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F
rom a systems biology perspec-
tive, the cell is the principal 
element of information inte-
gration. Therefore, under-
standing the cell in its 

spatiotemporal context is the key to 
unraveling many of the still unknown 
mechanisms of life and disease. This 
article reviews image processing aspects 
relevant to the quantification of cell 
morphology and dynamics. We cover 
both acquisition (hardware) and analysis 
(software) related issues, in a multiscale 
fashion, from the detection of cellular components to the descrip-
tion of the entire cell in relation to its extracellular environment. 
We then describe ongoing efforts to integrate all this vast and 
diverse information along with data about the biomechanics of the 
cell to create a credible model of cell morphology and behavior.

INTRODUCTION
Systems biology [1] is a multilevel approach to the study of bio-
logical phenomena that integrates structural and functional 
information at different levels of spatial (molecular, cellular, tis-
sular, organismal) and temporal resolution. Although many 
noteworthy ongoing efforts aim at computationally describing 
the structure, function, and even the development of entire 
organs [2] and simple organisms [3], the cell remains 

the principal element of information 
integration and is the key to the design 
of higher-order models. The cells ema-
nate signals that collectively determine 
the fate and evolution of organs and, 
within the cells, signals are directed 
that elicit inner mechanisms of protein 
production, replication, differentiation, 
and death. Understanding how the cell 
senses, reacts to, and produces these 
regulatory signals is the key to explain-
ing the principles of life and disease. 
This is a daunting task that requires 

the study of the cell from many different perspectives (morpho-
logical, biochemical, mechanical, electrical) accounting for both 
the temporal and spatial dimensions. Accordingly, numerous 
efforts today are directed toward the creation of multidimen-
sional morphodynamic models of the cell. Feeding into these 
models are technologies (hardware) and methods (software) 
that produce quantitative visual information. The evolution of 
these methods and technologies poses continuous challenges to 
the signal processing community. In this article, we review the 
state of the art of computational and signal processing aspects 
involved in: 

■■ the development of advanced live cell imaging modalities
■■ the dynamic tracking of cells and subcellular components
■■ the estimation of forces exerted between the cell and its

local environment
■■ the integration of “visual” information into credible models

of cell behavior.
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A brief historical perspective and a discussion of the state of 
the art of all these fields are presented, along with new challenges 
that require the involvement of the signal processing community.

IMAGING CELL BEHAVIOR
The first studies of the behavior of living cells date back about 340 
years, when the Dutch draper Antoni van Leeuwenhoek decided to 
turn his interest in lens making to visualizing more interesting 
objects than his merchandise. In the mid-1670s, possibly inspired 
by the 1665 groundbreaking publication of Robert Hooke’s discov-
ery of plant cells, he was the first to observe micro-organisms, or 
little animals (animalcules) as he called them, in a drop of lake 
water. The magnification factor of van Leeuwenhoek’s single-lens 
microscopes amounted to a stunning 300#, and the optical reso-
lution of his lenses was already around 1 micron. It took until the 
19th century before compound microscopes were developed that 
surpassed the quality of his microscopes and reached the diffrac-
tion limit—roughly half the wavelength of the light—discovered 
by Ernst Abbe in 1873.

Cells by themselves are fairly transparent and cannot be stud-
ied in detail using conventional light microscopy. One trick to 
improve optical contrast without 
having to explicitly stain cells is to 
exploit the fact that when light trav-
els through a medium, it undergoes 
amplitude and phase changes that 
are dependent on the properties of 
the medium. While the human eye is 
sensitive only to amplitude varia-
tions, phase shifts may carry impor-
tant information about the medium, and can be made visible by 
conversion to changes in brightness using special optical compo-
nents. Phase contrast (PC) microscopy [4] was invented in the 
1930s by Frits Zernike, which earned him the Nobel Prize in phys-
ics in 1953. Unfortunately, the use of this technique is restricted to 
very thin specimen preparations, and the resulting images suffer 
from halo artifacts. Another technique invented by Georges 
Nomarski in the 1950s, is to exploit the interference obtained 
when recombining two orthogonally polarized and slightly dis-
placed light components after traveling through the specimen. 
Differential interference contrast (DIC) microscopy [4] yields 
superior resolution compared to PC microscopy and has excellent 
optical sectioning capability. However, the effectiveness of DIC is 
reduced by the specimen’s reaction to polarized light. Moreover, 
the resulting images show typical pseudo-three-dimensional (3-D) 
artifacts that can be mistakenly interpreted as topographical cell 
features. Several of the limitations of both PC and DIC microscopy 
can be avoided by the use of Hoffman modulation contrast micros-
copy [4], developed by Robert Hoffman in 1975.

