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Abstract—Distribution microgrids are being challenged by

operating in islanded mode due to the lack of centralized fas

reverse power flows and voltage fluctuations due to renewable reacting generators|[8]. On the other hand, subsidizingfirea

generation, demand response, and electric vehicles. Advess in
photovoltaic (PV) inverters offer new opportunities for reactive
power management provided PV owners have the right invest-
ment incentives. In this context, reactive power compensamn
is considered here as an ancillary service. Accounting forhie
increasing time-variability of distributed generation and demand,
a stochastic reactive power compensation scheme is devedop
Given uncertain active power injections, an online reactie
control scheme is devised. This scheme is distribution-feeand
relies solely on power injection data. Reactive injectionsare
updated using the Lagrange multipliers of a second-order coe
program. Numerical tests on an industrial 47-bus microgrid and
the residential IEEE 123-bus feeder corroborate the reactie
power management efficiency of the novel stochastic schemeeo
its deterministic alternative, as well as its capability totrack
variations in solar generation and household demand.

Index Terms—Photovoltaic inverters, voltage regulation, con-
vex relaxation, loss minimization, reactive power comperstion,
stochastic approximation, optimal power flow.

I. INTRODUCTION

power control by distributed generation (DG) units has been
advocated as a viable solutidn [9]] [1].

Although prohibited by current standards [[10], the power
electronics of PVs can be commanded to provide reactive
injections as well; se€ [11] and references therein. Fa thi
reason, reactive power compensation via DG units has been an
active research area lately. A multi-agent approach isqseg
in [12], while voltage regulation is cast as a learning peotl
in [13]. Control policies based on approximate models are
developed in [[1]; and a successive convex approximation
is adopted in[[14] for voltage regulation. Upon linearizing
the power flow equations, a two-layer decentralized scheme
is proposed in[[11]. Another decentralized consensus-type
algorithm is pursued ir_[15] after approximating power &xss
as a quadratic function of reactive power injections. Lizeal
(re)active injection updates are reported[in| [16],/ [17B][1

All previous schemes build on approximate grid models.
Being an instance of the optimal power flow (OPF) problem,
reactive power management is a non-convex problem, yet

Medium- and low-voltage power grids nowadays are urseveral convex relaxations have been proposed [19]. Imlradi
dergoing a transformative change to microgrids. Renewaldsstribution grids, OPF can be surrogated by a semidefinite
generation and elastic loads are uncertain, power flows @mgram (SDP)[20],[21]; or by a second-order cone program
frequently reversed, and bus voltage magnitudes can fligctuSOCP) using either polar coordinatesl|[22], or the branah flo
considerably. For example, the power generated by a phohoedel [23], [24], [25]. A one-to-one mapping between their
voltaic (PV) network with intermittent cloud coverage catfieasible sets proves the equivalence of the two relaxaji6js
vary by 15% of its nameplate capacity within one-minutand advocates using the SOCP one due to its simplicity.

intervals [1]. Different from transmission grids, bus \agje

Sufficient conditions guaranteeing the exactness of theecon

magnitudes in distribution grids are markedly affected bielaxation (i.e., that solving the relaxed problem is eglémt
active power variations. On a clear day, solar generatiop mi solving the original non-convex one) have been develpped
easily exceed local demand (especially at midday off-peake [19] for a review. Regarding reactive power compensatio
hours) and cause over-voltages [2]; whereas overnightleeshia distributed algorithm based on the SDP relaxation has been

charging could lead to serious voltage s&ds [3].

developed in[[2[7], and a centralized approach for inverfeRV

Given active power injections, reactive power managemecdntrol using the SOCP relaxation has been devisedlin [7].

aims at controlling reactive injections so that power lesseer
distribution lines are minimized while bus voltage magdés
are maintained within the prescribed limits, e 5% of their

The approaches so far assume that active power injections
are precisely known and remain unchanged throughout the
reactive control period. However, such assumptions are les

nominal values. Traditionally, reactive power managementrealistic in future microgrids with high penetration of esm

achieved via tap-changing under load (TCUL) transformerables. Our first contribution is a stochastic framework for
step voltage regulators (SVR), shunt capacitors and resctaeactive power management. We consider a radial microgrid
and static var compensators (SVC) [4]; see for examiple [3Yhere several DG units with reactive power control capabil-

