

Citation/Reference Alexander Bertrand (2018),

Utility Metrics for Assessment and Subset Selection of Input

Variables for Linear Estimation

IEEE Signal Processing Magazine, vol. 35, no. 6, pp. 93-99, 2018

Archived version Author manuscript: the content is identical to the content of the

published paper, but without the final typesetting by the publisher

Published version https://ieeexplore.ieee.org/document/8500050

Journal homepage https://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=79

Author contact alexander.bertrand@esat.kuleuven.be

+ 32 (0)16 321899

IR

(article begins on next page)

1

Utility metrics for assessment and subset selection
of input variables for linear estimation

Alexander Bertrand, Senior Member, IEEE

Abstract—This tutorial paper introduces the utility met-
ric and its generalizations, which allow for a ‘quick-and-
dirty’ quantitative assessment of the relative importance
of the different input variables in a linear estimation
model. In particular, we show how these metrics can be
cheaply calculated, thereby making them very attractive
for model interpretation, online signal quality assessment,
or greedy variable selection. The main goal of this paper
is to provide a transparent and consistent framework that
consolidates, unifies, and extends the existing results in this
area. In particular, we (a) introduce the basic utility metric
and show how it can be calculated at virtually no cost,
(b) generalize it towards group-utility and noise impact
metrics, and (c) further extend it to cope with linearly
dependent inputs and minimum norm requirements.

Index Terms—Utility, least squares, model interpreta-
tion, variable selection, quantization, ridge regression

I. INTRODUCTION

When solving a regression problem, one often
wants to have some quantitative insights into the
relevance of each input variable, i.e., how much it
contributes to the reduction of a loss function. Such
information can be used to interpret the model, to
assess the predictive value of specific input variables
or signals, or to perform a greedy variable subset
selection [1]–[4]. The latter allows to reduce the
dimensionality of a model, e.g., to avoid overfitting
[5], to make the model more interpretable, or to

Copyright (c) 2018 IEEE. Personal use of this material is permitted.
Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this mate-
rial for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

The author acknowledges the financial support of the KU Leuven
Research Council for project C14/16/057, FWO (Research Founda-
tion Flanders) for projects G.0031.14, 1.5.123.16N, G.0D75.16N, and
G.0A49.18N, and the European Unions Horizon 2020 research and
innovation programme under grant agreement No 766456 (project
AMPHORA).

The author is with KU Leuven, Department of Electrical Engineer-
ing (ESAT), Stadius Center for Dynamical Systems, Signal Process-
ing and Data Analytics, Kasteelpark Arenberg 10, box 2446, 3001
Leuven, Belgium (e-mail: alexander.bertrand@esat.kuleuven.be).

reduce computational complexity, data storage, data
transmission, or sensor costs [3], [6], [7].

For example, consider the example of linear least
squares (LS) regression, which will also be the
focus of this tutorial1. A naive heuristic that is
remarkably commonly used for variable assessment
is the magnitude of the weights of the LS solution,
thereby (incorrectly) assuming that important input
variables will also receive a large weight in the LS
solution. However, it is not difficult to see that this
reasoning is flawed. For example, if the observations
of one of the input variables would all be scaled
with a factor α, then the corresponding weight in
the LS solution will be scaled with α−1, whereas the
information content of that input variable obviously
remains unchanged.

A more relevant metric would consist of calculat-
ing the effective loss, i.e., the increase in LS cost, if
an input variable would be removed and if the model
would be re-optimized. We refer to this resulting
metric as the utility of that input variable. Utility is a
powerful heuristic for input variable assessment [1],
[3], [4], [6], and can even be shown to have some
optimality properties when used for greedy variable
subset selection [1], which can compete with well-
known sparse regression techniques such as the least
absolute shrinkage and selection operator (LASSO)
[9].

However, computing the utility of M input vari-
ables by definition requires to solve M different LS
problems, i.e., one for each removal of an input
variable [1], [3]. As a result, the metric scales poorly
with the dimensionality of the model, which can
be problematic in real-time applications, and which
can make a greedy variable subset selection in very
high-dimensional problems even infeasible.

