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Abstract—In this paper we provide the evidence that daily
stress can be reliably recognized based on human behavior
metrics derived from the mobile phone activity (call log, sms
log, bluetooth interactions). We introduce an original approach
for feature extraction, selection, recognition model training and
discuss the experimental results based on Random Forest and
Gradient Boosted Machine algorithms. Random Forest based
model showed low variance comparing to the GBM-based one,
thus winning the bias-variance tradeoff and preventing over-
fitting, given the noisy source data. Potential impact of the
technology is reducing stress and enhancing subjective well-being
for sustainable living.

I. INTRODUCTION

Psychological stress is a dynamic process eliciting a neg-
ative emotional response and it occurs when an individual
feels that the environmental demands exceed his/her adaptive
capacity [37]. It is a well-known condition in modern life
and research has shown that the amount of cumulative stress
can play a role in a diverse range of physical, psychological
and behavioural conditions, such as anxiety, low self-esteem,
depression, social isolation, irritability, cognitive impairments,
sleep and immunological disorders, neurodegenerative diseases
and other medical conditions [12], [17], [18] Hence, measuring
stress in daily life situations has become an important chal-
lenge [36].

Nowadays, smartphones provide a novel opportunity for
unobtrusive and cost-efficient access to previously inaccessible
sources of data related to daily social behavior [14]. Smart-
phones are able to capture and store huge amounts of behav-
ioral data. The social psychologist Geoffrey Miller in “The
Smartphone Psychology Manifesto” argued that smartphones
should be seriously considered as a new research tool for social
psychology. In his opinion, such tools could revolutionize all
fields of psychology and behavioral sciences, making these sci-
entific disciplines more powerful, sophisticated, international,
applicable, and grounded in real-world behavior [32]. In the
pervasive and ubiquitous computing community, several works
have started to use smartphone activity data to detect and
predict personality traits [10], [41], mood states [29], and daily
happiness [35], [6].

In our paper, we formulated the automatic recognition
of daily stress as a 2-class classification problem (stressed

and not stressed) based on information concerning: a) people
activities, as detected through their smartphones; b) weather
conditions; c) personality traits. People activities are repre-
sented by features extracted from calls, sms logs and bluetooth
hits. We created a large number of models for different weather
conditions and individual personality traits, given the fact that
they influence emotional and mental states substantially. All
these models were combined in one ensemble model.

Classification experiments were performed using a variety
of approaches, including decision trees, neural networks and
support vector machines. The best solution for our classifica-
tion problem were found using an ensemble of decision tree
classifiers based on Random Forest and Generalized Boosted
Model algorithms.

The article is structured as follows. Section II reviews
previous work on stress detection. Section III describes the
data collection while Section IV describes our approach to
stress recognition and, in particular, the features we extracted,
the best feature space selection, the learning algorithms we
used, and the best model selection. The experimental results
together with the data and model limitations are discussed in
Section V. Section VI sets out social implications of automatic
stress recognition for sustainable living. Summary and future
work expectations are defined in Section VIL

II. RELATED WORK

A substantial amount of research on stress recognition
focused on physiological measurements to detect stress (see for
example [25], [28]). In particular, several methods have been
based on physiological signals, such as heart-rate variability,
skin conductance, temperature, respiration, blood pressure or
muscle activity. Despite their high reliability in stress detec-
tion, technologies based on this approach present considerable
weaknesses because they need to be carried at all times in
order to allow continuous monitoring.

A set of less obtrusive techniques used in stress detection
are based on voice analysis and in particular on variations
in speech production, and take into consideration different
acoustic features, such as phonetic variations, pitch, glottal
pulse or spectral slope [30]. However, this methodology relies
on high acoustic quality, which is not always achievable in



natural settings, and its reliability can be undermined by large
individual differences in the correlation between speech and
emotion [40]. Moreover, despite being less obtrusive than other
physiological sensors, stress detection based on speech may
still pose privacy problems related to the recording and analysis
of human voice.