[6] for related control algorithms. Operational costs,cdite

ities have been integrated. The grid operation is dividéd in

control actions, and slow response times are the fact@tsort time intervals. At every interval, a microgrid corieo
limiting the use of such devices alone for voltage regutaticcollects active nodal injections and decides the reactbveep

in distribution systems with renewables [7]. Reactive powéo be injected by controllable DG units. (Re)active load
management becomes even more challenging in microgritsmands and renewable generation are known only via noisy
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Fig. 1. Busn is connected to its unique parent, via line n. .
for all n € N, whereC, = {k € N : 7, = n} is

the set of the children nodes for bus Equations [(I1)E[2)

and delayed estimates, and are hence, modeled as stochf{Rw from power conservationf]3) is derived upon squgrin
processes. Different from the power loss minimizatioriig][2 second Kirchoff's law; and[{4) from current computations.
an ancillary voltage regulation market is formulated h&e: The branch flow model is essentially derived from the full
owners are reimbursed for providing reactive power suppoffC model, after eliminating voltage and current phases. The
Reactive injections from PVs are set as the minimizers of &odel is accompanied with the initial conditiong = 1,
expectedeactive power compensation cost. Po = Zkec_o Py, andgo = ZkeCo Qk; o

As a second contribution, the derived optimization problem The active and reactive power injection at buscan be
is solved using a provably convergent stochastic appraigma decomposed into its generation and consumption components
algorithm. It is further shown that a subgradient of the lmed  @SPn = Pj — p;, and g, = qj — g5, For a purely load bus,
cost is computed via the dual SOCP problem and reactifi€re is no generatiofpj, = ¢; = 0), the consumed active
PV injections are updated by a simple thresholding rulBOWer isp;, > 0, and its reactive powey;, > 0 is typically
Numerical results on industrial and residential micrognidth "€élated top;, via a constant power factor. A DG bus (e.g.,
real solar generation and demand data corroborate theagffic@ industrial facility equipped with rooftop solar panetseo
of the novel reactive power management scheme. wind turbine) not only consumes power denoted;hyand

The rest of the paper is outlined as follows: After thds» Put it can also generate active powgr> 0, and provide
branch flow model is presented in Sectich II, the problefgactive suppory; which can be positive or negative. For a
of stochastic reactive power compensation is formulated S hosting a shunt capacitor onpy, = ¢;, = 0 andg;; > 0.
SectiorfTIl. A stochastic approximation algorithm is deyed For notational simplicity, I(_et us collect all nodal quaietit
in SectiorTV, its performance advantage over an instamiane "€/ateéd to non-root buses in vectors := [p1 --- pn/’,
reactive control scheme is supported by numerical tests gn:= 91 --- gnJ’, andv := [vy --- wy]'. Likewise, for
Sectior Y, and conclusions are drawn in Secfioh VI. line quantm/es define vector® = [P - Py, Q =

Regarding notation, lower- (upper-) case boldface lettefd1 **- @nJ’, and€:=[f, --- £y]". Bus voltage magnitudes
denote column vectors (matrices), with the exception o liri"€ allowed to lie within a prespecified range (typically a
power flow vector§P, Q). Calligraphic symbols are reserved>70 Of their nominal value), yielding the voltage I”'f“ts
for sets. Prime stands for vector and matrix transpositioty: € [Un:7n] for all n € A. Upon settingv := [v; --- uy]
Vectors0 ande,, denote the all-zeros and theth canonical

andv := [t; --- |, voltage regulation constraints can be
vector, respectively. Symbdlix|» denotes the,-norm ofx. ~ compactly expessed as

veV:i={v:v<v<v}L (5)
Il. SYSTEM MODEL Building on [1)-[%), our stochastic reactive control scleeis

Consider a microgrid consisting & + 1 buses. For opera- formulated next.
tional and architectural simplicity, the microgrid is assd
to be radial and it can thus be modeled by a tree graph lIl. PROBLEM FORMULATION
T := (No, L), whereN, := {0,1,..., N} denotes the set of Inthe envisioned microgrid operation scenario, active gow
nodes (buses), and’| = N is the cardinality of the edge setis managed at a coarse timescale. For example, a power
L. The tree is rooted at the substation bus indexed by0. dispatch is issued for the next 24 hours through a day-ahead
For every bus: € \V,, letv,, be the squared voltage magnitudenarket. Active power adjustments are implemented on a 5- or
at busn andp, + jg. the complex power injected into bus10-minute basis via a real-time market. Both the hourly and
n. Notice that every non-root bus € A/ = {1,..., N} has the real-time market active power dispatch could depentien t
a unique parent bus that will be denoted by. Hence, the cost of dispatchable generators and predictions on redewab
directed edg€m,,n) € L corresponding to the distributionenergy within the microgrid, as well as the costs of power
line feeding bus: will be simply indexed byn; see Fig[ll. exchanges with a main grid. Together with this hourly active
Let also z, = r, + jz, and/, denote the line impedancepower schedule, the microgrid controller manages reactive
and the squared current magnitude on linerespectively. If power by controlling transformers, shunt capacitors, SVRs
P, +jQ, is as the complex power flow on lineseen at the and SVCs [[4], [[5]. Nonetheless, slow response times and
sending endr,,, the so termedbranch flow modeis described switching limitations render such devices inadequate &y v



