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Abstract—Distribution microgrids are being challenged by
reverse power flows and voltage fluctuations due to renewable
generation, demand response, and electric vehicles. Advances in
photovoltaic (PV) inverters offer new opportunities for reactive
power management provided PV owners have the right invest-
ment incentives. In this context, reactive power compensation
is considered here as an ancillary service. Accounting for the
increasing time-variability of distributed generation and demand,
a stochastic reactive power compensation scheme is developed.
Given uncertain active power injections, an online reactive
control scheme is devised. This scheme is distribution-free and
relies solely on power injection data. Reactive injectionsare
updated using the Lagrange multipliers of a second-order cone
program. Numerical tests on an industrial 47-bus microgridand
the residential IEEE 123-bus feeder corroborate the reactive
power management efficiency of the novel stochastic scheme over
its deterministic alternative, as well as its capability to track
variations in solar generation and household demand.

Index Terms—Photovoltaic inverters, voltage regulation, con-
vex relaxation, loss minimization, reactive power compensation,
stochastic approximation, optimal power flow.

I. I NTRODUCTION

Medium- and low-voltage power grids nowadays are un-
dergoing a transformative change to microgrids. Renewable
generation and elastic loads are uncertain, power flows are
frequently reversed, and bus voltage magnitudes can fluctuate
considerably. For example, the power generated by a photo-
voltaic (PV) network with intermittent cloud coverage can
vary by 15% of its nameplate capacity within one-minute
intervals [1]. Different from transmission grids, bus voltage
magnitudes in distribution grids are markedly affected by
active power variations. On a clear day, solar generation may
easily exceed local demand (especially at midday off-peak
hours) and cause over-voltages [2]; whereas overnight vehicle
charging could lead to serious voltage sags [3].

Given active power injections, reactive power management
aims at controlling reactive injections so that power losses over
distribution lines are minimized while bus voltage magnitudes
are maintained within the prescribed limits, e.g.,±5% of their
nominal values. Traditionally, reactive power managementis
achieved via tap-changing under load (TCUL) transformers,
step voltage regulators (SVR), shunt capacitors and reactors,
and static var compensators (SVC) [4]; see for example [5],
[6] for related control algorithms. Operational costs, discrete
control actions, and slow response times are the factors
limiting the use of such devices alone for voltage regulation
in distribution systems with renewables [7]. Reactive power
management becomes even more challenging in microgrids

operating in islanded mode due to the lack of centralized fast-
reacting generators [8]. On the other hand, subsidizing reactive
power control by distributed generation (DG) units has been
advocated as a viable solution [9], [1].

Although prohibited by current standards [10], the power
electronics of PVs can be commanded to provide reactive
injections as well; see [11] and references therein. For this
reason, reactive power compensation via DG units has been an
active research area lately. A multi-agent approach is proposed
in [12], while voltage regulation is cast as a learning problem
in [13]. Control policies based on approximate models are
developed in [1]; and a successive convex approximation
is adopted in [14] for voltage regulation. Upon linearizing
the power flow equations, a two-layer decentralized scheme
is proposed in [11]. Another decentralized consensus-type
algorithm is pursued in [15] after approximating power losses
as a quadratic function of reactive power injections. Localized
(re)active injection updates are reported in [16], [17], [18].

All previous schemes build on approximate grid models.
Being an instance of the optimal power flow (OPF) problem,
reactive power management is a non-convex problem, yet
several convex relaxations have been proposed [19]. In radial
distribution grids, OPF can be surrogated by a semidefinite
program (SDP) [20], [21]; or by a second-order cone program
(SOCP) using either polar coordinates [22], or the branch flow
model [23], [24], [25]. A one-to-one mapping between their
feasible sets proves the equivalence of the two relaxations[26],
and advocates using the SOCP one due to its simplicity.
Sufficient conditions guaranteeing the exactness of the convex
relaxation (i.e., that solving the relaxed problem is equivalent
to solving the original non-convex one) have been developed;
see [19] for a review. Regarding reactive power compensation,
a distributed algorithm based on the SDP relaxation has been
developed in [27], and a centralized approach for inverter VAR
control using the SOCP relaxation has been devised in [7].

The approaches so far assume that active power injections
are precisely known and remain unchanged throughout the
reactive control period. However, such assumptions are less
realistic in future microgrids with high penetration of renew-
ables. Our first contribution is a stochastic framework for
reactive power management. We consider a radial microgrid
where several DG units with reactive power control capabil-
ities have been integrated. The grid operation is divided into
short time intervals. At every interval, a microgrid controller
collects active nodal injections and decides the reactive power
to be injected by controllable DG units. (Re)active load
demands and renewable generation are known only via noisy
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Fig. 1. Busn is connected to its unique parentπn via line n.

and delayed estimates, and are hence, modeled as stochastic
processes. Different from the power loss minimization in [28],
an ancillary voltage regulation market is formulated here:PV
owners are reimbursed for providing reactive power support.
Reactive injections from PVs are set as the minimizers of an
expectedreactive power compensation cost.