A promising and reliable alternative that can overcome
the major shortcomings posed by these methodologies is
activity recognition from mobile phones usage patterns. In
particular, research in this field has mainly investigated general
behavioural change and peoples relational dynamics [4], [16].
researchers have focused on the use of mobile phones to better
understand individuals affective state [29] and stress levels [5],
[39].

LiKamWa and colleagues [29] focused on mood recogni-
tion and developed MoodScope, a software system that detects
users mood from mobile phone usage data, such as phone
calls, sms logs, email messages, application use, web browsing
histories and location changes. The system achieved an initial
66% accuracy of participants’ daily mood, gradually improving
to 93% after two months of training, with phone calls and
categorized applications being the most relevant features.

Bauer and Lukowicz [5] addressed the problem of stress
recognition, and monitored 7 students during a two weeks
exam session followed by two weeks of non-stressful period.
They recorded data such as users location and social interac-
tions through Bluetooth proximity, phone calls and sms logs,
and detected an average behaviour modification of 53% for
each participant during the exam session.

Sano and Picard [39] collected 5 days of data for 18
participants integrating a wrist sensor with morning/evening
surveys (Big Five, mood, sleep quality, tiredness and stress
levels, or use of technological devices) and mobile phone usage
features (such as calls, sms logs, mobility patterns, screen
on/off mode). The authors applied correlational analysis to find
the most relevant features and reached a 75% accuracy using
machine learning to classify whether the participants were
stressed or not. This multifactorial approach achieves a good
accuracy level, which is comparable to the results presented in
this paper. However, we tested our approach on more reliable
dataset capturing the daily of larger amount of subjects (117
vs 18) for eight weeks.

In general, these previous studies suggest smartphones as
a valuable source of rich data from real life, which can be
exploited to gain beneficial insights about peoples affective
state and stress levels, in order to develop new context-
aware mobile services that could better support psychological
wellbeing.

III. OUR DATASET

Inside the Friends and Family longitudinal study (see for
more details [3]), we collected a dataset capturing daily stress
data of 117 subjects for more than eight weeks. During this
period, each participant was equipped with an android smart-
phone and with a sensing software explicitly designed for this
data collection. The source data consists of call logs, sms logs,
social proximity data, obtained by scanning near-by phones
and other Bluetooth devices every five minutes and ground
truth survey bases self-reported data about personality (“Big

Five” personality traits) and daily stress for each day of the
experiment. Social interactions were derived from Bluetooth
proximity data in a similar way to previous reality mining
studies [15]. The FUNF phone sensing framework [1] was
used to detect Bluetooth devices in the user’s proximity. The
Bluetooth scan was performed every 5 minutes in order to
keep from draining the battery while achieving a high temporal
resolution of social interactions tracking.

For the data analysis described in this paper we used 33497
phone calls, 22587 SMS, and 1460939 Bluetooth hits.

Additionally, the participants were asked to fill daily sur-
veys about their self-perceived stress level. The stress infor-
mation was reported by the participants filling a seven items
scale with 1 = “not stressed”, 4 = “neutral” and 7 = “extremely
stressed”. For the stress recognition task presented in this paper

TABLE 1. RECORDED DAILY STRESS
Min. | 0.000
Ist Qu. | 3.000
Median | 4.000
Mean 3.793
3rd Qu. | 5.000
Max. 7.000

the survey based labels data was transformed from 1 to 4 to
“not stressed” class, and from 5 to 7 — to “stressed”. The
ground truth labels distribution for our recognition task tend
to be approximately balanced by the classes.

In addition, personality was measured by asking subjects
to answer on a 1-5 point scale to the online version of the Big
Five questionnaire developed by John et al. [27], which owes
its name to the five traits taken as a constitutive of people’s
personality: Extraversion vs. Introversion; Emotional stability
vs. Neuroticism; Agreeableness vs. Disagreeableness; Consci-
entiousness vs. Unconscientiousness; Openness to experience.
We obtained personality scores by computing a sum for each
item in the personality trait questionnaire.

A partial version of the data, consistent with privacy and
legal limitations, is publicly shared for the research community
[2]. We hope that the Friends and Family study and similar
initiatives may be a first step for dealing with the lack of
empirical naturalistic pervasive computing data in the real
world [34].