In this tutorial paper, we show how some simple
tricks from standard linear algebra allow to compute
the utility metric at virtually no cost, thereby making

1It is noted that, although we only focus on least squares problems,
many results can be extended to other linear estimation frameworks
as well [8].

2

it a highly attractive metric for model interpretation,
signal quality assessment, greedy variable selection,
etc., in particular in real-time or large-scale appli-
cations. We also address several generalizations and
extensions of this utility metric towards:
• A group-utility metric, allowing to evaluate the

joint utility of a group of input variables.
• A noise-impact metric, allowing to evaluate the

impact of additive errors in the input variables,
e.g., to predict the effect of quantization or
measurement noise, and which contains the
original utility metric as a special case.

• A minimum-norm utility metric for ill-
conditioned cases, in which linear dependence
relationships exist between the input variables.

The main goal of this paper is (a) to provide
an accessible overview and unification of existing
results in this context (with pointers to the original
publications), and (b) introduce novel extensions
and generalizations presented in a unified frame-
work.

The outline of the paper is as follows. In Section
II, we formalize the definition of the utility metric
for LS regression, and provide the core equation to
efficiently compute it with a complexity that scales
linearly with the number of variables. In section III,
we generalize these results to a group-utility metric,
allowing to evaluate the joint utility of a group of
input variables. A further generalization is provided
in Section IV, allowing to evaluate the impact of
additive errors in the input variables. Finally, in
Section V, we extend the utility metric to cope with
linear dependencies in the input variables.

II. UTILITY: DEFINITION AND CORE EQUATION

A. Definition

Consider the LS problem with N measurements
of M input variables

J(Y) , min
x

1

N
‖Y x− d‖2 (1)

where Y ∈ RN×M is the regressor matrix, d ∈ RN

is the desired response vector, and x ∈ RM is the
vector with optimization variables (we consider the
real-valued case for simplicity, yet all results in this
paper can be easily generalized to the complex-
valued case). Note that J(Y) is defined as an oper-
ator that evaluates the LS cost for the case where
the information in Y is available, which includes an

implicit optimization of x (the reason for making
the dependency on Y explicit will become clear
later). We will refer to the columns of Y as the input
variables of the model. Depending on the context,
these input variables could represent, e.g., different
sensors or channels (in a sensor array), time lags
(in a temporal filter), observations of independent
variables (in a regression model), etc. Assuming Y
has full rank, the LS solution x̂ that minimizes (1)
is given by

x̂ = R−1r (2)

with R = 1
N
Y TY and r = 1

N
Y Td.

In order to quantify the relevance of each input
variable, we define the utility metric [3], which will
be the focus of this tutorial. The utility of the k-th
input variable is defined as the increase in LS cost
if the k-th input variable would be removed and if
the LS problem would be re-optimized, i.e.,

Uk , J(Y−k)− J(Y) (3)

where Y−k denotes the matrix Y with the k-th
column removed. Note that a naive computation of
Uk would in principle require to solve a second LS
problem based on Y−k, of which the computational
complexity scales cubically with the number of in-
put variables, i.e., O(M3). Calculating the utility of
all M input variables would then have a complexity
of O(M4), which can be unacceptably high for,
e.g., real-time systems or for large-scale problems
with hundreds or thousands of input variables. In
the sequel, we will show how some simple linear
algebra tricks allow to derive an efficient and elegant
equation to calculate (3) for all input variables, with
a total complexity of merely O(M).

B. Core equation

Once the full LS solution (2) has been calculated,
we will show that calculating the utility (3) does not
require to solve an extra LS problem to evaluate
J(Y−k), i.e., it can be calculated as

Uk =
|xk|2

qk
(4)

where qk is the k-th diagonal element of R−1, and
where xk is the k-th element of x̂ in (2). This has
originally been proven in [3], but we will derive a
more general form of (4) in Section III, which will

3

then also prove (4) as a special case. From (4), it
follows that the vector u = [U1 . . . UM]T containing
the utilities of all input variables can be calculated
as

u = Λ−1|x̂|2 (5)

where | · |2 represents an element-wise squaring and
Λ = D(R−1) with D(·) the operator that creates
a diagonal matrix by setting all the off-diagonal
elements of the matrix in its argument to zero.