As a second contribution, the derived optimization problem
is solved using a provably convergent stochastic approximation
algorithm. It is further shown that a subgradient of the involved
cost is computed via the dual SOCP problem and reactive
PV injections are updated by a simple thresholding rule.
Numerical results on industrial and residential microgrids with
real solar generation and demand data corroborate the efficacy
of the novel reactive power management scheme.

The rest of the paper is outlined as follows: After the
branch flow model is presented in Section II, the problem
of stochastic reactive power compensation is formulated in
Section III. A stochastic approximation algorithm is developed
in Section IV, its performance advantage over an instantaneous
reactive control scheme is supported by numerical tests in
Section V, and conclusions are drawn in Section VI.

Regarding notation, lower- (upper-) case boldface letters
denote column vectors (matrices), with the exception of line
power flow vectors(P,Q). Calligraphic symbols are reserved
for sets. Prime stands for vector and matrix transposition.
Vectors0 anden denote the all-zeros and then-th canonical
vector, respectively. Symbol‖x‖2 denotes theℓ2-norm ofx.

II. SYSTEM MODEL

Consider a microgrid consisting ofN +1 buses. For opera-
tional and architectural simplicity, the microgrid is assumed
to be radial and it can thus be modeled by a tree graph
T := (No,L), whereNo := {0, 1, . . . , N} denotes the set of
nodes (buses), and|L| = N is the cardinality of the edge set
L. The tree is rooted at the substation bus indexed byn = 0.
For every busn ∈ No, let vn be the squared voltage magnitude
at busn and pn + jqn the complex power injected into bus
n. Notice that every non-root busn ∈ N = {1, . . . , N} has
a unique parent bus that will be denoted byπn. Hence, the
directed edge(πn, n) ∈ L corresponding to the distribution
line feeding busn will be simply indexed byn; see Fig. 1.
Let also zn = rn + jxn and ℓn denote the line impedance
and the squared current magnitude on linen, respectively. If
Pn + jQn is as the complex power flow on linen seen at the
sending endπn, the so termedbranch flow modelis described

by the equations [23], [24],

pn =
∑

k∈Cn

Pk − (Pn − rnℓn) (1)

qn =
∑

k∈Cn

Qk − (Qn − xnℓn) (2)

vn = vπn
+ (r2n + x2

n)ℓn − 2(rnPn + xnQn) (3)

ℓn =
P 2

n +Q2

n

vπn

(4)

for all n ∈ N , where Cn := {k ∈ N : πk = n} is
the set of the children nodes for busn. Equations (1)-(2)
follow from power conservation; (3) is derived upon squaring
second Kirchoff’s law; and (4) from current computations.
The branch flow model is essentially derived from the full
AC model, after eliminating voltage and current phases. The
model is accompanied with the initial conditionsv0 = 1,
p0 =

∑

k∈C0
Pk, andq0 =

∑

k∈C0
Qk.

The active and reactive power injection at busn can be
decomposed into its generation and consumption components
as pn = pgn − pcn and qn = qgn − qcn. For a purely load bus,
there is no generation(pgn = qgn = 0), the consumed active
power ispcn ≥ 0, and its reactive powerqcn ≥ 0 is typically
related topcn via a constant power factor. A DG bus (e.g.,
an industrial facility equipped with rooftop solar panels or a
wind turbine) not only consumes power denoted bypcn and
qcn, but it can also generate active powerpgn ≥ 0, and provide
reactive supportqgn which can be positive or negative. For a
bus hosting a shunt capacitor only,pn = qcn = 0 andqgn > 0.

For notational simplicity, let us collect all nodal quantities
related to non-root buses in vectorsp := [p1 · · · pN ]′,
q := [q1 · · · qN ]′, and v := [v1 · · · vN ]′. Likewise, for
line quantities define vectorsP := [P1 · · · PN ]′, Q :=
[Q1 · · · QN ]′, andℓ := [ℓ1 · · · ℓN ]′. Bus voltage magnitudes
are allowed to lie within a prespecified range (typically a
±5% of their nominal value), yielding the voltage limits
vn ∈ [vn, vn] for all n ∈ N . Upon settingv := [v

1
· · · vN ]′

andv := [v1 · · · vN ]′, voltage regulation constraints can be
compactly expessed as

v ∈ V := {v : v ≤ v ≤ v}. (5)

Building on (1)-(5), our stochastic reactive control scheme is
formulated next.