These optical contrasting techniques are used particularly in 
studies that do not require quantification of intracellular compo-
nents, but that rather aim to characterize the morphodynamics 
of individual cells or the aggregate migratory behavior of groups 
of cells. For the study of dynamic processes within a living cell, 
it is necessary to specifically label the intracellular objects of 

interest. This has become possible at large by the discovery 
(1962), gene sequencing and cloning (1992), and expression 
(1994) of the green fluorescent protein (GFP) from the jellyfish 
Aequorea victoria [5]. GFP-labeling enabled the visualization of 
very specific targets within living cells and opened the door to 
studying the location and function of intracellular components 
with unprecedented sensitivity and specificity. This caused a 
true paradigm shift in biological experimentation [6] to the 
extent that the inventors of the technique, Osamu Shimomura, 
Martin Chalfie, and Roger Tsien, were awarded the Nobel Prize 
in chemistry in 2008. During the 1990s and 2000s, many deriva-
tives of GFP were developed with their own characteristic exci-
tation and emission spectra, which further extended the toolbox 
of fluorescent labeling [5].

Much of the research in optical microscopy imaging in the past 
two decades has focused on the development of strategies to break 
the Abbe resolution limit and achieve “superresolution micros-
copy.” These techniques yield images with a level of detail close to 
the intrinsic scale of molecular biology. It is especially this 
endeavor that has led to major new challenges for the signal and 
image processing community. The most prominent recent exam-

ples of microscopy imaging tech-
niques that rely heavily on image 
processing are photoactivated local-
ization microscopy (PALM) [7] and 
the related technique of stochastic 
optical reconstruction microscopy 
[8]. These exploit the long-known 
fact that, even though the image of a 
subresolution particle is diffraction-

limited (on the order of hundreds of nanometers), its location can 
be estimated with much higher accuracy (on the order of nano-
meters), depending on the signal-to-noise-ratio (SNR) [9]. Instead 
of acquiring a single image with all labels fluorescing concur-
rently, by using fluorescent proteins that can be switched on and 
off, thousands of images of well-separated particles can be 
acquired and their locations estimated very accurately by particle 
detection and fitting techniques. The composite image built up 
from the detections displays very high resolution. An alternative 
way to acquire better localized images is stimulated emission 
depletion [10], a nonlinear imaging technique that uses controlled 
de-excitation of previously excited off-center fluorophores. 
Another important technique is structured illumination micros-
copy [11], which computationally combines the images of differ-
ently oriented illumination patterns that produce Moiré fringes in 
the emission, resulting in an image with double resolution in each 
dimension. Complementary to these developments, improved 
techniques for imaging intact whole organisms have also been 
developed in recent years. Selective-plane illumination micros-
copy (SPIM), for example, in which the specimen is illuminated 
with a thin sheet of light perpendicular to the direction of observa-
tion, has proven to be an extremely valuable technique for long-
time observation of embryonic development [12].

These and related advanced microscopy imaging techniques 
have enabled biologists to study the complexity of subresolution 

Understanding the cell 
in its spatiotemporal 

context is key to explaining 
many of the mechanisms 

of life and disease.
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intracellular organelles and the relation of their constituting 
components down to the molecular level and under physiologi-
cal conditions in single cells or even developing organisms 
[13]–[15]. Technical improvements of these fluorescence-based 
imaging modalities, for instance, taking advantage of the spar-
sity of the signal being detected [16], go hand-in-hand with new 
versions of switchable fluorophores that allow nonlinear optical 
effects to be more efficiently used to push the resolution limit 
down further. The trends indicate that as imaging techniques 
become more and more sophisticated, requiring multiple pieces 
of information to be combined to reconstruct the full image, 
there is an increasing need for computationally efficient signal 
and image processing algorithms. 