Note that the equations (4) and (5) are remarkably
simple and elegant. Since R−1 is readily available
from the computation of x̂ in (2), the utility can
be calculated with a complexity of merely O(1) for
a single variable, or O(M) for all variables. This
should be contrasted to a naive computation of Uk
or u based on the original utility definition (3),
resulting in a complexity of O(M3) and O(M4),
respectively.

III. GROUP-UTILITY

In some applications, the input variables are nat-
urally clustered in specific pre-defined groups, in
which case it could make more sense to investigate
the utility of groups of variables, rather than of in-
dividual variables. For example, in a multi-channel
filter, the utility of a channel is the joint utility of all
the filter taps in that channel’s delay line. Similarly,
in a sensor network with multi-sensor nodes, the
utility of a node is the joint utility of all the sensor
signals within that node [4].

Similar to (3), the group-utility of a pre-defined
group of G input variables, denoted by the set G, is
defined as [4]

UG , J(Y−G)− J(Y) (6)

where Y−G is the matrix Y with all columns cor-
responding to the input variables in G removed. In
the sequel, we assume that G consists of the last G
columns of Y , which is without loss of generality
(w.l.o.g.), as the order of the inputs can be arbitrarily
rearranged. Define the following block partitioning
of the (known) inverse of R

R−1 =

[
A B
BT Q

]
(7)

where Q is the G×G matrix capturing the rows and
columns with indices corresponding to the variables

in G (here at the bottom right w.l.o.g.). As shown in
[Pop-out box 1], the group-utility UG can efficiently
be calculated as

UG = xTG Q
−1 xG (8)

where xG contains the last G entries of x̂ (we
do not add a hat to xG as it is not an optimal
LS solution in itself). Note that this group-utility
equation reduces to the original utility equation (4)
if G = 1. Obviously, if G � M , computing (8)
is much cheaper than evaluating J(Y−G) in (6) by
explicitly computing the reduced LS solution.

Although the derivation of (8) is not necessary
to follow the rest of this tutorial, we include it in
[Pop-out box 1] for completeness and because it
also reveals two interesting by-products, namely two
equations (10) and (13) that allow to recursively
update (a) the inverse autocorrelation matrix R−1,
and (b) the LS solution x̂, after the removal of G
input variables. This is interesting if the (group-
)utility metric would be used for greedy variable
selection, where (groups of) input variables are
deleted one by one (see Section VI).

IV. GENERALIZATION TOWARDS NOISE IMPACT

The utility metric as defined in (3) measures
the increase in the LS cost when the k-th column
of Y is removed. Another relevant metric would
be to measure the increase in the LS cost when
adding some random noise in the k-th column of
Y , rather than fully removing that column. This is
interesting in situations where one has some free-
dom in controlling the accuracy of each individual
input variable. For example, in quantization or lossy
compression, one can often modify the bit depth or
the compression rate of each individual signal to
reduce the resources required to store or to transmit
it, while increasing its noise level. Similar trade-offs
appear when deciding between cheap or accurate
sensors, in applications or experiments where the
accuracy depends on the measurement time, etc.
In all these cases, it is important to be able to
efficiently assess and quantify how additive noise
on each particular input variable would affect the
estimation performance, in particular when used in
greedy or adaptive resource allocation schemes.

To quantify the effect of additive noise, the noise
impact metric was originally defined in [11] with the

4

Pop-out box 1: Derivation of the group-utility core equation (8)

Note that evaluating J(Y−G) in (6) requires to solve the reduced LS solution

x̂−G = R−1
−G r−G (9)

with R−G = 1
N
Y T
−G Y−G and r−G = 1

N
Y T
−G d. The first step in our derivation is to find a more efficient

way to calculate R−1
−G , based on a subresult of the blockwise matrix inversion theorem [10]:

Lemma III.1. Consider the block partitioning of a matrix V and its inverse V −1 as follows

V =

[
A B
C D

]
, V −1 =

[
E ∗
∗ ∗

]
with A and E square matrices of equal size. If D and E are invertible, then E−1 = A−BD−1C.