fast reactive power control. The power electronic intezfac Reactive power injection regionChoosing @ requires
found in DG units, such as PV inverters, provide a viable sonderstanding the reactive control capabilities of PVs [1]
lution for near real-time reactive power management [17].[2 Consider a solar panel located at busvith nameplate active
Reactive power compensation occurs over time intervgiswer capacityp?, and its inverter having apparent power
indexed byt. These intervals could either coincide with realeapability s,,. Because PVs are currently restricted to operate
time market periods (e.g., 5 minutes), or be even shorter (8unity power factor [10], their inverters are typicallysigned
seconds), depending on the variability of active powers asd thats,, = pJ. If pfm is the PV output at time, the inverter
cyber resources (sensing, communication, and computatj ; g 2 _ (19 )2
d)élays). If(pe, qr) fElre the gctive and reactive power inje?:tion%md Co-mpensat#’-t constrained ay, ;| < /57 — (Ph,e)*.
) ’ . . is design constraint introduces two practical concefirst,
in all but the root buses during control periadhe power loss the reactive injection region becomes time-varying thus-co

on distribution lines is expressed as plicating (9). Second, whep; , = 77 (at maximum solar

N N output), no reactive power can be provided although at those
FPna) =Y o= rnln (6) instances it may be needed.
n=0 n=1 For these reasons, PV inverters have been advocated to
where the second equality follows froril (1). Recalling thdte oversized over their panel nameplate capacity so that
a: := q/ — qf, define for notational brevity sn > Dy C.F. [1]. By choosing for example, = 1.1p7 and

. limiting reactive power compensation tg's2 — (p7)? rather
ft(qg) = f(ptv qg - qt) (7) 2 g 2 H H H
than,/s2 — (p;, ,)?, the invertem can provide reactive power

Given active injectiong, and reactive demands;, con-  support with|q? ,| < 0.4559, regardlessof the instantaneous

ventional reactive power management aims at choogfngo PV outputp?, ,. Under this policy, the reactive injection region
that power losses are minimized and voltages are maintaingds the time-invariant convex set

within V. Concretely, reactive power management could be g =g

stated as finding Q:= g’ @] (10)
whereq? := [¢f --- ¢% ] andq? := [q] --- Q) W N, C N
is the subset of buses with controllable reactive injectjtimen
where Q is the reactive feasible region to be delineated latéky = —4% > 0 for n € Ny, andgj, = ¢4 =0 for n ¢ N,

Injecting @/ at timet + 1 would be the optimal control action Although the aforementioned scheme could be technologi-
under two operational conditions: cally feasible, PV owners have to invest on oversized imvrert

(C1) (p:,q¢) are precisely known, and As a fi_nancial int_:_e_ntive, PV sit_e_s With_ reactive power com-
(C2) they remain constant throughout periog- 1. pensatl_on capabilities can partlmpate in an .ancnlar.)tagﬁ
Yet such conditions are hardly met in microgrids: renewabfg9ulation market and be reimbursed for their reactive powe

DG entails time-varying active and reactive injectionslaw- SUPPOrt. Specifically, leé, > 0 [in ¢/kvar & h] be the price
inertia microgrids, the lack of droop controllers challeag fOr reactive power support at bus € A; and & > 0 [in
further voltage regulation. It is worth noting that even if/<Whl the price at which the microgrid buys (or sells) active
(pe,qS) are relatively constant over periodsand ¢ + 1, POWer po.: from (to) .the main g_rld. If prices are cor!stant
the microgrid controller has only their noise-contamidatgNroughout the real-time market interval or longer pericals
observations (direct measurements or delayed state ¢éstimaMarket-based extension 6f (9) could be formulated as