ANALYZING CELL BEHAVIOR
The extraction of biologically relevant information from both clas-
sical and novel microscopy imaging modalities requires the use of 
advanced image processing methods. Here, we will focus on tech-
niques for segmenting and tracking cells and intracellular parti-
cles and for estimating cell-matrix tensional forces.

Cell segmentation and tracking
Accurately defining the boundaries of cells in both static and 
dynamic images is a classical prob-
lem. It has been addressed over the 
years using a variety of segmentation 
methods [17]. Traditionally, cell seg-
mentation in high-resolution fluo-
rescence microscopy has been used 
to establish a spatial reference 
framework for the quantification of 
molecular or genetic events inside 
the cell. Alternatively, low-resolution 
cell segmentation and tracking, both 
in fluorescence and brightfield two-
dimensional (2-D) microscopy has been applied to study the 
dynamics of cell populations with an emphasis more on the 
detection of population changes (e.g., cell mitoses, deaths, 
fusions) and motility (e.g., organ development, wound healing) 
than in accurately delineating cell morphology changes. More 
recently, a growing interest in the mechanobiology of the cell has 
brought back the focus of the segmentation and tracking field to 
the accurate delineation of cellular morphology and the changes 
associated to cell movements on flat substrates, and more 
recently, in 3-D environments.

There are two main approaches to the problem of cell track-
ing: tracking by detection and tracking by model evolution. The 
first approach consists of independently segmenting the cells in 
all the frames of a video and then, using association methods, 
tracking each segmented cell in all the video frames. The second 
approach uses evolution of curves or surfaces, either implicitly or 
explicitly defined, to track the boundaries of the cells along the 
entire length of the video. The first approach is more suitable for 
situations of low spatiotemporal resolution—high cell density, 
large time step—while the second performs best in high 

spatiotemporal resolution settings where high segmentation 
accuracy is required and there are few topological changes. Both 
paradigms can be enhanced by introducing knowledge of the 
topology changes (e.g., mitosis, apoptosis, fusion) into the data 
association (tracking by detection) or evolution (tracking by 
model evolution) phase of the algorithm.

The most recent tracking by detection methods use relatively 
simple segmentation approaches, such as wavelet decomposition 
[18], seeded watersheds [19], [20] or thresholding techniques [21], 
while investing their efforts in sophisticated association methods, 
such as minimum-coupled cost flow [18], dynamic programming 
[19], integer programming [22], or multiple-hypothesis [23] 
tracking. Some of these association methods implicitly incorpo-
rate the detection of topological changes [18], [19] while others 
include preprocessing detection of mitosis [20] or apoptosis to 
account for them. The state of the art of the tracking by model 
evolution paradigm uses the evolution of implicit contours (i.e., 
level sets) [21], [24] to segment and track individual cells. The 
principal limitation of these methods is the high computational 
cost involved in evolving one level set function per cell, by finding 
the numerical solution of its associated partial differential equa-
tion (PDE). To address this point, reducing the computational 
cost, Dufour et al. [25] use a discrete–parametric-active mesh 

framework and Maska et al. [26] 
minimize the original Chan–Vese 
model without solving any PDE, 
while evolving one single level set 
function per frame. Finally, there are 
complex methods that combine 
these two paradigms by using a fast 
level set framework combined with 
local spatiotemporal association [27].

A recurrent problem of the field 
was the lack of common test data 
sets and metrics to evaluate the per-

formance of novel and existing algorithms. This prevented a fair 
and objective evaluation of the segmentation methods leaving the 
user (normally a noncomputer-proficient biologist) with the deci-
sion of choosing between the existing methods, with only the help 
of complex technical descriptions. In addition, not all published 
tracking algorithms are publicly available, or they have been 
released in a format that requires important computer and pro-
gramming skills. To address this relevant issue, a benchmark for 
objective evaluation of cell tracking algorithms was recently estab-
lished [28]. The challenge provides annotated data sets composed 
of both 2-D and 3-D video microscopy modalities (PC, DIC, fluo-
rescence, confocal), nuclear and cytoplasmic staining, and various 
cell densities and microscopy resolutions (from high-throughput 
to high-resolution situations). Realistic simulations of nuclearly 
stained cells are also provided, for which there is an absolute, unbi-
ased ground truth. The metrics used to compare the algorithms 
take into account both the accuracy of the segmentation and the 
accuracy of the tracking (movement and lineage) of the cells. 