By setting V = R−1 (consequently E = R−G), and using the notation in (7), the lemma immediately
yields the following important result

R−1
−G = A−BQ−1BT . (10)

By plugging (10) in (9), the reduced LS solution is given by

x̂−G = (A−BQ−1BT)r−G . (11)

Using the partitioning in (7), we can define the following partitioning of the LS solution (2):

x̂ =

[
x−G
xG

]
=

[
A r−G +B rG
BT r−G +Q rG

]
(12)

where r−G and rG denote subvectors of r containing the first M −G and last G entries, respectively.
From (11) and (12), it can be easily verified that

x̂−G = x−G −BQ−1xG (13)

which allows to efficiently update the LS solution. By expanding the LS cost functions in (6) in
their quadratic terms, and plugging in the corresponding LS solutions (2) and (9) for x̂−G and x̂,
respectively, it can be straightforwardly found that

UG = rT x̂− rT−Gx̂−G . (14)

By plugging in (13), and by partitioning x̂ in x−G and xG , we immediately find that

UG = rTGxG + (rT−GB)Q−1xG . (15)

From the bottom half of (12), it follows that rT−GB = xTG − rTGQ, such that (15) eventually yields (8).

purpose of performing a greedy signal quantization.
For the sake of completeness and unification, we
generalize this result to a group-impact metric in
this paper, which has the result of [11] as a special
case, and which generalizes the group-utility metric
(8). Let YG,Σ denote the matrix Y in which zero-
mean random noise is added to the input variables
in G, with a positive definite noise covariance matrix

Σ ∈ RG×G. In most cases, the noise will be
uncorrelated across the input variables, in which
case Σ is a diagonal matrix.

In line with (6), we define the noise impact on
the group G as

IG(Σ) , min
x

1

N
E{‖YG,Σ x− d‖2} − J(Y) (18)

where E{·} denotes the expected value operator,

5

Pop-out box 2: Derivation of the noise-impact core equation (19)

As the added noise is zero mean and uncorrelated to Y and d, the LS solution of the first term is
equal to

x̂G,Σ = R−1
F r =

(
R + FF T

)−1
r

where F =
[
O Σ1/2

]T with O the all-zero matrix. Note that r is unaffected by the noise due to
the expected value operator and the fact that the noise is uncorrelated to d. Applying the Sherman-
Morrison-Woodbury identity [10] to RF yields

R−1
F = R−1 −R−1F

(
I + F TR−1F

)−1
F TR−1 .

With the partitioning of R−1 in (7), this becomes

R−1
F = R−1 −

[
B
Q

]
Σ

1
2

(
I + Σ

1
2QΣ

1
2

)−1

Σ
1
2

[
BT Q

]
(16)

= R−1 −
[
B
Q

] (
Σ−1 +Q

)−1 [
BT Q

]
. (17)

Similar to (14), it can easily be verified that the noise impact (18) is equal to

IG(Σ) = rT x̂− rT x̂G,Σ

= rT (R−1 −R−1
F)r .

Plugging (16) into this equation, and using the fact that xG = [BT Q]r (see (12)), we eventually find
(19).

which is introduced due to the stochastic nature of
the first term. In [Pop-out box 2], we show that
(18) can be efficiently calculated as

IG(Σ) = xTG
(
Σ−1 +Q

)−1
xG (19)

where we again assumed that G contains the last
G columns of Y w.l.o.g. This equation allows to
compute the noise impact of the input variables in
G using the original LS solution (remember that xG
consists of the last G entries of x̂ as in (8)). For the
case where G = 1, i.e., when evaluating the impact
of noise with variance σ2 on a single input variable,
(19) reduces to the elegant equation (compare with
(4))

Ik(σ
2) =

|xk|2
1
σ2 + qk

. (20)

This noise impact metric Ik can be viewed as a
generalization of the utility metric Uk, as a com-
parison between (4) and (20) shows that Ik → Uk

if σ2 → ∞. This should not come as a surprise,
as adding infinitely large noise to the observations
of the k-th input variable essentially results in the
same loss of information as when the k-th input
variable would be removed. Similarly, the group-
impact equation (19) reduces asymptotically to the
group-utility equation (8) if the diagonal entries in
Σ grow to infinity.