IV. OUR APPROACH

Based on previous findings in social psychology [44], we
tested if extraverted people, as opposed to introverted people,
would be stressed or not given the same social interactions
and we found that we needed to create separate models for
extraverted and introverted people.

The idea to filter the weather implications on the inde-
pendent variables was the second novelty of our approach.
It was found to be consistent with environmental psychology
studies showing a significant effect of temperature, hours
of sunshine and humidity on mood [26], [38], [13]. In our
experiments, we used the following weather parameters: mean
temperature, pressure, total precipitation, humidity, visibility
and wind speed metrics, extracted from public sources.

Based on previous works that characterize social interac-
tions by means of mobile phone data and usage of social



interactions to predict personality traits and daily happiness
states [33], [6], we derived 25 call and sms features and
9 proximity features. These features, grouped in four broad
categories, characterize general phone usage, diversity, active
behavior and regularity.

More precisely, features for general phone usage capture
the total number of outgoing, incoming and missed calls, and
the total number of sent and received sms. Moreover, we
also extracted the outgoing to incoming calls ratio, missed to
(outgoing + incoming) calls ratio, and sms sent/received ratio.

Diversity measures how evenly an individual’s time is
distributed among others. In our case, the diversity of user
behavior is addressed by means of three kinds of features: (i)
entropy of contacts, (ii) unique contacts to interactions ratio,
(iii) number of unique contacts. We computed the diversity
features both for calls and sms. For entropy calculation, we ap-
plied Miller-Madow correction [31]. Miller-Madow correction,
dealing with the data quality problems, to get bias-corrected
empirical entropy estimate.

Concerning regularity features, we measured the time
elapsed between calls, the time elapsed between sms exchanges
and the time elapsed between call and sms. We consider both
the average and variance of the inter-event time of one’s call,
sms, call+sms. It is worthwhile to note that even though two
users have the same inter-event time for both call and sms, their
mean inter-event times for call+sms can be very different.

Our contribution to the feature space creation is based
on using sliding window functions to capture intertemporal
influence of the stress recognition independent variables. For
example, for each feature from the basic feature subset we
calculated second order features, such as mean, median, min,
max, 99%, 95% quantiles, quantiles for the cases of 0.5, 1,
1.5 and 2 standard deviations from the mean (applying Cheby-
shev’s inequality), variance and standard deviation functions.
Analyzing the time domain, for each basic feature subset we
calculated the same functions for 2 and 3 days backward
moving window to check if some events from the near past
influenced the current stress state.

For feature selection we used mean decrease in Gini
Coefficent [23]. The Gini coefficient measures the inequality
between the values of a frequency distribution, — in our case
the dimensions of the feature vector. A Gini coefficient of
0 expresses perfect equality, where all values have the same
predictive power. A Gini coefficient of 1 expresses maximal
inequality among the variables. However, for most features,
values close to 1 are very unlikely in practice.

A. Classification Algorithms and Model Selection

We formulated the automatic recognition of daily stress as
a classification problem with two classes (“not stressed” or
“stressed”). The ground truth labels for classification problem
were set to 0 for “not stressed”, where label score <= 4 and
1 for “stressed”, where label score > 4.

We separated all the data at random, following an uniform
distribution, in a training set and in a control test set fixing the
proportion of 80:20. To let optimization algorithms converge
more efficiently the feature matrix was centered and normal-
ized by each column [7].

Applying a grid search approach we trained a number of
sets of classifiers: support vector machines, neural networks,
ensemble of tree classifiers based on a Breiman’s Random For-
est (RF) and Friedmans Generalized Boosted Model (GBM)
[19] algorithms with different parameters.

Multiple regression models, support vector machines model
[43] with linear and Gaussian radial basis [9] kernels and
multi-layer perceptron neural network did not provide good
classification results or required building separate models for
each personality type and weather conditions.