The outcome of the challenge revealed that the problem of seg-
menting and tracking cells in microscopy is far from being solved, 
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especially in the case of cytoplasmic labeled cells or in high-
throughput setups (low spatiotemporal resolution and low SNR). 
In addition, more work needs to be done to segment cells in non-
fluorescent microscopy modalities (PC, DIC) where the cellular 
boundaries present complex gradient patterns or extended arti-
facts, as well as in novel microscopy techniques such as SPIM.

Particle detection and tracking
Quantitative analysis of healthy cell behavior and how various dis-
eases may alter it often requires the analysis of intracellular 
dynamic processes. Examples include the motion of proteins or 
lipids on the cell membrane in relation to cell adhesion and regu-
lation, the dynamics of cytoskeletal filaments involved in cell 
maintenance and intracellular transport, the interaction of virus 
particles with the cell machinery, and the intricate molecular pro-
cesses involved in genome maintenance. Typically, these processes 
require very large numbers of “particles” (molecules, macromo-
lecular complexes, organelles). In biological experiments, several 
hundreds to thousands of them are imaged at the same time to 
allow studying both the characteristic behavior and interaction of 
individual particles as well as aggregate behavior. Since manual 
annotation of the image data is infea-
sible, in addition to being inaccurate, 
this calls for advanced methods for 
automatic particle detection and 
tracking [23], [29]–[33].

Similar to methods for the anal-
ysis of cell dynamic behavior 
described in the previous section, 
methods for the tracking of intra-
cellular particles in an image sequence usually consist of two 
fundamental stages [34]: 1) particle identification within indi-
vidual image frames and 2) particle association from frame to 
frame to build trajectories. The goal of the first stage is to dis-
tinguish between local image intensity patterns that truly repre-
sent particles of interest versus irrelevant image structures and 
background. Commonly used image analysis methods for this 
purpose range from simple intensity thresholding, to more 
advanced linear filtering (in particular, Gaussian and its deriva-
tives) and nonlinear wavelet-based or morphological image pro-
cessing approaches. After detection, representative coordinates 
of the underlying particle within its corresponding local image 
patch are typically estimated by computing the intensity center 
of mass, by finding the local maximum, or by fitting a theoreti-
cal or experimentally obtained intensity model. In the case of 
spatially well-separated subresolution particles, the ideal model 
is the point-spread function of the microscope used, which in 
the case of both widefield and confocal fluorescence microscopy, 
can be well approximated by a Gaussian [35]. The localization 
problem is strongly linked to superresolution recovery (SRR) of 
the underlying true signal. While solid mathematical theory for 
SRR is now emerging [36], the development of computationally 
robust and efficient recovery algorithms remains a challenge, 
especially for multiparticle-tracking applications, where the 
data usually contains large numbers of (possibly overlapping) 

diffraction-limited spots drowning in very high levels of Poisson 
noise. The use of compressed sensing approaches has recently 
shown promising results in this area [16] and may be further 
improved by accurate statistical models.

The goal of the second stage in the particle-tracking process is 
to establish the best possible association of detected particles 
between image frames. Depending on the density of the particles 
within the field of view, and whether or not prior knowledge about 
their dynamic behavior is available, commonly used methods for 
this purpose range from simple nearest-neighbor linking (con-
necting each particle in a given frame with the spatially nearest 
particle in the next frame of the sequence), to more advanced mul-
tiframe association schemes, including multiple hypothesis track-
ing, dynamic programming, and various combinatorial 
approaches. The use of a motion model is often implemented in 
the form of Kalman filtering or in the case of nonlinear and non-
Gaussian tracking problems, by means of sequential Monte Carlo 
estimation methods (often confusingly referred to as particle fil-
tering). These can be made even more sophisticated by the use of 
interacting multiple motion models. However, the rise of high-
density particle-tracking applications [37] is challenging currently 

existing methods, increasing the 
need for dealing with ever-larger 
amounts of imperfect data. As popu-
lar detection and localization meth-
ods yield optimal precision and 
accuracy only in circumstances that 
are rarely achieved in particle-track-
ing experiments [38], improved per-
formance can be expected from 

novel methods that more intimately link the detection, localiza-
tion, and association aspects of the tracking problem.