V. REDUNDANT INPUT VARIABLES

If there is redundancy in the set of input variables,
i.e., there is a linear dependency or almost perfect
correlation between some of the columns in Y ,
then the solution of (1) becomes non-unique or ill-
conditioned. A common strategy is then to compute
the LS solution with the smallest `2-norm, which
is advantageous against overfitting [5], [12]. In the
sequel, we denote R as the set containing all input
variables that are redundant, i.e., all columns of Y
that consist of a linear combination of the other
columns of Y . Note that, by definition, Uk = 0 for
k ∈ R, as the removal of a redundant variable does
not impact the LS cost.

6

If R is non-empty, then R−1 does not exist and
the LS solution of (1) is not unique, in which case
the LS solution with minimal `2-norm is given by

x̂ = Y +d = R+r (21)

where R+ denotes the Moore-Penrose pseudo-
inverse of R, and where the second equality follows
from the identity X+ = (XTX)+XT , which holds
for the pseudo-inverse of any matrix X [10], [13].
As R−1 simply has to be replaced with R+ in (2),
it is then tempting to also compute the utility Uk by
setting qk in (4) equal to the k-th diagonal element
of R+ instead of R−1. Although it can be shown that
this yields the correct utility values Uk for the non-
redundant variables k /∈ R, it will result in incorrect
(non-zero) utility values for the redundant variables
k ∈ R. The proof of this statement is omitted for
conciseness, but follows relatively straightforwardly
from some subresults in [14].

To fix this issue, we have to modify (4) to enforce
that Uk is small (near-zero) for k ∈ R, while
non-redundant variables k /∈ R should receive a
non-zero Uk that approximates (3). Furthermore,
although the removal of a redundant variable will
not affect the LS cost, it will increase the `2-norm,
i.e., ‖x̂−k‖ ≥ ‖x̂‖ for k ∈ R. To maximally avoid
overfitting, we would like the modified utility mea-
sure to also reflect this change in norm, such that
removing the redundant input value with the lowest
modified utility also induces the least increase of the
`2-norm. We will show that both of these goals can
be achieved if we generalize the utility definition to
a standard ridge regression framework .

In ridge regression, an `2-norm penalty is added
to the LS cost function [10], i.e., (1) becomes

min
x

1

N

(
‖Y x− d‖2 + λ‖x‖2

)
(22)

where λ is a user-defined regularization parameter,
and which has

x̂ = R−1
λ r = (R + λI)−1 r (23)

as a minimizer [10]. Let us now define utility as
we did before in (3), but this time based on the
regularized cost function (22) instead, i.e.,

Uk(λ) ,
1

N

(
‖Y−kx̂−k − d‖2 − ‖Y x̂− d‖2

)
+
λ

N

(
‖x̂−k‖2 − ‖x̂‖2

) (24)

Note that we have not used the ‘min’ operators this
time, but instead we plugged in the minimizers to
explicitly separate the increase in LS cost in the first
term and the increase in `2-norm in the second term.

The following three theoretical results, which are
proven in the Appendix, demonstrate that this new
utility definition (24) indeed resolves the aforemen-
tioned issues and can still be calculated efficiently
(these results can also easily be extended to the
group-utility framework):

Result 1 (efficient calculation): The modified
utility Uk(λ) defined in (24) can be calculated
using the efficient formula (4) where qk is now
set to the k-th diagonal element of R−1

λ instead
of R−1.

Result 2 (consistency): If 0 < λ� ε, with ε the
smallest non-zero eigenvalue of R, then Uk(λ) ≈
0 if k ∈ R, and Uk(λ) ≈ Uk if k /∈ R, where the
approximations become asymptotically exact for
an arbitrarily small λ.