Random forest algorithm produces a combination of tree
predictors, such that each tree is dependent on the values
of a random vector sampled independently with the same
distribution for all the classification trees in the forest [8]. The
decision boundary is formed according to the margin function.
Given an ensemble of tree classifiers hq(x), ha(x), ..., hi (X)
and if the training set is drawn at random from the empirical
distribution of the random vector Y, X the margin function is
defined as:

mg(X,Y) = avgrl(ht(X) =Y)—

1
max;i=y avgkI(hk(X) = j)7 M

where I(-) is the characteristic function. The margin function
measures the distance between the average votes at (X,Y") for
the right class and the average vote for any other class. For
this model the generalization error function is:

PE" = Px y(mg(X,Y) <0), 2

where Px y is the probability over (X,Y) space. For any
event A C ) of the feature space the characteristic function
I(-) of A is:
() = 1 = (zCA) (1
alz) = 0 otherwise 0 otherwise

For the second ensemble model (GBM-based) we adopted
a greedy function approximation and the stochastic gradient
boosting strategy, which are described in [20] and [21]. The
optimization problem was formulated as finding a function,
f(x), that minimizes the loss function ¥(y, f):

<— Hx} 3)

1) = argmin g [U(y, f(x))[x] )
The implementation implementer for this paper solution is
described in Algorithm 1.

In order to find the best model, we trained a number
of models and selected the best one based on k metrics
for the 10-fold validation strategy. The Cohen’s x measures
pairwise agreement among a set of functions which are making
classification decisions with correction for an expected chance
agreement [11]. x = O if there is no agreement more than
expected by chance following the empirical distribution. K = 1
when there is a max agreement. « is a state-of-the-art statistics
about how significantly the classification model is different
from chance. More importantly, it makes the interpretation of
the scale of what the model has learned to be an intuitive task.
K statistic has the properties of more robust and conservative
measure to show what we have learned from the data than F1
and area under the ROC curve metrics.



Algorithm 1: Gradient Boosting Implementation
for Stress Recognition Problem

Input: X = Z,_, such that ¥ € H;
Y = 17157\;4 such that ¢/ € F5
Output: f(Z) such that
N - N
f(x) = argmin, Zi:1 \I'(yiv p)‘
begin
U +—Bernoulli
T <—number of trees
K <—terminal nodes limit
p <—subsampling rate

f(@) «—0
for i € T' do
Compute gradient:

o —
i = — a7 Y (Wi, (T .
: o7y YW FED| e
Select p x N observations from the feature space

Fit the tree, limited to K terminal nodes

Compute the optimal terminal node:
pr = argming 3z o g, V(yi, f(Ti) + p)
for j € length(Z) do

Update f(Z), such that
F@) « J(@) + Mpjia)

end
end

return f(%)

end

During the learning and model selection process we fol-
lowed a leave-one-out 10-fold cross validation strategy. We
adopted this strategy in order to prevent data overfitting and
to deal with potential data loss in cases when calls, sms and
Bluetooth proximities existed in the real world but were not
registered by the mobile application.

The performance metrics used to evaluate the models are:
accuracy, sensitivity, specificity and Cohen’s «. For detailed
analysis we provide model confusion matrix [42]. The signifi-
cance of the results is supported by the proper statistical tests
[22] and is shown in the tables.

V. EXPERIMENTAL RESULTS AND DISCUSSION

The final feature vector selected for the recognition task
has 111 dimensions. Interestingly, for the computational power
of the current devices it may be considered being a low-
dimensional feature vector, that can be computed not only on
powerful servers but even on a smartphone.

Random Forests were trained through a step-wise increase
of the number of trees equal to the upper limit of 2'!. Optimal
number of trees for model generalization as measured by mean
misclassification rate for 10-fold cross validation strategy is
estimated to be 112 trees.

Recognition model based on Random Forest algorithm

shows 90.68% accuracy on the training set and 72.51% ac-
curacy on the test set (Table II).