III. PROBLEM FORMULATION

In the envisioned microgrid operation scenario, active power
is managed at a coarse timescale. For example, a power
dispatch is issued for the next 24 hours through a day-ahead
market. Active power adjustments are implemented on a 5- or
10-minute basis via a real-time market. Both the hourly and
the real-time market active power dispatch could depend on the
cost of dispatchable generators and predictions on renewable
energy within the microgrid, as well as the costs of power
exchanges with a main grid. Together with this hourly active
power schedule, the microgrid controller manages reactive
power by controlling transformers, shunt capacitors, SVRs,
and SVCs [4], [5]. Nonetheless, slow response times and
switching limitations render such devices inadequate for very
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fast reactive power control. The power electronic interfaces
found in DG units, such as PV inverters, provide a viable so-
lution for near real-time reactive power management [1], [27].

Reactive power compensation occurs over time intervals
indexed byt. These intervals could either coincide with real-
time market periods (e.g., 5 minutes), or be even shorter (30
seconds), depending on the variability of active powers and
cyber resources (sensing, communication, and computation
delays). If(pt,qt) are the active and reactive power injections
in all but the root buses during control periodt, the power loss
on distribution lines is expressed as

f(pt,qt) =
N
∑

n=0

pn,t =
N
∑

n=1

rnℓn,t (6)

where the second equality follows from (1). Recalling that
qt := q

g
t − qc

t , define for notational brevity

ft(q
g) := f(pt,q

g − qc
t). (7)

Given active injectionspt and reactive demandsqc
t , con-

ventional reactive power management aims at choosingq
g
t so

that power losses are minimized and voltages are maintained
within V . Concretely, reactive power management could be
stated as finding

q̃
g
t := arg min

qg∈Q
ft(q

g) (8)

whereQ is the reactive feasible region to be delineated later.
Injecting q̃g

t at timet+1 would be the optimal control action
under two operational conditions:

(C1) (pt,q
c
t ) are precisely known, and

(C2) they remain constant throughout periodt+ 1.
Yet such conditions are hardly met in microgrids: renewable
DG entails time-varying active and reactive injections. Inlow-
inertia microgrids, the lack of droop controllers challenges
further voltage regulation. It is worth noting that even if
(pt,q

c
t) are relatively constant over periodst and t + 1,

the microgrid controller has only their noise-contaminated
observations (direct measurements or delayed state estimates).

To overcome these difficulties, a stochastic optimization
approach is pursued here. The active and reactive power
injections (pt,q

c
t) realized over an hour or over a real-time

market interval are modeled asstochastic processesdrawn
independently across time from a probability density function
(pdf): Injections {pt} could be modeled as the sum of a
nominalpo and deviations{ǫt} that are assumed independent
over time; and likewise for{qc

t}. A meaningful stochastic
control scheme could entail minimizing theaveragepower
loss as [28]

q̂g := arg min
qg∈Q

E[ft(q
g)] (9)

where the expectation is over timet, or more precisely,
over (pt,q

c
t). Rather than implementing the unreliable and

possibly obsolete instantaneous decisionsq̃
g
t of (8), problem

(9) is expected to yield smoother control actions. Distinct
from [28] where PVs were providing voltage regulation at
no charge, reactive compensation is interpreted here as an
ancillary service. Before elaborating this service, the injection
regionQ should be understood first.

Reactive power injection region:Choosing Q requires
understanding the reactive control capabilities of PVs [1].
Consider a solar panel located at busn with nameplate active
power capacitypgn, and its inverter having apparent power
capabilitysn. Because PVs are currently restricted to operate
at unity power factor [10], their inverters are typically designed
so thatsn = pgn. If pgn,t is the PV output at timet, the inverter

could compensateqgn,t constrained as|qgn,t| ≤
√

s2n − (pgn,t)
2.

This design constraint introduces two practical concerns:First,
the reactive injection region becomes time-varying thus com-
plicating (9). Second, whenpgn,t = pgn (at maximum solar
output), no reactive power can be provided although at those
instances it may be needed.

For these reasons, PV inverters have been advocated to
be oversized over their panel nameplate capacity so that
sn > pgn; c.f. [1]. By choosing for examplesn = 1.1pgn and
limiting reactive power compensation to

√

s2n − (pgn)
2 rather

than
√

s2n − (pgn,t)
2, the invertern can provide reactive power

support with|qgn,t| ≤ 0.45pgn, regardlessof the instantaneous
PV outputpgn,t. Under this policy, the reactive injection region
Q is the time-invariant convex set

Q :=
[

qg,qg
]

(10)

whereqg := [qg
1
· · · qg

N
]′ andqg := [qg

1
· · · qgN ]′. If Nq ⊆ N

is the subset of buses with controllable reactive injections, then
qgn = −qg

n
≥ 0 for n ∈ Nq, andqgn = qg

n
= 0 for n /∈ Nq.