To overcome these difficulties, a ;tochastic opt@mization §’ = arg min_ &E[f:(q?)] + Z Enlqd] (11)
approach is pursued here. The active and reactive power QUeQ nen,

injections (p¢, qf) realized over an hour or over a real-time . . .
. : Where the microgrid controller trades power losses fortieac
market interval are modeled adochastic processedrawn

independently across time from a probability density fiorct gonvisglzl;zpoer)t( br)ész\éj'azhe ancillary market [n(11) can be
(pdf): Injections {p:} could be modeled as the sum of ad y exp

q] = i g 8
Gy = arg min fe(@?) (8)

nominalp® and deviationge; } that are assumed independent . . 9 N g
over time; and likewise fo{qs}. A meaningful stochastic Q= arg 0 Elf(a”)] + ch|qn| (12)
control scheme could entail minimizing theveragepower n=1
loss as[[28] wherec, := é,/¢y are the normalized prices for € N,
§9 = arg I?é% E[f,(q?)] (9) andc, := 0 for n ¢ Nj. Even if the joint pdf of (p:, qf)
qa

were known, evaluating the expectation[ih (9)[ad (12) woudd b
where the expectation is over timg or more precisely, non-trivial. To practically solve these two policies, actastic
over (pt,q¢). Rather than implementing the unreliable andpproximation approach is pursued next. The focus will be on
possibly obsolete instantaneous decisigfisof (8), problem solving [12), yet that is without loss of generality sincé 9
@) is expected to yield smoother control actions. Distindéhe special case of (12) whefe,, = 0}, cn-
from [28] where PVs were providing voltage regulation at
no charge, reactive compensation is interpreted here as an  |V. STOCHASTIC APPROXIMATION SOLVER
ancillary service. Before elaborating this service, thedtion Leveraging recent advances in online convex optimization
region @ should be understood first. (see for instance [29]), the problem in{12) can be cast in



a stochastic approximation framework. Successive estgnat The rule of [1¥) implies that if|y, | is smaller than
{@?} for the minimizerq? are iteratively found as soon as ay.c,, there is no reactive injection into bus When |y,, ¢|
new datum(p,,q;) becomes available. Specifically, adoptings large, its reactive injection saturates. Otherwige, =
the composite objective mirror descent approach [of [29}, : — sign(yn,:)n:cn. Therefore, once g; belonging to the
reactive injection iterate§/’s are updated as the minimizerssubdifferentiald f;(q7_,) has been foundg; can be easily

of the convex problem obtained from[(1]7).
N
§9 = ; 'q9 + L9 — & 2 9| (13 o ) )
q; = are WY, &t o, la” = &3+ > ealaf] (13) B. Efficient Subgradient Computation

n=1
whereg, is an arbitrary subgradient of,(q¢) evaluated at Before finding a subgradieny;, an alternative representa-
q’_, andn, > 0 is an appropriately selected step sizeion for fi(q?) is derived first. Recall thaf;(q?) is the power
Recall that the subgradient generalizes the notion of gi@ss on distribution lines when injecting:,q? — qf) into
dient to non-differentiable functions. For a convex fuanti the distribution grid. Provided thdp;,q? — qf) is feasible,
f : R" - R, any vectorg € R satisfying the inequality function f:(q?) depends on the underlying grid operating point
fly) > f(x) +g'(x —y) for everyy in the domain off, (Po,%,P,a,P,Q,£, v) [cf. E)]. Finding this point requires
constitutes aubgradienpf f atx. The set of all subgradientssolving the nonlinear equations inl (L}-(4), while guaraing
is termed thesubdifferentialof f at x, and is denoted by that voltages are maintained in the desired rafiges V).
df(x); see also[[30, Sec. 2.5]. Solving this set of nonlinear equations and linear inedjeslis
The rationale behind stochastic approximation algoritisnsnon-trivial. Under practical operating conditions, théusion
to first surrogate the original cost in{12) by its instantause has been claimed to be unique[31]. Even if multiple solution

approximation to yield exist, the grid operating point attaining the smallest Ilfss
N the same(p;, q? — qf) can be found as described next.
min_ fi(q?) + chquﬂ. (14) If the equalmes_ in [_114) are relaxed to inequalities, then
a’eQ — (o, q0, P, Q, £,v) lies in a convex set; see e.g.. [25]] [7].