Since the early 1990s, many particle-tracking methods have 
been published based on the mentioned principles. With the 
increasing encouragement in the field to promote reproducible 
research, several dozens of software tools implementing these 
methods have been released [34]. To gain insight into their relative 
performance in an objective and reproducible manner, an open 
competition was recently organized [39]. One important finding is 
that, despite the often-heard claim when a new method is pre-
sented in the literature that it beats previous methods, as yet there 
exists no such thing as a single universal particle-tracking method 
that works best for all biological experiments. However, overall, 
certain methods do perform considerably better than others. A 
shared feature of superiorly performing methods is that they make 
optimal use of prior knowledge about both the objects of interest 
and the imaging process, re-emphasizing the importance of 
domain modeling. Another important finding is that current parti-
cle-tracking methods still tend to break down at SNRs representa-
tive of typical live-cell fluorescence microscopy imaging 
experiments. Although the SNR can be easily improved by increas-
ing the illumination level, this has detrimental effects to the cell 
(photodamage and/or phototoxicity). Thus, in current practice, a 
careful selection of imaging conditions and analysis methods 
remains essential. 

Quantitative analysis 
of healthy cell behavior

and how various diseases 
may alter it often requires 

the analysis of intracellular 
dynamic processes.
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Measurement of forces
Mechanobiology is an emerging field at the interface of biology and 
engineering. It focuses on the processes by which physical forces 
and cell or tissue mechanics contribute to development, normal 
physiology and disease. In the early 1920s, Buckminster Fuller first 
proposed the principle of tensegrity within the realm of architec-
tural design. Tensegrity refers to the stability of a 3-D structure, 
granted by the opposing equilibrium between a discontinuous set 
of rigid compression elements and a continuous stabilizing tensile 
force. It was not until the mid-1970s that the (at that time) Yale 
undergraduate and current Harvard professor, Donald Ingber, 
related the behavior of a simple tensegrity stick-and-string model 
(flat when attached to a flat surface, abruptly becoming rounded 
when being detached from the flat surface) to the behavior of the 
cells that he had seen in culture at that semester’s cancer lab. Ing-
ber thought that cells might use their recently discovered internal 
framework, the cytoskeleton, to control their shape, much like a 
tensegrity structure does by means of a set of compressing ele-
ments and force distributing tensile elements [40]. Ingber further 
reasoned that cells must use their substrate, the extracellular 
matrix, to anchor themselves. Later on, he proved that mechanical 
forces exerted at the surface of the cell can be transmitted to the 
nucleus, resulting in biochemical changes and ultimately genetic 
changes—causing genes to turn on and off [41].

Understanding the molecular mechanism by which cells sense 
and respond to physical forces is a major challenge in this field. 
Traction force microscopy (TFM), a light microscopy technique 
developed in the mid-1990s [42], can compute traction forces 
exerted by a cell onto a biomimetic hydrogel substrate. These trac-
tion forces are calculated from the displacement of a large number 
of fluorescent beads embedded in the hydrogel, which in turn can 
be seen as samples of the deformation field that the forces cause in 
the substrate. Finally, the traction forces generating the deforma-
tions are inferred by direct or inverse methods that work from the 
expression of the laws of the elasticity of materials. Most of the 
existing, simplified methods compute the forces exerted on a plane 
by cells lying flat on a 2-D surface. Legant et al. [43], in a recent 
breakthrough, estimated traction forces exerted by cells fully 
encapsulated in a 3-D polymer gel. Using this physiologically rele-
vant model, they discovered that the cells sensed the surrounding 
gel pulling strongly inward through traction anchors located near 
the tip of long, thin protruding extensions. 