Although the aforementioned scheme could be technologi-
cally feasible, PV owners have to invest on oversized inverters.
As a financial incentive, PV sites with reactive power com-
pensation capabilities can participate in an ancillary voltage
regulation market and be reimbursed for their reactive power
support. Specifically, let̃cn ≥ 0 [in ¢/kVar & h] be the price
for reactive power support at busn ∈ Nq; and c̃0 > 0 [in
¢/kWh] the price at which the microgrid buys (or sells) active
power p0,t from (to) the main grid. If prices are constant
throughout the real-time market interval or longer periods, a
market-based extension of (9) could be formulated as

q̂g := arg min
qg∈Q

c̃0E[ft(q
g)] +

∑

n∈Nq

c̃n|qgn| (11)

where the microgrid controller trades power losses for reactive
power support by PVs. The ancillary market in (11) can be
equivalently expressed as

q̂g := arg min
qg∈Q

E[ft(q
g)] +

N
∑

n=1

cn|qgn| (12)

where cn := c̃n/c̃0 are the normalized prices forn ∈ Nq,
and cn := 0 for n /∈ Nq. Even if the joint pdf of(pt,q

c
t)

were known, evaluating the expectation in (9) or (12) would be
non-trivial. To practically solve these two policies, a stochastic
approximation approach is pursued next. The focus will be on
solving (12), yet that is without loss of generality since (9) is
the special case of (12) where{cn = 0}n∈N .

IV. STOCHASTIC APPROXIMATION SOLVER

Leveraging recent advances in online convex optimization
(see for instance [29]), the problem in (12) can be cast in
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a stochastic approximation framework. Successive estimates
{q̂g

t }t for the minimizerq̂g are iteratively found as soon as a
new datum(pt,q

c
t) becomes available. Specifically, adopting

the composite objective mirror descent approach of [29],
reactive injection iterateŝqg

t ’s are updated as the minimizers
of the convex problem

q̂
g
t := arg min

qg∈Q
g′
tq

g + 1

2ηt
‖qg − q̂

g
t−1

‖2
2
+

N
∑

n=1

cn|qgn| (13)

wheregt is an arbitrary subgradient offt(qg) evaluated at
q̂
g
t−1

and ηt > 0 is an appropriately selected step size.
Recall that the subgradient generalizes the notion of gra-
dient to non-differentiable functions. For a convex function
f : Rn → R, any vectorg ∈ R

n satisfying the inequality
f(y) ≥ f(x) + g′(x − y) for everyy in the domain off ,
constitutes asubgradientof f atx. The set of all subgradients
is termed thesubdifferentialof f at x, and is denoted by
∂f(x); see also [30, Sec. 2.5].

The rationale behind stochastic approximation algorithmsis
to first surrogate the original cost in (12) by its instantaneous
approximation to yield

min
qg∈Q

ft(q
g) +

N
∑

n=1

cn|qgn|. (14)

Notice that the minimizer of (14) is the per-time optimal
reactive injection. But instead of solving (14), online opti-
mization algorithms minimize a locally tight upper bound of
the cost in (14). Such a bound can be obtained by maintaining
∑N

n=1
cn|qgn| and linearizingft(qg) at the previous iterate as

ft(q̂
g
t−1

)+g′
t(q−q̂

g
t−1

)+ 1

2ηt
‖q−q̂

g
t−1

‖2
2

for a properηt > 0.
After ignoring constant terms, the update in (13) follows.

To practically implement the stochastic reactive control
scheme of (13), two issues need to be resolved: finding the
minimizer of (13) and calculating the subgradientgt involved.

A. Closed-Form Minimizer for(13)

Suppose a subgradientgt has been found. Upon completing
the square, the optimization in (13) can be written as

q̂
g
t := arg min

qg∈Q
1

2
‖qg − yt‖22 + ηt

N
∑

n=1

cn|qgn| (15)

whereyt := q̂
g
t−1

− ηtgt. Note that solving (15) decouples
over the entries ofqg as

q̂gn,t := arg min
qg
n
≤q

g
n≤q

g
n

1

2
(qgn − yn,t)

2
+ ηtcn|qgn| (16)

whereyn,t is then-th entry ofyt. By using the Karush-Kuhn-
Tucker conditions for the univariate minimization in (16),the
following result is shown in the Appendix.

Proposition 1. The minimizer of(16) is expressed in closed
form as

q̂gn,t =























qgn, yn,t > qgn + ηtcn
yn,t − ηtcn, ηtcn < yn,t ≤ qgn + ηtcn
0, −ηtcn ≤ yn,t ≤ ηtcn
yn,t + ηtcn, qg

n
− ηtcn ≤ yn,t < −ηtcn

qg
n
, yn,t < qg

n
− ηtcn

. (17)

The rule of (17) implies that if|yn,t| is smaller than
ηtcn, there is no reactive injection into busn. When |yn,t|
is large, its reactive injection saturates. Otherwise,q̂gn,t =
yn,t − sign(yn,t)ηtcn. Therefore, once agt belonging to the
subdifferential∂ft(q̂

g
t−1

) has been found,̂qg
t can be easily

obtained from (17).