Result 3 (minimum-norm revealing): If λ is
sufficiently small, Uk(λ) will be smallest for k ∈
R that results in the smallest `2-norm ‖x̂−k‖ after
removal of input k. More specifically,

∀ k ∈ R :
Uk(λ)

λ
≈ ‖x̂−k‖2 − ‖x̂‖2

where the approximation becomes asymptotically
exact for an arbitrarily small λ.

To validate these results, we have calculated the
modified utility metric (24) on a toy example with
random data with M = 20 input variables. The
last 5 columns of Y are generated as random linear
combinations of columns 11 to 15, such that R =
{11, . . . , 20}. We set λ = ε/100, where ε denotes
the smallest non-zero eigenvalue of R. Fig. 1 (left
figure) shows the values Uk(λ) for k = 1 . . . 20, in
blue for a naive calculation based on the definition
(24) using (21) to find x̂ and ˆx−k, and in red when
calculated using the efficient equation (5) where
R is replaced with Rλ (see Result 1). It can be
observed that both calculation methods result in the
same utility value. Note that the 10 redundant vari-
ables have an almost-zero utility, which is consistent
with Result 2. To validate Result 3, we zoom in on

7

the 10 redundant variables (right plot in Fig. 1) and
plot the difference ‖x̂−k‖2−‖x̂‖2 (in green) versus
the value Uk(λ)

λ
, where we observe that both result in

the same value. This allows to select the redundant
input variable that will yield the smallest increase
in `2-norm when removed (in this case variable 14).

VI. COMPUTATIONAL BENEFITS AND
IMPLICATIONS FOR VARIABLE SUBSET

SELECTION

To demonstrate the impressive reduction in
computation time achieved by the core equations
(4)-(5) and their generalizations/extensions, we
measured the calculation times on a standard
laptop running Matlab. In Fig. 2, we compare
the time to compute the complete utility vector
u = [U1 . . . UM]T when using the efficient
equation (5) and using a naive calculation based
on the definition (3), as a function of the number
of input variables M . We performed the naive
calculation two times: once with and once without
redundant input variables, where (21) is used
to find the minimum-norm LS solution in the
former case. In both cases, the computation time
is several orders of magnitude lower when using (5).

These strong computational simplifications facili-
tate the use of (group-)utility metrics for a backward
greedy variable selection procedure -even in large-
scale problems- in which the input variables with
lowest utility are recursively removed one by one,
until a sufficiently small set is obtained or until any
removal would result in a too large increase in LS
cost [1]–[4], [6]. This can be viewed as an alterna-
tive for the well-known (group-)LASSO algorithm
[9], [15]. The backward greedy algorithm can even
be shown to be optimal if an exact or almost-exact
sparse solution exists [1]. In a similar fashion, the
noise impact metrics (19)-(20) can be used for,
e.g., a greedy adaptive quantization, where in each
iteration a certain amount of quantization noise is
added to the input with the lowest noise-impact [11],
[16]. Finally, a utility-based greedy variable selec-
tion based on (24) yields a combination of variable
selection with `2-norm minimization, which is akin
to the so-called elastic net procedure [17].

Overall, utility-based greedy versions have some
useful properties, viz., they bypass the tedious tun-
ing of sparsity-inducing regularization parameters,

they are cheap to compute, and they are easy
to implement. Furthermore, the low computational
complexity is particularly attractive for online utility
tracking, e.g., in recursive LS adaptive filters to
(temporarily) eliminate signals of which the utility
goes under a pre-defined threshold [3] or to guar-
antee that the overall loss does not exceed a pre-
defined threshold. Note that, every time a (group of)
input variable(s) G is removed, the LS solution and
inverse autocorrelation matrix have to be updated
according to the remaining set of variables. These
updates can be efficiently calculated using equations
(10) and (13) in [Pop-out box 1]. Indeed, after
the removal of the input variables in G, these
equations allow to recursively update the inverse
of the reduced autocorrelation matrix R−1

G and the
corresponding LS solution at a low cost, based on
the original R−1 and x̂. For the non-grouped case,
i.e., G = 1, the matrix inversion of Q in (10) and
(13) reduces to a simple scalar inversion.