Metric Value
Accuracy 0.7239
95% CI | (0.7063, 0.741)
P-Value [Acc > NIR] < 2.2e-16
Kappa | 0.3707
Sensitivity | 0.5037
Specificity 0.8486

TABLE II. RF-BASED MODEL PERFORMANCE METRICS

Instead, GBM-based model showed the results provided in
Table III. Despite better Accuracy and Cohen’s x metrics for
Random Forest based model, the choice of the more adequate
learning approach depends on the concrete application task.
Specificity of 92.52% using GBM-based model in comparison
with 84.86% using random forest algorithm can be favorable
if we are focused more on “not stressed” class, rather than
stress detection.

Metric Value
Accuracy 0.7135
95% CI | (0.6957, 0.7308)
P-Value [Acc > NIR] 3.156e-16
Kappa | 0.2992
Sensitivity 0.3397
Specificity | 0.9252

TABLE III. GBM-BASED MODEL PERFORMANCE METRICS

The confusion matrices for each model test sets are pro-
vided in Table IV and Table V. These matrices show that there
is a major agreement between classes. But Table IV shows that
random forest based solution is better for detecting stress.

0 1 0 1
0 1404 460 0 1534 620
1 254 479 1 124 319

TABLE IV. CONFUSION MATRIX TABLE V. CONFUSION MATRIX
FOR RF-BASED MODEL FOR GBM-BASED MODEL

The investigation of the most important predictors of daily
stress reveals interesting associations.

All the personality traits contributed significantly in pre-
dicting the daily stress variable. These results are interest-
ing because previous studies in social psychology focused
on Neuroticism, Extraversion and Conscientiousness. Instead,
our work shows the important contribution played also by
Agreeableness and Openness for the automatic classification
of daily stress.

With regard to weather, we found a confirmatory associa-
tion between temperature, humidity, wind speed, pressure, total
precipitation and visibility and stress.

Regarding mobile phone data, it is interesting to note
the significant contribution of the proximity features. Among
the top 30 features used for stress recognition, 12 features
are proximity ones calculated from the Bluetooth data. In
particular, an interesting predictive role is played by the time
intervals for which an id is seen. In addition, features capturing
the diversity in co-location interactions are in the top 30
list (e.g. entropy of proximity contacts). This result seems
to confirm previous studies in social psychology that found
associations between people’s stress and the richness in terms



of the amount and the diversity of people’s social interactions
[24]. Instead, among the 30 less predictive features we can find
the number of times in which the least common ID is seen.
Interestingly, the results obtained using proximity features
seem to confirm previous findings in social psychology: in
particular, the relevant role played by interactions with strong
ties in determining the stress level of a subject. For sure, this
result requires further investigation.

As for call interactions, we can infer the role played by
general phone usage features such as the number of incoming
calls and the number of outgoing calls. On the contrary, the
role of sms interactions for predicting daily stress is less
evident from our investigation. The only feature related to sms
interactions among the top 30 predictive features is subject
active behavior and more specifically is the latency in replying
to a text message. Therefore, the predictive power of the sms
data needs further investigation.

The limitations of our study include the following: (1)
our sample comes from a population living in the same
environment — a campus facility of a major US university; (2)
non-availability of proximity data concerning the interaction
with people not participating in the data collection; (3) missing
data coming out of battery issues; (4) absence of location data,
which in fact could have been tracked.

VI. SOCIAL IMPLICATIONS FOR SUSTAINABLE LIVING

Stress has become a major problem in our society. New
information and communication technologies, ubiquitous con-
nectivity, information overload, increased mental workload and
time pressure are all elements contributing to increase general
stress levels. While in some cases people may realize that
they are undergoing stressful situations, for example under
intense pressure such as an approaching deadline, severe and
chronic stress may be more difficult to detect. Moreover, stress
is not necessarily always perceived as negative, and may be
considered the norm in a modern and demanding society.
Nonetheless, while slightly increased stress levels may be
functional for productivity, prolonged and severe stress can be
at the source of several physical dysfunctions like headache,
sleep or immunological disorders, unhealthy behaviours such
as smoking and bad eating habits, as well as of psychological
and relational problems that can deeply affect peoples social
life.