The classical procedure used to recover the forces in 2-D 
TFM experiments is composed of two steps: first, the displace-
ment of the microbeads is calculated using particle-imaging 
velocimetry (PIV). Then, the stress field is obtained by consider-
ing the substrate as a linear and elastic half-space. The Boussin-
esq solution of the Green tensor is then computed using 
Fourier transform traction cytometry (FTTC) [44]. Legant et al. 
[43] relaxed the half-space constraint and solved the inverse
problem within a 3-D geometry using the finite element
method (FEM). More recently, the constraint on the linear
behavior of the gel has been eliminated by combining multiple
nonlinear FEM solutions, thus resulting in higher accuracy in
the estimation of the forces [45].

It is clear that there is an urgent need to develop and 
integrate more efficient, precise, and robust computational 
methods. In particular, we believe that signal processing 
could greatly contribute to the technique with 1) robust and 
accurate cell segmentation algorithms as the ones described 
in the section “Cell Segmentation and Tracking,” 2) sophisti-
cated microbead displacement estimation methods such at 
the ones described in the section “Particle Detection and 
Tracking,” and 3) fast and robust solutions for the ill-posed 
problem of recovering the forces (i.e., sparse tensor regular-
ization, sparse reconstruction). 

While TFM is well suited for the study of mechanotrans-
duction at the cellular scale, particle-tracking microrheology 
[46] applies similar approaches to study mechanics at an intra-
cellular scale. In particular, it enables measuring the local vis-
coelastic properties of the cytoplasm with high spatiotemporal
resolution (i.e., nanoscale in seconds intervals). To this end,
submicron particles are ballistically injected into the cyto-
plasm of live cells. After injection, the beads disperse rapidly
within the cytoplasm, while being imaged using high-magnifi-
cation fluorescence microscopy. The random spontaneous
movement of the beads is tracked using particle-tracking
methods. The trajectories of the cytoplasm-embedded particles
are used to compute mean-squared displacements (MSDs).
Finally, the time lag-dependent MSDs of the beads are trans-
formed into local estimations of frequency-dependent visco-
elastic moduli or the time-dependent creep compliance
(deformability) of the cytoplasm. The ongoing efforts to extend
the method to 3-D go hand-in-hand with the developments in
superresolution microscopy and particle-tracking methods for
high-density and low SNR conditions.

MODELING CELL BEHAVIOR
Ultimately, the information obtained using the quantification 
methods detailed in the section “Analyzing Cell Behavior” should 
be used to elaborate spatiotemporal models of cell appearance and 
behavior. The models should not only fit the available data but also 
lead to new hypotheses that can subsequently be verified experi-
mentally. The truth is that there still remains a long way before a 
morphodynamic model capturing all the cell’s complexity 
becomes available. 

Approaches to modeling cell behavior can be divided into 
two main categories—top-down and bottom-up—that are 
being developed independently. Top-down approaches rely pri-
marily on image data starting at the cell level and going down 
to imaging selected subcellular components trying to infer 
rules of cell morphology and behavior hidden inside. On the 
other hand, bottom-up approaches rely primarily on nonim-
age data (such as bioinformatics databases, signaling path-
ways, gene expression data, genome sequencing data, 
measurements of forces, etc.) starting at the level of very basic 
partial rules of cell behavior and going up to defining more 
complex rules for specific cellular processes or behavior of 
small cellular components ultimately leading to the model of 
how the whole cell works. 
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Top-down approaches
The first models of the cell date back to the 19th century [47], 
being just rough descriptions based on the limited unspecific 
observation provided by the microscopes of the time. After oil-
immersion lenses became available in the 1870s, people could 
observe the structure of the membrane, nucleus and cytoplasm (at 
the time called protoplasm). For example, in 1885, C. Rabl [48] 
published his famous model of the nucleus consisting of nucleoli 
and chromatin formed by chromosomes. The model even illus-
trated chromosome behavior during mitosis. 