B. Efficient Subgradient Computation

Before finding a subgradientgt, an alternative representa-
tion for ft(qg) is derived first. Recall thatft(qg) is the power
loss on distribution lines when injecting(pt,q

g − qc
t) into

the distribution grid. Provided that(pt,q
g − qc

t) is feasible,
functionft(qg) depends on the underlying grid operating point
(p0, q0,p,q,P,Q, ℓ,v) [cf. (6)]. Finding this point requires
solving the nonlinear equations in (1)-(4), while guaranteeing
that voltages are maintained in the desired range(v ∈ V).
Solving this set of nonlinear equations and linear inequalities is
non-trivial. Under practical operating conditions, the solution
has been claimed to be unique [31]. Even if multiple solutions
exist, the grid operating point attaining the smallest lossfor
the same(pt,q

g − qc
t) can be found as described next.

If the equalities in (4) are relaxed to inequalities, then
(p0, q0,P,Q, ℓ,v) lies in a convex set; see e.g., [25], [7].
This convex set is represented by the linear equalities
(1)-(3), the setV , and the second-order cone constraints
{

P 2

n +Q2

n ≤ ℓnvπn

}

n∈L. Under different technical condi-
tions (see [19] and references therein), the minimizer of the
convex problem

f(p,q) = min
P,Q

ℓ,v

L
∑

n=1

rnℓn (18a)

s.to pn =
∑

k∈Cn

Pk − (Pn − rnℓn), n ∈ N (18b)

qn =
∑

k∈Cn

Qk − (Qn − xnℓn), n ∈ N (18c)

vn = vπn
+ (r2n + x2

n)ℓn − 2(rnPn + xnQn),

n ∈ N (18d)

ℓn ≥ P 2

n +Q2

n

vπn

, n ∈ L (18e)

v ∈ V (18f)

satisfies the SOCP constraints in (18e) with equality. When
this occurs, the convex relaxation is said to beexact. To
summarize, when the relaxation is exact, the optimum value
of (18) equals the loss experienced under injections(p,q).

Henceforth, the following assumptions will be adopted:
(A1) The convex relaxation in(18) is exact.
(A2) There exists a feasible(P,Q, ℓ,v) for (18) satisfying

constraints(18e)with strict inequality.
Albeit assumptions (A1)-(A2) are not supported analytically

here, they are verified throughout our numerical tests. All in-
stances of (18) encountered in Section V were exact. Addition-
ally, when for these instances the cost in (18a) was maximized
rather than minimized, the resultant maximizers satisfied (18e)
with strict inequality; thus, numerically verifying (A2).
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Under (A1), the(P,Q, ℓ,v) minimizing (18) corresponds
to the underlying grid operation point, and more importantly,
f(p,q) is the actual power loss. Therefore, the instantaneous
power lossft(qg) = f(pt,q

g − qc
t) has been expressed

as the optimum value of an SOCP. Furthermore, since the
function arguments(pt,q

g − qc
t) appear in the left-hand side

of constraints (18b)-(18c),ft(qg) is a perturbation function
and is known to be convex [30, Lemma 4.24].

The convexity offt(qg) implies the existence of its subd-
ifferential ∂ft(q

g
t ) [30]. To efficiently calculate a subgradient

gt ∈ ∂ft(q
g
t ), let us first eliminate(P,v) and constraints

(18b) and (18d) from (18). To that end, definez := [Q′
ℓ
′]′,

and express(P,v,q) as affine functions ofz, namely

P = Apz+ bp(p) (19a)

v = Avz+ bv (19b)

q = Aqz (19c)

for appropriateN × 2N matricesAp,Av,Aq, and N × 1
vectorsbp(p),bv. Notice the dependence ofbp on active
injectionsp. Using these substitutions, constraints (18b) and
(18d) can be eliminated; the voltage constraints (18f) can be
expressed asv ≤ Avz + bv ≤ v; and the equalities in (18c)
are compactly written as (19c). Then-th hyperbolic constraint
in (18e) can be expressed as the second-order cone [7]

∥

∥

∥

∥

∥

∥





2Pn

2Qn

vπn
− ℓn





∥

∥

∥

∥

∥

∥

2

≤ vπn
+ ℓn (20)

or in terms of the introduced variablez as

‖Anz+ bn(p)‖2 ≤ c′nz+ dn (21)

where the involved parameters are defined as

An :=





2e′nAp

2[e′n 0′]
e′πn

Av − [0′ e′n]



 , bn(p) :=





2e′nbp(p)
0

e′πn
bv





c′n := e′πn
Av + [0′ e′n], dn := e′πn

bv.

Using the aforementioned substitutions and forrz := [0′ r′]′

with r being the vector of line resistances, problem (18) can
be equivalently written as

f(p,q) = min
z

r′zz (22a)

s.toAqz = q (22b)

‖Anz+ bn(p)‖2 ≤ c′nz+ dn, n ∈ L (22c)

v ≤ Avz+ bv ≤ v (22d)

which is also an SOCP. Assumption (A2) and the fact that (18)
is bounded below (by zero) guarantee strong duality and that
the dual problem of (22) is solvable [32, Proposition 5.3.2].
Standard results from sensitivity analysis further imply that
the subdifferential off(p,q) with respect toq coincides with
the negative of the optimal dual variables corresponding to
(22b) [30, Theorem 4.26], [33].