Our technology provides a cost-effective, unobtrusive,
widely available and reliable tool for stress recognition. It
detects daily stress levels with a 72.39% accuracy combining
real life data from different sources, such as personality traits,
social relationships (in terms of calls, text messages and
Bluetooth proximity), and weather data. The development of
a reliable stress recognition system is a first but essential step
toward wellbeing and sustainable living, and its scope can be
extended to different areas of applicability. Providing people
with a tool capable of gathering rich data about real life,
and transforming them into meaningful insights about stress
levels, paves the way to a new generation of context-aware
technologies that can target clinics as well as the corporate
sector and common citizens. This technology can inform the
design of ICT based medical decision support systems for the
assessment and treatment of psychological stress. With such a
tool, therapists could monitor and record patients daily stress

levels, access longitudinal data, identify recurrent or significant
stressors and modulate treatment accordingly.

In work environments, where stress has become a serious
problem not only affecting productivity and leading to occu-
pational issues, but also causing health diseases, our system
could be extended and employed for early detection of stress
related conflicts and stress contagion in professional social
networks, and for supporting balanced workloads. Awareness
is a first but crucial step to motivate people to change their
behaviour and take informed and concrete steps toward a
healthy lifestyle and an appropriate stress balance. Mobile
applications developed on the basis of our technology could be
targeted to the general public and provide contextual feedback
to increase peoples awareness of their stress levels, alerts when
they reach a warning threshold, and suggest stress management
and relaxation techniques when appropriate.

VII. CONCLUSION AND FUTURE WORK

In this paper we provide a new evidence that daily stress
can be reliably recognized based on human behavior metrics
derived from mobile phone data.

The scientific novelty is focused on the original approach
for feature extraction, selection, and the ensemble recognition
model which combines a number of models for each different
weather conditions and personality dispositions.

Despite the limitations discussed above, we believe that
our solution, resulting the 72.39% accuracy and 0.37 Cohen’s
kx metrics for 2-class classification problem, have provided
substantial proof that individual daily stress can be predicted
from smartphone data. The experimental results based on
Random Forest and Gradient Boosted Machine algorithms
are discussed, showing that Random Forest based algorithm
is better to detecting stress, and Gradient Boosted Machine
based model provides better results for detecting “not stressed”
daily states. Random Forest based model shows low variance
comparing to the GBM-based one, thus winning the bias-
variance tradeoff and preventing overfitting, given the noisy
source data.

Individual, social and business implications of the proposed
technology for sustainable living are significant and practi-
cal, given the fact of unobtrusive and cost-effective way of
data collection, low-dimensional feature space discovered and
the algorithmic efficiency of the proposed stress recognition
model.

Future work will be focused on different feature subsets
interaction and on a multi-step stress recognition model de-
velopment, on the first step predicting personality from user’s
mobile phone activity and on the next step — detecting stress
in a compeletely automated way.

ACKNOWLEDGMENTS

The work of Andrey Bogomolov was partially supported
by Telecom Italia Semantics and Knowledge Innovation Lab-
oratory (SKIL) with research grant T.

REFERENCES

[1] FUNF Open Sensing Framework. http://www.funf.org, Access date:
12-JUN-2013.



[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

Friends and Family Dataset.  http://realitycommons.media.mit.edu/
friendsdataset.html, Access date: 15-JAN-2014.

Nadav Aharony, Wei Pan, Cory Ip, Inas Khayal, and Alex Pentland.
Social fmri: Investigating and shaping social mechanisms in the real
world. Pervasive and Mobile Computing, 7(6):643—-659, 2011.

Nadav Aharony, Wei Pan, Cory Ip, Inas Khayal, and Alex Pentland. The
social fmri: measuring, understanding, and designing social mechanisms
in the real world. In Proceedings of the 13th international conference
on Ubiquitous computing, pages 445-454. ACM, 2011.

Gerald Bauer and Paul Lukowicz. Can smartphones detect stress-related
changes in the behaviour of individuals? In Pervasive Computing
and Communications Workshops (PERCOM Workshops), 2012 IEEE
International Conference on, pages 423-426. IEEE, 2012.

Andrey Bogomolov, Bruno Lepri, and Fabio Pianesi. Happiness
recognition from mobile phone data. In Social Computing (SocialCom),
2013 International Conference on, pages 790-795, 2013.