- o ; - . _This convex set is represented by the linear equalities
Notice that the minimizer of[{14) is the per-time optimal X
) b P @D-@), the setV, and the second-order cone constraints

reactive injection. But instead of solving_{14), online iept P2 2 -y Under_diff hnical di
mization algorithms minimize a locally tight upper bound 01{_ ntQn < "”’Tn}ne - Under different technical condi-

the cost in[(T4). Such a bound can be obtained by maintainifig’s (see[lIN] and references therein), the minimizer ef th
Zﬁ;l cn|q?| and linearizingf;(q?) at the previous iterate as COnvex problem

Fe(@) ) +eila—al )+ 55 la—a |13 for a prope, > 0. L
After ignoring constant terms, the update [inl(13) follows.  f(p,q) = min Z Trln (18a)
. . - . P,Q
To practically implement the stochastic reactive control v =1
scheme of [(1I3), two issues need to be resolved: finding the s.top, = Z Py, — (P —ralyn), n€N (18b)
minimizer of [13) and calculating the subgradigptinvolved. rec, ’
A. Closed-Form Minimizer fofI3) In = kXC: Qk = (Qn — znln), n € N (18c)
€Cn
Suppose a subgradiegt has been found. Upon completing . 2 2y,
the square, the optimization if_{13) can be written as Un = Ury (7 )b = 2 P+ 20 Gn),
N nenN (18d)
. .1 2 p2 2
af = arg min Sla’ = yill3+m D ealail  (15) 0>t p (18¢)
n=1 Ur,,
wherey, := q/_, — mg:. Note that solving[{I5) decouples vevy (18f)
over the entries ofY as _ ) ) )
) satisfies the SOCP constraints [n_(118e) with equality. When
‘iﬁ,t = arg min,g 3 (¢ —yn,t)2 + necnld?| (16) this occeurs, the convex relaxati(_)n is said to b)gact To
95, <qn<dn summarize, when the relaxation is exact, the optimum value

wherey,, ; is then-th entry ofy,. By using the Karush-Kuhn- of (18) equals the loss experienced under injectignsy).
Tucker conditions for the univariate minimization [n16)e = Henceforth, the following assumptions will be adopted:
following result is shown in the Appendix. (A1) The convex relaxation ifL8) is exact

(A2) There exists a feasible?, Q, £, v) for (18) satisfying

Proposition 1. The minimizer of(d18) is expressed in closed constraints(I8@) with strict inequality.

form as Albeit assumptions (A1)-(A2) are not supported analytjcal
a5, Yn,t > G5+ Mecn here, they are verified throughout our numerical tests. il i
Yn,t — MCns  MiCn < Ynt < G5y + MiCn stances of (18) encountered in Secfidn V were exact. Additio
(j%t =< 0, —NiCn < Ynyt < MiCn . (17) ally, when for these instances the costin {18a) was maximize
Yn,t T MiCns @7 = NiCn < Yng < —MiCn rather than minimized, the resultant maximizers satisfigi)

[ Yn,t < g —Micn with strict inequality; thus, numerically verifying (A2).



. TABLE |
Under (Al), the(P,Q, £, v) minimizing (I8) corresponds STOCHASTICREACTIVE POWER MANAGEMENT ALGORITHM

to the underlying grid operation point, and more imporantl

f(p,q) is the actual power loss. Therefore, the instantaneol slf Input {cn }nen, (v, V), and step size. > 0
2: ConstructA,, A,, A, by, r., and{A,,cn,dn}nece
power loss fi(q?) = f(p+,a’ — qf) has been expressed | 5. | wiiocas” o
. . . do =
as the optimum value of an SOCP. Furthermore, since thes: for + = 1,...,T do
function argument$p;, q? — qf) appear in the left-hand side | s: Acquire (p:, qf) and construcb, (p;)
of constraints[(I8b)-(I8c)f;(q?) is a perturbation function | 6: Solve [28) forq = §{_, — qf to acquirex}
and is known to be convek [0, Lemma 4.24]. 7 Define}'; = Al e
The convexity off,(q?) implies the existence of its subd- | & dAfpply q{ as updated fron{(17)
ifferential & f,(qf) [30]. To efficiently calculate a subgradient L2~ €d for

g € 0fi(q}), let us first eliminate(P,v) and constraints
A /
(18K) and[(18d) from((18). To that end, define= [Q' £, o straints, introduce also the variable pafitsL,,, 1in) ner.