The sought subgradient can be thus obtained via the dual
problem of (22). Towards this direction, letλ, ν ≥ 0, andν ≥
0, be the dual variables corresponding to (22b) and the lower
and upper bounds in (22d), respectively. To dualize the SOC

TABLE I
STOCHASTICREACTIVE POWER MANAGEMENT ALGORITHM

1: Input {cn}n∈N , (v,v), and step sizeηt > 0
2: ConstructAp,Av,Aq,bv, rz , and{An, cn, dn}n∈L

3: Initialize q̂
g

0
= 0

4: for t = 1, . . . , T do
5: Acquire (pt,q

c
t) and constructbp(pt)

6: Solve (23) forq = q̂
g

t−1
− qc

t to acquireλ⋆
t

7: Defineyt := q̂
g

t−1
+ ηtλ

⋆
t

8: Apply q̂
g

t as updated from (17)
9: end for

constraints, introduce also the variable pairs{(un, µn)}n∈L.
Then, the dual of (22) is provided as [34], [32, pp. 566-7]

max
{un,µn}

λ,ν,ν

∑

n∈L
(u′

nbn(p)− µndn)− λ
′q+ b′

v(ν − ν) (23)

s.to ‖un‖2 ≤ µn

ν ≥ 0, ν ≥ 0

A′
v(ν − ν) +A′

qλ+
∑

n∈L
A′

nun − µncn + rz = 0

which can be solved as an SOCP as well. In deriving
(23), constraints (22c) have been dualized based
on the fact that for fixed (x, x0), the maximization
maxu,µ0

{u′x− µ0x0 : ‖u‖2 ≤ µ0} is equivalent to
maxµ0≥0 µ0(‖x‖2 − x0) and becomes zero when‖x‖2 ≤ x0;
and infinity, otherwise.

If the tuple
(

{u⋆
n,t, µ

⋆
n,t}n∈L,λ

⋆
t ,ν

⋆
t ,ν

⋆
t

)

is a maximizer of
(23) for p = pt andq = q̂

g
t−1

− qc
t , then−λ

⋆
t ∈ ∂ft(q̂

g
t−1

).
Hence, thegt in (15) can be set togt = −λ

⋆
t . Finally, under

(A2), complementary slackness asserts that ifµ⋆
n,t > 0 for all

n ∈ L maximizing (23), then the related primal constraints
in (22c) are satisfied with equality; see e.g., [35]. Thus,
{µ⋆

n,t > 0}n∈L provides an exactness certificate for the convex
relaxation in (18).

Table I summarizes the novel stochastic reactive power
compensation scheme, for which while two observations are
in order.

Remark1. The derived control scheme does not depend on any
distributional assumption on actual active and reactive power
injections. It rather utilizes real-time microgrid operation data
to infer the underlying statistics. The numerical tests in Sec-
tion V indicate that this data-driven approach can even track
slow time-varying statistics.

Remark2. Albeit the focus has been on minimizing the re-
active power compensation cost, other microgrid management
tasks (voltage deviation and conservation voltage regulation)
could be amenable to this stochastic control framework.

C. Algorithm Convergence

Define the cost function in (12) as

h(qg) := E[ft(q
g)] +

N
∑

n=1

cn|qgn|. (24)

The following result that can be obtained from [29, Theorem 8]
characterizes the convergence of the iterates in (13).
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Proposition 2. Let q̂g be a minimizer of(12), q̂g
t the update

of (13), andλ
⋆
t a maximizer of(23). If ‖q̂g − q̂

g
t ‖22 ≤ 2D2

and ‖λ⋆
t ‖2 ≤ L for all t, it holds that

E[h(q̄g
T )]− h(q̂g) ≤ αDL√

T
(25)

where q̄g
T := 1

T

∑T

t=1
q̂
g
t ; and the constantα is 2 for ηt =

D

L
√
t
, and3/2 for ηt = D

L
√
T

. It further holds that

h(q̄g
T )− h(q̂g) ≤ DL√

T

(

α+ 4
√

log δ
)

. (26)

with probability at least1− δ−1.