G. E. P. Box and D. R. Cox. An Analysis of Transformations. Journal
of the Royal Statistical Society. Series B (Methodological), 26(2):211-
252, 1964.

Leo Breiman.
2001.

Martin D. Buhmann and M. D. Buhmann. Radial Basis Functions.
Cambridge University Press, New York, NY, USA, 2003.

Gokul Chittaranjan, Jan Blom, and Daniel Gatica-Perez. Mining large-
scale smartphone data for personality studies. Personal Ubiquitous
Comput., 17(3):433-450, March 2013.

Jacob Cohen. A Coefficient of Agreement for Nominal Scales. Educa-
tional and Psychological Measurement, 20(1):37-46, April 1960.

S. Cohen, Kessler R. C., and L. U. Gordon. Measuring stress: A guide
for health and social scientists. Oxford University Press, USA, 1997.

Jaap J. A. Denissen, Ligaya Butalid, Lars Penke, and Marcel A. G. Van
Aken. The effects of weather on daily mood: A multilevel approach.
Emotion Researcher, 8(5):662-667, 2008.

Wen Dong, Bruno Lepri, and Alex Pentland. Modeling the co-evolution
of behaviors and social relationships using mobile phone data. In MUM,
pages 134-143, 2011.

Nathan Eagle and Alex Pentland. Reality mining: sensing complex
social systems. Personal and Ubiquitous Computing, 10(4):255-268,
2006.

Nathan Eagle, Alex Sandy Pentland, and David Lazer. Inferring
friendship network structure by using mobile phone data. Proceedings
of the National Academy of Sciences, 106(36):15274-15278, 2009.
Tobias Esch, Gregory L Fricchione, George B Stefano, et al. The
therapeutic use of the relaxation response in stress-related diseases. Med
Sci Monit, 9(2):23-34, 2003.

G. Fink. Stress consequences: Mental, neuropsychological and socioe-
conomic. Elsevier, San Diego, CA, 2010.

Random forests. Mach. Learn., 45(1):5-32, October

Yoav Freund and Robert E Schapire. A decision-theoretic generalization
of on-line learning and an application to boosting. Journal of Computer
and System Sciences, 55(1):119 — 139, 1997.

Jerome H Friedman. Greedy function approximation: a gradient
boosting machine. Annals of Statistics, pages 1189-1232, 2001.

Jerome H Friedman. Stochastic gradient boosting. Computational
Statistics & Data Analysis, 38(4):367-378, 2002.

Salvador Garcia and Francisco Herrera. An Extension on “Statistical
Comparisons of Classifiers over Multiple Data Sets” for all Pairwise
Comparisons. Journal of Machine Learning Research, 9:2677-2694,
December 2008.

C Gini. Concentration and dependency ratios.
Economica, 87:769-792, 1997.

William J. Goode. A theory of role strain. American Sociological
Review, 25(4):pp. 483-496, 1960.

J.A. Healey and R.W. Picard. Detecting stress during real-world driving
tasks using physiological sensors. Intelligent Transportation Systems,
IEEE Transactions on, 6(2):156—166, 2005.

Edgar Howarth and Michael S Hoffman. A multidimensional approach

to the relationship between mood and weather. British Journal of
Psychology, 75(1):15-23, 1984.

Rivista di Politica

[27]

[28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

(371

[38]

[39]

[40]

[41]

[42]

[43]

[44]

Oliver P. John and Sanjay Srivastava. The Big Five trait taxonomy:
History, measurement, and theoretical perspectives. In Lawrence A.
Pervin and Oliver P. John, editors, Handbook of Personality: Theory and
Research, pages 102-138. Guilford Press, New York, second edition,
1999.

E. Jovanov, A. O’Donnell Lords, D. Raskovic, P.G. Cox, R. Adhami,
and F. Andrasik. Stress monitoring using a distributed wireless intel-
ligent sensor system. Engineering in Medicine and Biology Magazine,
IEEE, 22(3):49-55, 2003.

