below the thresholds for thermodamage,
can cause damage to the area surrounding the target. The optimal application conditions and
their long term effects will only be available after years of data gathering with conventional
methods. However tissue engineered constructs can be exposed to the same conditions of the
surgery and the effect of the treatment can be visualized in real–time. This way, in-depth
measurements of the physical conditions within the tissue can be made and the surgery
conditions can be rectified accordingly [197]. Moreover, these kinds of models can be
further used for the tissue preservation and organ preservation studies and the complex
effect of freezing on the tissues.

C. Biorobotics
Biorobotics is a field that aims to design robots that can mimic animal or human movements
and to analyze natural control systems to use them in new robot designs. For example, each
muscle in animals can act as a multiple actuator with the ability to respond to multitudes of
inputs. This provides a substantial advantage to the single actuator/ single input systems in
conventional robots. Bio-inspired “cellular actuators” based on piezoelectric materials have
been developed to mimic this property [198]. Aside from physical biomimicry, recently
research focus also turned on using cell based systems as actuators. Cell types that can act as
actuators such as vorticella [199], cardiomyocytes, myoblasts can be used to develop MEMS
systems that can also function in aqueous conditions. For a feasible actuator high density of
cells is necessary. For this end, there have been trials with extracted tissues such as dorsal
vessel obtained from insects [200] or in vitro assembled systems based on fibroblasts and
myoblasts that can actuate microdevices [201]. But better actuators with more control over
cell localization can be obtained by tissue engineering methods. For example, myoblasts
labeled with magnetite cationic liposomes have been used to form an artificial muscle
construct under magnetic force to act as a bioactuator [202]. Also cardiomyocytes within
ECM-based gels has been developed as microdevice actuators [203]. There are also ongoing
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trials to use neuron cell cultures as biological processors that can control robotic systems
[204], which can benefit from tissue engineering methodologies. Tissue engineered
actuators would provide more sophisticated structures with more control over mode of
actuation. They can also be used to form the interface between robotic systems and tissues.
Although, most of the tissue engineering efforts are limited to mammalian cells for
regenerative medicine purposes, another possibility in biorobotic/tissue engineering
interface is the utilization of cold-blooded species’ cells such as insects and zebrafish, which
have less stringent requirements for culture.

VI. future perspectives
The ties and contribution of tissue engineering methodologies to biotechnology have been
growing strongly. With recent clinical successes, combined with the better understanding of
host/biomaterial interactions tissue engineering still has room to grow. The novel scaffolds
are smart in many ways, but they generally lack the temporal control over the modeling
process in vivo. The next generation would also incorporate structures that would actively
measure the health of the implant. Such lab on a chip applications in vivo, could improve the
quality of monitoring available for implant systems [205]. Also developments in disease
models and body-on-a-chip applications and demands in biorobotics will create new
requirements for the next generation of tissue engineered constructs which will necessitate
more widespread use of new methodologies such as pathway engineering or use of
alternative cell sources.
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Figure 1.
Control of cell spreading by reversibly crosslinkable ECM components, by selectively
crosslinking, uncrosslinking and re-crosslinking the alginate component within the collagen
hydrogel, cell shape can be controlled in 3D. Cells were labeled for actin fibers with
AlexiFluor488-Phalloidin (Adapted from [22]).
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Figure 2.
Hexamer polypeptides with a hydrophilic head and a hydrophobic tail can self- assemble
into millimeter scale fibers. A) Schematic model of the hexamer polypeptide sequences
(LIVAGD and AIVAGD) that assemble into fibers via α-helical pairing. B) Fiber mats and
single fibers obtained from the self-assembling polypeptides, these fibers can support
several cell types such as mesenchymal stem cells and epithelial cells (Adapted from [44]).
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Figure 3.
A) Schematics of the modular construct design and fabrication. HepG2 cell encapsulated
cylindrical collagen gels were seeded with human umbilical-vein endothelial cells
(HUVECs). After HUVECs completely covered the gel surface, which takes usually 2 to 3
days, the HUVEC-seeded cylinders can be assembled into a larger structure to form the
modular construct that can be used to perfuse supply nutrients to the cells through formed
network of interconnected channels. B) Light microscopy images of collagen–HepG2
module prior to HUVEC seeding. C) On Day 7 of the culture period, HUVECs on the
surface of the modules was stained for VE-cadherin and imaged using confocal microscopy
to show the confluent layer of HUVECs on the surface of the modules. D) A flow circuit
was used to perfuse PBS or media the modular construct. E) After media perfusion of 7
days, collagen–HepG2–HUVEC modules were retrieved and imaged using confocal
microscopy (Adapted from [58]).
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Figure 4.
Macroscale assembly of gel modules through selective molecular recognition of acrylamide
gels modified with cyclodextrin or hydrocarbon groups. A) Selective assembly of α-CD-gel
(blue) and n-Bu-gel (yellow) upon shaking in water in the presence of t-Bu-gel (dark green).
B) Selective assembly of β-CD-gel (red) and t-Bu-gel (dark green) upon shaking in water in
the presence of n-Bu-gel (yellow). C) Selective assembly of α-CD-gel/n-Bu-gel and β-CD-
gel/t-Bu-gel upon shaking in water in the presence of all gel types (Adapted from [70]).
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Figure 5.
Fabrication of temperature responsive substrates for generating cell aggregates. A-B)
PNIPAAm microwells were fabricated by soft lithography, then cells were seeded and
retrieved after aggregate formation. Phase contrast and fluorescent microscopy images of the
aggregates released from C) PNIPAAm compared to D) PEG microwells (Adapted from
[89]).
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Figure 6.
A) Schematics of the simultaneous protein immobilization using 2 photon laser scanning
method. A femtosecond laser was used to immobilize maleimide-barnase, represented with
the black circle, followed by a wash step to remove unbound maleimide-barnase. Then,
maleimide-streptavidin was immobilized, represented by orange square, and again followed
by a wash step. After this step, a protein of interest which has been fused to barstar and
biotin was introduced. They will specifically bind to barnase and streptavidin, respectively.
B and C) Confocal microscopy images of simultaneous patterning of biotin–CNTF (red) and
barstar–SHH (green) (Scale bar: 100 μm) (Adapted from [153]).
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Figure 7.
Non-linear microscopy techniques SHG and CARS allow simultaneous, real-time
monitoring of cell-fibrous scaffold (bacterial cellulose) interactions. A) Interactions of
vascular smooth muscle cells with nanofibrillar bacterial cellulose was monitored at specific
time points to quantify cell proliferation, migration and ECM secretion B) Secreted collagen
fibers can be distinguished from the cellulose fibers due to the substantial difference in their
average fiber size (A collagen fiber is indicated with an arrow around vascular smooth
muscle cells) (Adapted from [206]).
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