If one also wants to monitor the utility of input
variables that are to be added to the model, e.g.,
for a forward greedy variable selection instead of
backwards deletion, there also exist additive ver-
sions of the utility metric with efficient calculation
schemes [3], [4]. However, it should be noted that
these metrics are less elegant and computationally
less attractive than the deletion-based utility metrics
that were introduced above, yet they are still more
efficient than a naive ‘brute-force’ computation.

VII. CONCLUSIONS

In this paper, we have reviewed and unified the
core equations for the efficient calculation of utility
metrics, and extended these towards group-metrics
and a minimum-norm revealing utility metric. All
these metrics can be elegantly and cheaply calcu-
lated, thereby making them attractive as a ‘quick-
and-dirty’ tool for model interpretation, online sig-
nal quality assessment, or greedy variable selection.

REFERENCES

[1] C. Couvreur and Y. Bresler, “On the optimality of
the backward greedy algorithm for the subset selection
problem,” SIAM Journal on Matrix Analysis and Applications,
vol. 21, no. 3, pp. 797–808, 2000. [Online]. Available:
https://doi.org/10.1137/S0895479898332928

[2] L. Scott and B. Mulgrew, “Sparse LCMV beamformer design
for suppression of ground clutter in airborne radar,” IEEE
Transactions on Signal Processing, vol. 43, no. 12, pp. 2843–
2851, Dec 1995.

8

Fig. 1. Validation of the extended utility metric for the case where the last 10 input variables are redundant.

input variables M
0 500 1000 1500 2000

M
a
tl

a
b
 c

o
m

p
u
ta

ti
o
n
 t

im
e
 [

s]

10-8

10-6

10-4

10-2

100

102

104

Efficient utility calculation

Naive utility calculation (without redundant variables)

Naive utility calculation (with redundant variables)

Fig. 2. Computing time in Matlab to calculate the utility of M input
variables using the efficient equation (5) and using a naive calculation
based on the definition (3).

[3] A. Bertrand and M. Moonen, “Efficient sensor subset selection
and link failure response for linear MMSE signal estimation
in wireless sensor networks,” in Proc. of the European signal
processing conference (EUSIPCO), Aalborg - Denmark, Aug.
2010, pp. 1092–1096.

[4] J. Szurley, A. Bertrand, P. Ruckebusch, I. Moerman, and
M. Moonen, “Greedy distributed node selection for node-
specific signal estimation in wireless sensor networks,” Signal
Processing, vol. 94, pp. 57–73, Jan. 2014.

[5] C. Bishop, Pattern Recognition and Machine Learning. New
York: Springer-Verlag, 2006.

[6] J. Zhang, S. P. Chepuri, R. C. Hendriks, and R. Heusdens,
“Microphone subset selection for MVDR beamformer based
noise reduction,” IEEE/ACM Transactions on Audio, Speech,
and Language Processing, vol. 26, no. 3, pp. 550–563, March
2018.

[7] S. P. Chepuri and G. Leus, “Sensor selection for estimation,
filtering, and detection,” in 2014 International Conference on
Signal Processing and Communications (SPCOM), July 2014,
pp. 1–5.

[8] A. Bertrand, J. Szurley, P. Ruckebusch, I. Moerman, and
M. Moonen, “Efficient calculation of sensor utility and sen-
sor removal in wireless sensor networks for adaptive signal
estimation and beamforming,” IEEE Transactions on Signal
Processing, vol. 60, no. 11, pp. 5857–5869, 2012.

[9] R. Tibshirani, “Regression shrinkage and selection via the lasso:
a retrospective,” Journal of the Royal Statistical Society: Series
B (Statistical Methodology), vol. 73, no. 3, pp. 273–282, 2011.

[10] G. H. Golub and C. F. van Loan, Matrix Computations, 3rd ed.
Baltimore: The Johns Hopkins University Press, 1996.

[11] F. de la Hucha Arce, F. Rosas, M. Moonen, M. Verhelst, and
A. Bertrand, “Generalized signal utility for LMMSE signal
estimation with application to greedy quantization in wireless
sensor networks,” IEEE Signal Processing Letters, vol. 23,
no. 9, pp. 1202–1206, Sept 2016.