Proposition 2 guarantees that the expected power loss ex-
perienced bȳqg

T converges to the optimum stochastic power
loss at the rate ofO(1/

√
T ). Beyond mean value convergence

from (25), the bound in (26) assures thath(q̄g
T ) remains close

to the optimumh(q̂g) with high probability. According to
the online convex optimization terminology, the algorithmin
Table I enjoys sublinear regret [29]. Moreover, Proposition 2
asserts that the novel control scheme can operate for a constant
step sizeηt = D

L
√
T

, assuming of course thatT is known in
advance. That could be the case, if the proposed reactive power
management scheme is periodically reset due to a new real-
time active power market dispatch. If on the other hand,T is
unknown, a time-decaying step sizeηt = D

L
√
t

works as well
with a slight degradation in performance. Both the step sizes
and the obtained bounds in Proposition 2 depend onD and
L. Apparently, when the reactive injection regionQ models
box constraints,D depends on the reactive power capabilities
of installed PVs asD ≤ 2

∑

n∈Nq
(qgn)

2. RegardingL, theℓ2-
norms of the subgradientsgt can be upper bounded too when
Q is compact [29]. Knowing preciselyL may be practically
unrealistic. Interestingly enough though, if the step sizeis
ηt = βD

L
√
t

for someβ > 0 rather thanηt = D

L
√
t
, then (25)

holds forα = 3

2
max{β, 1/β} [36].

V. NUMERICAL TESTS

The novel stochastic reactive power management scheme
is numerically tested first on a 47-bus industrial distribu-
tion network from South California Edison that is depicted
in Fig. 7 [37]. For each operation interval, the microgrid
controller collects injections from load buses, as well as
active injections from DG buses. Reactive injections from DG
units are determined: (i) by solving the deterministic control
scheme of (14), and (ii) via the stochastic control scheme of
Table I. Performance is tested in terms of thereactive power
management costthat is the instantaneous counterpart of the
cost in (11) evaluated on the true rather than the observed
(pt,q

c
t). Observe that if{c̃n = 0}n∈Nq

, the reactive power
management cost coincides with the power loss cost. The
power loss price is set tõc0 = 6.6¢/kWh, and reactive power
support prices arẽcn = c̃0/80 = 0.0825¢/kVar & h for all
n ∈ Nq. It is worth mentioning that all SOCP relaxations
were feasible and exact.

The first experiment evaluates the effect of uncertainties
in (pt,q

c
t) for controlling the 47-bus grid. Load injections

(pc,qc) are kept fixed throughout the interval to 45% of their

Fig. 2. Schematic diagram of the 47-bus industrial distribution feeder with
high penetration of photovoltaics located at buses 13, 17, 19, 23, and 24 [37].

peak values with a power factor of 0.8. Photovoltaic injections
pg and shunt capacitors are kept fixed throughout the interval
to 60% of their peak values, whilev0 = 1. A period of 1
hour divided into 30-second control intervals is simulated. At
each 30-sec interval, the controller observes a noise-corrupted
version of the nominalpo aspt = po + ǫt, where the entries
of ǫt are independent and zero-mean Gaussian samples having
variance0.12, thus modeling disturbances in power injections
by 30%. Noisy readings are likewise collected for the nominal
qo,c. Although reactive PV injectionŝqg

t are decided upon
the noise-corrupted readings(pt,q

c
t), the actual power loss

depends on their nominal values asf(po, q̂g
t − qo,c). The

algorithm was implemented using MATLAB and CVX, and
every reactive control was run within 1.2 secs on an Intel
CPU @ 3.4 GHz (32 GB RAM) computer. Figure 3 depicts
the reactive power management cost for the two control
schemes over a single system realization. The algorithm of
Table I converges within 20 iterations to a low cost, while its
deterministic alternative fluctuates at consistently higher costs.

Figure 4 presents the cost curves obtained after averag-
ing 40 independent realizations. The curves verify that the
stochastic scheme achieves significantly lower reactive power
management costs than the myopic deterministic scheme. It
is numerically observed that larger step sizes yield slower
convergence, yet at a lower steady-state cost. The savings
in $/h are 28.7, 39.7, 41.8, 44.9, and 45.6, respectively,
for η = 1, 2, 2.5, 3.5, 4. Practically, tuningη trades off the
initial transient for the steady-state cost and the tracking of
underlying statistics.

The second experiment entails real solar generation data
from the Smart* project [38]. The power outputs of the 3 PVs
involved in the Smart* microgrid over August 12, 2011, were
preprocessed as follows: upon removing the minimum daily
value, generation curves were normalized to the capacity of
the PV units in Fig. 7; see also Fig. 6. Industrial load demands
were simulated at 80% of their maximum values plus a
Gaussian variation with standard deviation 15% of the nominal
value. In addition to the original PV generators on buses 13,
17, 19, 23, and 24; four more PV generators with capacity
1.2MW have been installed on buses 11, 28, 40, and 44, to
model higher solar penetration. Figure 5 shows the reactive
power compensation cost attained over the period 18:30-
19:30 at 30-sec control intervals. The controller determines the
optimal reactive control based on the observed grid state which
is the actual state delayed by 1 minute due to communication
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Fig. 6. Top: Reactive power management cost with real solar generation data during August 12, 2011. Bottom: Normalized PV power output over 7am-6pm.
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Fig. 5. Reactive power management cost using real solar generation data [38].

and computation delays. Together with the deterministic and
stochastic schemes (ηt = 0.2), the figure depicts the cost of
the ideal control scheme that determines DG reactive injections
based on the actual instantaneous grid state. Note that the latter
is practically infeasible, but it serves as a lower bound. The
numerical results show that upon convergence, the stochastic
scheme approaches the ideal one and is able to track solar
generation variations. The reactive power management benefit
of the stochastic scheme over the deterministic one is 12.7$/h.