and expres¢P, v, q) as affine functions oz, namely Then, the dual of[{22) is provided &s [34], [32, pp. 566-7]
P =4z +by(p) (192) xS (wbu(p) — pud) ~ Na+ B, 1) (23)
v=A,z+b, (19b) et =2
q=A.z (19c) s.tol|unllz < pn

for appropriateN x 2N matricesA,, A,, A,, and N x 1 v>0,v>0

vectorsb,(p), b,. Notice the dependence df, on active AT —v)+ AN+ Z A, — pipc, +1. =0

injectionsp. Using these substitutions, constrairiis (18b) and nel

(I8d) can be eliminated; the voltage constraihis](18f) can R/hich can be solved as an SOCP as well
expressed as < A,z + b, < Vv; and the equalities if_(I8c) @3 '
are compactly written a§ (I9c). Theth hyperbolic constraint '
in (I88) can be expressed as the second-order €one [7]

In deriving
constraints [(22c) have been dualized based
on the fact that for fixed (x,z¢), the maximization
maxXy,u, {W'x — flozo : [Jull2 <o} is  equivalent to

2P, max,,,>o fo(||x[|2 — zo) and becomes zero whejx ||, < xzo;
2Q, < VU, +ln (20) and infinity, otherwise.
| If the tuple ({u}; ,, 15  fnec, A, v5, TF) is a maximizer of
; : ; (23) forp = p: andq = qf_; — qf, then—X\} € 9f,(q]_,).
or in terms of the introduced variabfeas Hence, theg, in (1) can be set tg — —. Finally, under
|Az + bn(p)|2 < chz+dy (21) (A2), complementary slackness asserts that'if > 0 for all

n € £ maximizing [23), then the related primal constraints

where the involved parameters are defined as in (22d) are satisfied with equality; see e.d..][35]. Thus,

2e), A, 2e), b, (p) {ur.+ > O}ner provides an exactness certificate for the convex
A, = 2[e!, 0] , b,(p) = 0 relaxation in [(IB).
e A, —[0 e] e, b, Table ] summarizes the novel stochastic reactive power
¢ =e, A, +[0 €], d, == e, b,. _comp:jensation scheme, for which while two observations are
in order.

Using the aforementioned substitutions and for.= [0" r']’
with r being the vector of line resistances, problém] (18) c
be equivalently written as

aRemarld. The derived control scheme does not depend on any
distributional assumption on actual active and reactivegro
injections. It rather utilizes real-time microgrid opéoat data
f(p,q) = min r.z (22a) to infer the underlying statistics. The numerical tests @c-S
i tion[V] indicate that this data-driven approach can everktrac
StoA,z=q (22b)

) slow time-varying statistics.
|1Anz +bu(p)l2 < €,z +dn, n €L (22€) Remark2. Albeit the focus has been on minimizing the re-

v<A,z+b, <V (22d) active power compensation cost, other microgrid managemen

which is also an SOCP. Assumption (A2) and the fact {hat (1 sks (voltage deviation _and conser vation voltage reguipt
is bounded below (by zero) guarantee strong duality and o Id be amenable to this stochastic control framework.
the dual problem of[{22) is solvable[32, Proposition 5.3.2]
Standard results from sensitivity analysis further impgtt ¢ Algorithm Convergence
the subdifferential off (p, q) with respect tag coincides with Define the cost function if{12) as
the negative of the optimal dual variables corresponding to
(221) [30, Theorem 4.26], [33]. N

The sought subgradient can be thus obtained via the dual h(a?) = E[fe(a”)] + Y enlgd]. (24)
problem of [22). Towards this direction, Iat v > 0, andv > n=1
0, be the dual variables corresponding[fo {22b) and the lowEhe following result that can be obtained fram|[29, Theorgm 8
and upper bounds in (2Rd), respectively. To dualize the S@Baracterizes the convergence of the iterateb ih (13).



Proposition 2. Let @¢ be a minimizer of(12), ¢/ the update
of (@3J), and \; a maximizer of @3). If ||q? — a7||% < 2D?
and [|A7]|2 < L for all ¢, it holds that

E[h(a7)] — h(@?) < (25)

VT
WhereqT =5 Zt 14 f and the constantv is 2 for n; =
L\[, and3/2 for n; = . It further holds that

ﬂ‘

/\

h(a) — h(g?) < (a + 4+/log ) (26) Fig. 2. Schematic diagram of the 47-bus industrial distidufeeder with
high penetration of photovoltaics located at buses 13, 9723, and 24([37].

with probability at leastl — 6~ 1.