[12] C. Zhang, S. Bengio, M. Hardt, B. Recht, and
O. Vinyals, “Understanding deep learning requires rethinking
generalization,” 2017. [Online]. Available: arXiv:1611.03530v2

[13] K. B. Petersen and M. S. Pedersen, “The matrix cookbook.”
[Online]. Available: https://archive.org/details/imm3274

[14] C. A. Rohde, “Generalized inverses of partitioned matrices,”
Journal of the Society for Industrial and Applied Mathematics,
vol. 13, no. 4, pp. 1033–1035, 1965.

[15] M. Yuan and Y. Lin, “Model selection and estimation in regres-
sion with grouped variables,” Journal of the Royal Statistical
Society: Series B (Statistical Methodology), vol. 68, no. 1, pp.
49–67, 2006.

[16] F. de la Hucha Arce, M. Moonen, M. Verhelst, and A. Bertrand,
“Adaptive quantization for multichannel Wiener filter-based
speech enhancement in wireless acoustic sensor networks,”
Wireless Communications and Mobile Computing, vol. 2017,
Article ID 3173196, 2017.

[17] H. Zou and T. Hastie, “Regularization and variable selection via
the elastic net,” Journal of the Royal Statistical Society, Series
B, vol. 67, pp. 301–320, 2005.

[18] S. M. Selby, Standard Mathematical Tables. CRC press, 1974.

APPENDIX

In this appendix, we provide the outline of the
proofs for the three results listed in Section V.

Result 1: It can be easily verified that the deriva-
tion in [Pop-out box 1] is also valid for Uk(λ) if
R is replaced with Rλ everywhere.

Result 2: If λ→ 0, the second term in (24) will
vanish, so it can be ignored. Furthermore, it is a
known fact that

lim
λ→0

R−1
λ r = R+r (25)

which holds even if R−1 does not exist (see, e.g.,
page 263 in [10]). This means that x̂ and x̂−k get

9

asymptotically close to the minimum-norm LS so-
lution of the non-regularized cost (1) when λ→ 0.
As a result, the first term gets asymptotically close
to Uk according to the original definition of the
non-regularized utility in (3), which is by definition
equal to zero if k ∈ R.

Result 3: If k ∈ R, then both terms in (24) will
vanish if λ → 0, i.e., Uk(λ) → 0 (see Result 2).
Note that the second term vanishes linearly with λ.
Therefore, to prove Result 3, we have to show that
the first term vanishes superlinearly with λ, ∀ k ∈
R, such that the second term dominates over the
first term if λ becomes small. To this end, we study
limλ→0 Uk(λ)/λ instead. Based on l’Hôpital’s rule,
we find that

∀ k ∈ R : lim
λ→0

Uk(λ)

λ
= lim

λ→0

dUk(λ)

dλ
(26)

i.e., the limit is obtained by taking the derivative of
Uk(λ). By plugging (23) into (24) and expanding it
in its quadratic terms, we find that the derivative of
(24) can be calculated as

dUk(λ)

dλ
=

d

dλ

(
rTR−1

λ r− rT−kR
−1
λ,−kr−k

)
(27)

where Rλ,−k denotes the matrix Rλ with the k-th
row and column removed, and r−k denotes r with
the k-th entry removed. The following basic identity
is found in [13], [18] for an invertible matrix A:

dA−1

dx
= −A−1 dA

dx
A−1 .

Using this identity, it can be straightforwardly found
that (27) reduces to

dUk(λ)

dλ
=

(
rT−kR

−2
λ,−kr−k − rTR−2

λ r
)
.

Taking the limit for λ→ 0 and using (25) and (26),
this reduces to

∀ k ∈ R : lim
λ→0

Uk(λ)

λ
= ‖R+

−kr−k‖
2 − ‖R+r‖2

= ‖x̂−k‖2 − ‖x̂‖2

where the last equality immediately follows from
(21). This shows that selecting the redundant vari-
able k ∈ R with the lowest utility, will induce the
lowest increase in `2-norm, which proves Result 3.