Figure 6 presents the cost achieved by the new scheme dur-
ing the daylight interval on August 12, 2011. Load demands
were scaled to 90% of their maximum value, andη = 0.2. The
control interval was selected as 30 seconds, and the observed
state was the actual one delayed by 30 seconds. When PV
generation is high, power losses and the related cost are low,
as expected due to local generation. The curves on the top
panel testify that the stochastic scheme attains a slightlyhigher
cost than the ideal one. It further tracks successfully the steady
solar power ramp occurring between 7.30-9.15am, as well as
the variations due to cloud coverage for the rest of the day.

Finally, the third experiment involved real data both for solar
generation and consumption, which were tested on the IEEE
123-bus feeder [39]. The latter is a residential feeder thatwas
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Fig. 7. Schematic diagram of the IEEE 123-bus feeder with PVs[39].

modified according to [40]. Regarding renewable generation,
solar panels were located on buses No. 32, 51, 64, 76, 96, 111,
and 450, with capacities 40, 80, 160, 60, 160, 80, and 60 kW,
respectively. Solar outputs were scaled versions of the curves
shown at the bottom panel of Fig. 6. All PV inverters were
assumed to be oversized by 130%, yielding a reactive power
capacity of 0.66 times the active power capacity. Reactive
power compensation prices were selected to be 0.0132¢/kVar
& h for all PVs. Consumption data provided by the Smart*
project were utilized [38]. From a total of 443 minute-based
household load data for August 12, 2011, we selected 85
after eliminating bad and incomplete entries. These load data
were then scaled to match the IEEE 123-bus feeder profile. A
reactive control period of one minute was implemented, and
the observed states were equal to the actual ones delayed by
one minute. The step size was set toηt = 2, and every control
run lasted 3.7 secs. As shown in Fig. 8, the stochastic scheme
was able to successfully track solar and load variations.

VI. CONCLUDING REMARKS

Reactive power compensation was considered in this work.
Uncertainty and delays in acquiring microgrid states motivate
well stochastic solutions. Building on a convex relaxationof
the underlying problem as well as recent advances in online
convex optimization, a novel stochastic scheme was developed.
Reactive power injections from PV inverters were updated in
real time. Numerical tests on practical microgrids verifiedthat
the novel control scheme converged within 10-20 iterations.
The reactive power management cost attained was consistently

lower than the one achieved by its myopic deterministic
alternative. During experiments using real solar generation and
load consumption data, the novel scheme tracked successfully
the underlying system variations and approached the ideal
reactive control scheme. The merit of our stochastic framework
is twofold: First, apart from requiring slow variations, no
distributional assumptions on active injections are imposed.
Rather, the control algorithm adjusts dynamically to microgrid
operation data. Second, albeit the goal here was to minimize
the reactive power compensation cost, the novel approach
could be extended to other pertinent microgrid management
tasks (e.g., voltage deviation, conservation voltage regulation).
Characterizing the resiliency of this centralized controlto
cyber-attacks on injection data and deriving decentralized
solvers constitute directions for future research.

APPENDIX

Proof of Proposition 1: For notational simplicity, con-
sider the canonical problem forb > 0 andx < 0 < x

x̂ := argmin
{

1

2
(x− a)2 + b|x| : x ≤ x ≤ x

}

. (27)

If (ξ, ξ) are the optimal Lagrange multipliers for the box
constraints in (27), the KKT conditions imply that there exists
a subgradients(x̂) of |x| at x̂ satisfying

x̂ = a− bs(x̂) + ξ − ξ (28a)

ξ(x− x̂) = 0 (28b)

ξ(x̂− x) = 0 (28c)

ξ, ξ ≥ 0 (28d)

x ≤ x ≤ x. (28e)

For the subgradient of|x|, it holds thats(x) = sign(x) for
x 6= 0, and |s(x)| ≤ 1, otherwise. Depending on the sign of
x̂, three cases can be identified. Ifx̂ > 0 > x, condition (28b)
yieldsξ = 0 and (28a) readŝx = a− b− ξ > 0. Two subcases
can be now considered: Eitherx̂ ∈ (0, x) implying thatξ = 0
and x̂ = a − b when a ∈ (b, b + x); or, x̂ = x implying
ξ = a − b − x whena ≥ b + x. The case of negativêx can
be treated similarly. In the third case wherex̂ = 0, conditions
(28a)-(28c) yieldξ = ξ = 0 anda = bs(x̂). Since|s(0)| ≤ 1,
this third case occurs only whena ∈ [−b, b].
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