Proposition 2 guarantees that the expected power loss peak values with a power factor of 0.8. Photovoltaic ineusi
perienced byg7. converges to the optimum stochastic powegs? and shunt capacitors are kept fixed throughout the interval
loss at the rate of(1/+/T). Beyond mean value convergencéo 60% of their peak values, while, = 1. A period of 1
from (28), the bound in (26) assures ttdt.) remains close hour divided into 30-second control intervals is simulatét
to the optimum~h(q?) with high probability. According to each 30-sec interval, the controller observes a noisesptad
the online convex optimization terminology, the algoritim version of the nominap® asp; = p° + €;, where the entries
Table[l enjoys sublinear regrét [29]. Moreover, Proposillb of ¢, are independent and zero-mean Gaussian samples having
asserts that the novel control scheme can operate for aatwnsyariance0.12, thus modeling disturbances in power injections
step sizen; = %, assuming of course tht is known in by 30%. Noisy readings are likewise collected for the notina
advance. That could be the case, if the proposed reactiverpog-c. Although reactive PV injectiong/ are decided upon
management scheme is periodically reset due to a new rehk noise-corrupted readingp;, qf), the actual power loss
time active power market dispatch. If on the other hafids depends on their nominal values #$p°, 4 — q>¢). The
unknown, a time-decaying step sige = LL\/E works as well algorithm was implemented using MATLAB and CVX, and
with a slight degradation in performance. Both the stepssizevery reactive control was run within 1.2 secs on an Intel
and the obtained bounds in Propositldn 2 dependdoand CPU @ 3.4 GHz (32 GB RAM) computer. Figuré 3 depicts
L. Apparently, when the reactive injection regi@ghmodels the reactive power management cost for the two control
box constraintsD depends on the reactive power capabilitieschemes over a single system realization. The algorithm of
of installed PVs ad <23 en, (7%)?. RegardingL, the/,-  Table[l converges within 20 iterations to a low cost, white it
norms of the subgradiengs can be upper bounded too wherdeterministic alternative fluctuates at consistently higtosts.

Q is compact([29]. Knowing precisely. may be practically  Figure[2 presents the cost curves obtained after averag-
unreallstlc Interestingly enough though, if the step s&e jng 40 independent realizations. The curves verify that the

= \/ for someﬂ > 0 rather thamy, = L\/- then [25) stochastic scheme achieves significantly lower reactiveepo
holds fora = = max{ﬁ, 1/5} [36]. management costs than the myopic deterministic scheme. It
is numerically observed that larger step sizes yield slower
V. NUMERICAL TESTS convergence, yet at a lower steady-state cost. The savings

The novel stochastic reactive power management scheifle$/h are 28.7, 39.7, 41.8, 44.9, and 45.6, respectively,
is numerically tested first on a 47-bus industrial distribdor n = 1,2,2.5,3.5,4. Practically, tuningy trades off the
tion network from South California Edison that is depicteditial transient for the steady-state cost and the traglof
in Fig. [@ [37]. For each operation interval, the microgriginderlying statistics.
controller collects injections from load buses, as well as The second experiment entails real solar generation data
active injections from DG buses. Reactive injections fro@ Dfrom the Smart* projec{[38]. The power outputs of the 3 PVs
units are determined: (i) by solving the deterministic coht involved in the Smart* microgrid over August 12, 2011, were
scheme of[(14), and (ii) via the stochastic control scheme pifeprocessed as follows: upon removing the minimum daily
Table[l. Performance is tested in terms of tkactive power value, generation curves were normalized to the capacity of
management coghat is the instantaneous counterpart of thine PV units in Figl7; see also F[d. 6. Industrial load densand
cost in [I1) evaluated on the true rather than the obserwsdre simulated at 80% of their maximum values plus a
(pt, qf). Observe that if{¢, = 0},.cn,, the reactive power Gaussian variation with standard deviation 15% of the nainin
management cost coincides with the power loss cost. Thalue. In addition to the original PV generators on buses 13,
power loss price is set t& = 6.6¢/kWh, and reactive power 17, 19, 23, and 24; four more PV generators with capacity
support prices aré,, = ¢,/80 = 0.0825¢/kVar & h for all 1.2MW have been installed on buses 11, 28, 40, and 44, to
n € M. It is worth mentioning that all SOCP relaxationsanodel higher solar penetration. Figure 5 shows the reactive
were feasible and exact. power compensation cost attained over the period 18:30-