Robert LiKamWa, Yunxin Liu, Nicholas D. Lane, and Lin Zhong.
Moodscope: building a mood sensor from smartphone usage patterns.
In Proceeding of the 11th annual international conference on Mobile
systems, applications, and services, MobiSys ’13, pages 389—402, New
York, NY, USA, 2013. ACM.

Hong Lu, Denise Frauendorfer, Mashfiqui Rabbi, Marianne Schmid
Mast, Gokul T. Chittaranjan, Andrew T. Campbell, Daniel Gatica-Perez,
and Tanzeem Choudhury. Stresssense: detecting stress in unconstrained
acoustic environments using smartphones. In Proceedings of the 2012
ACM Conference on Ubiquitous Computing, UbiComp *12, pages 351—
360, New York, NY, USA, 2012. ACM.

G. Miller. Note on the bias of information estimates. Information theory
in psychology: Problems and methods, 2(95):100, 1955.

Geoffrey Miller. The smartphone psychology manifesto. Perspectives
on Psychological Science, 7(3):221-237, 2012.

Yves-Alexandre Montjoye, Jordi Quoidbach, Florent Robic, and
Alex(Sandy) Pentland. Predicting personality using novel mobile phone-
based metrics. In ArielM. Greenberg, WilliamG. Kennedy, and Nat-
hanD. Bos, editors, Social Computing, Behavioral-Cultural Modeling
and Prediction, volume 7812 of Lecture Notes in Computer Science,
pages 48-55. Springer Berlin Heidelberg, 2013.

S. Moran, LL. de Vallejo, K. Nakata, R. Conroy-Dalton, R. Luck,
P. McLennan, and S. Hailes. Studying the impact of ubiquitous mon-
itoring technology on office worker behaviours: The value of sharing
research data. In Pervasive Computing and Communications Workshops
(PERCOM Workshops), 2012 IEEE International Conference on, pages
902-907, 2012.

Amir Muaremi, Bert Arnrich, and Gerhard Troster. A survey on
measuring happiness with smart phones. In 6th International Workshop
on Ubiquitous Health and Wellness (UbiHealth 2012), 2012.

K. Plarre, A. Raij, S.M. Hossain, A.A. Ali, M. Nakajima, M. Al’absi,
E. Ertin, T. Kamarck, S. Kumar, M. Scott, Daniel Siewiorek,
A. Smailagic, and L.E. Wittmers. Continuous inference of psychological
stress from sensory measurements collected in the natural environment.
In Information Processing in Sensor Networks (IPSN), 2011 10th
International Conference on, pages 97-108, 2011.

Cohen S, Janicki-Deverts D, and Miller GE. Psychological stress and
disease. JAMA, 298(14):1685-1687, 2007.

Jeffrey L Sanders and Mary S Brizzolara. Relationships between
weather and mood. The Journal of General Psychology, 107(1):155—
156, 1982.

Akane Sano and Rosalind W Picard. Stress recognition using wearable
sensors and mobile phones. In Affective Computing and Intelligent
Interaction (ACII), 2013 Humaine Association Conference on, pages
671-676. IEEE, 2013.

Klaus R Scherer, Didier Grandjean, Tom Johnstone, Gudrun Klasmeyer,
and Thomas Bénziger. Acoustic correlates of task load and stress. In
INTERSPEECH, 2002.

Jacopo Staiano, Bruno Lepri, Nadav Aharony, Fabio Pianesi, Nicu Sebe,
and Alex Pentland. Friends don’t lie: inferring personality traits from
social network structure. In Proceedings of the 2012 ACM Conference
on Ubiquitous Computing, pages 321-330. ACM, 2012.

Stephen V. Stehman. Selecting and interpreting measures of thematic
classification accuracy. Remote Sensing of Environment, 62(1):77-89,
1997.

Vladimir N. Vapnik. The nature of statistical learning theory. Springer-
Verlag New York, Inc., New York, NY, USA, 1995.

M. Vollrath and S. Torgersen. Personality types and coping. Personal.
Individ. Differ., 29:367-378, 2000.


https://www.researchgate.net/publication/266968426