The first experiment evaluates the effect of uncertainti@®:30 at 30-sec control intervals. The controller deteesithe
n (p:,qf) for controlling the 47-bus grid. Load injectionsoptimal reactive control based on the observed grid statehwh
(p¢, q°) are kept fixed throughout the interval to 45% of theiis the actual state delayed by 1 minute due to communication
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and computation delays. Together with the deterministid an
stochastic schemeg,(= 0.2), the figure depicts the cost of
the ideal control scheme that determines DG reactive iiojest
based on the actual instantaneous grid state. Note thaittee |
is practically infeasible, but it serves as a lower bounde Th
numerical results show that upon convergence, the stachast
scheme approaches the ideal one and is able to track solar
generation variations. The reactive power managemenfibene
of the stochastic scheme over the deterministic one is 12.7$
Figure[® presents the cost achieved by the new scheme dur-
ing the daylight interval on August 12, 2011. Load demands
were scaled to 90% of their maximum value, ang 0.2. The
control interval was selected as 30 seconds, and the olaserve
state was the actual one delayed by 30 seconds. When PV
generation is high, power losses and the related cost are low
as expected due to local generation. The curves on the top
panel testify that the stochastic scheme attains a sligliglyer
cost than the ideal one. It further tracks successfully thady
solar power ramp occurring between 7.30-9.15am, as well as
the variations due to cloud coverage for the rest of the day.
Finally, the third experiment involved real data both folaso
generation and consumption, which were tested on the IEEE
123-bus feedei [39]. The latter is a residential feeder et
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lower than the one achieved by its myopic deterministic
alternative. During experiments using real solar genenadind

load consumption data, the novel scheme tracked succlgssful
the underlying system variations and approached the ideal
reactive control scheme. The merit of our stochastic fraomkew

is twofold: First, apart from requiring slow variations, no
distributional assumptions on active injections are ingobs
Rather, the control algorithm adjusts dynamically to migid
operation data. Second, albeit the goal here was to minimize
the reactive power compensation cost, the novel approach
could be extended to other pertinent microgrid management
tasks (e.g., voltage deviation, conservation voltageledigumn).
Characterizing the resiliency of this centralized control
cyber-attacks on injection data and deriving decentrdlize
solvers constitute directions for future research.

Fig. 7. Schematic diagram of the IEEE 123-bus feeder with [3@% APPENDIX

Proof of Propositior1L: For notational simplicity, con-
modified according to [40]. Regarding renewable generatiofider the canonical problem for> 0 andz < 0 < =
solar panels were located on buses No. 32, 51, 64, 76, 96, 111,
and 450, with capacities 40, 80, 160, 60, 160, 80, and 60 kW, & :=argmin{i(z—a)®+blz|:z <z <T}.  (27)
respectively. Solar outputs were scaled versions of theesur — _ o
shown at the bottom panel of Figl 6. All PV inverters Weréf (&, 5). are the optimal Lagran_g_e mgltlphers for the b-ox
assumed to be oversized by 130%, yielding a reactive pov\?é)pstralnts in[{27), the KKT conditions imply that theresti

capacity of 0.66 times the active power capacity. Reacti\?eSUbgradieng(j) of | at# satisfying

power compensation prices_ were selecte_d to be 0.043&r f=a—bs(@)+£—¢ (28a)
& h for all PVs. Consumption data provided by the Smart* 5~ 0 B (28b)
project were utilized[[38]. From a total of 443 minute-based é(g — )=
household load data for August 12, 2011, we selected 85 (@ -7)=0 (28c)
after eliminating bad and incomplete entries. These lodd da £E>0 (28d)
were then scaled to match the IEEE 123-bus feeder profile. A B _

z<z<T. (28e)

reactive control period of one minute was implemented, and
the observed states were equal to the actual ones delayed-by the subgradient offz|, it holds thats(x) = sign(x) for
one minute. The step size was setjto= 2, and every control » £ 0, and |s(z)| < 1, otherwise. Depending on the sign of
run lasted 3.7 secs. As shown in Hig. 8, the stochastic schegehree cases can be identified > 0 > z, condition [28b)
was able to successfully track solar and load variations. yields¢ = 0 and [28h) reads = a —b— ¢ > 0. Two subcases
can be now considered: Eithérc (0,7) implying thaté = 0
VI. CONCLUDING REMARKS andz = a — b whena € (b,b+ ); or, £ = T implying
Reactive power compensation was considered in this wofk= @ —b — T whena > b + . The case of negativé can
Uncertainty and delays in acquiring microgrid states naaev D€ treated similarly. In the third case wheire= 0, conditions
well stochastic solutions. Building on a convex relaxatafn (282)-[28F) yieldS = { = 0 anda = bs(2). Since[s(0)] < 1,

the underlying problem as well as recent advances in onliffés third case occurs only whene [—b, b]. L
convex optimization, a novel stochastic scheme was degdlop
Reactive power injections from PV inverters were updated in REFERENCES
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