Computers enabled a gradual transition from those original 
descriptive models based on rather vague verbal explanations of 
cell components accompanied by drawings to more precisely for-
mulated mathematical models. The earliest mathematical tool to 
describe cell behavior (interaction of neighboring cells) was the 
cellular automaton, which became famous in 1970 thanks to John 
Conway’s “Game of Life.”  

By the end of the 20th century, it became popular to represent 
cells or cell nuclei using simple mathematical shapes (spheres, 
ellipsoids, discs, or rods) and create virtual microscopy images 
that could be used as digital phantoms. These were dedicated to 
test the limits of image segmentation algorithms to different noise 
levels, blur degradations, or phantom densities. These digital 
phantoms enable the comparison of the algorithm results with a 
known ground truth [28]. Later on, more sophisticated artificial 
objects were developed: shapes were modeled as randomly 
deformed spheres or ellipsoids, and texture was added to simulate 
staining of cell or cell nucleus. There is an abundant work aimed 
at describing and classifying both subcellular structures and whole 

cells based on the analysis of protein distribution (i.e., image tex-
ture) and morphological descriptors of the cell. This information  
can be readily incorporated to the digital descriptions of the cell. 
An excellent review of these machine-learning approaches both 
from a theoretical and practical point view has been recently pre-
sented by Conrad and Gerlich [49]. 

The virtual microscopy “observation” of these artificial 
cells also improved: Gaussian blurring was replaced by the 
convolution with a real point spread function, more noise 
types were considered (Poisson, Gaussian, dark current, fixed 
pattern) and imaging artifacts introduced (uneven illumina-
tion, depth-related aberrations in 3-D samples, etc.). For a par-
ticular cell type, virtual microscopy images can be made 
almost indistinguishable from reality (not only visually but 
also based on computed image characteristics) [50]. See 
Figure 1 for an example of digital phantoms and correspond-
ing virtual microscopy images.

Learning-based cell modeling is another modality that infers 
algorithmic parameters from training image data by employing 
supervised or nonsupervised machine-learning techniques [51]. 
Parameters need not to be just single values but may be also 
expressed as probability density functions. Learning techniques 
build either discriminative models dedicated to object classifica-
tion (of unknown test data) or generative models able to synthe-
tize new artificial images belonging to a given class. 
Learning-based approaches can be used not only for testing 
image analysis algorithms but also to characterize the differ-
ences between healthy and pathological cells or for structure-
function relationship studies. 
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[Fig1]  Modeling cells and their components using 3-D digital phantoms. First, a digital phantom is created for each modeled biological 
object in the field of view as a synthetic solid object of a precisely defined shape filled with a certain texture. The shape defines the 
binary mask serving as ground truth segmentation result and the image with texture serves as the input for virtual (simulated) 
microscopy. The image of the phantom produced by the optical system of a virtual microscope is typically generated by adding blur 
using convolution with a suitable point spread function. The blurred image is further subject to virtual image detection by adding 
adequate noise of various types. The noisy blurred images must be indistinguishable from real images of modeled biological objects 
and can serve for testing performance of image analysis algorithms against known ground truth. Examples of 3-D digital phantoms for 
two types of cell nuclei are shown. Each 3-D image is shown as a triplet of three mutually orthogonal cuts through the object: xy view 
(upper left), xz view (bottom), and yz view (right). 
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Another extended approach is to create a model of a specific cell 
segmented in a particular image (more precisely a model of its 
stained components visible in the image data). This approach lacks 
generalization but can help revealing hidden properties using simu-
lations. For instance, to measure the diffusion coefficient in fluores-
cence recovery after photobleaching (FRAP), diffusion is simulated 
on the segmentation-based model [52]. This approximation to the 
study of biological systems and the 
learning-based approach presented 
above are sometimes denoted as 
image-based systems biology to dis-
tinguish them from modeling in 
computational biology where image 
data is not considered.

Several software tools for model-
ing cells and their components have 
been made publicly available: SIM-
CEP (2-D digital phantoms), avail-
able at  http://www.cs.tut.fi/sgn/csb/
simcep/; CytoPacq (3-D digital 
phantoms), available at  http://cbia.fi.muni.cz/simulator/; or Cel-
lOrganizer (learning-based models), which can be found at 
http://cellorganizer.org. Moreover, one can use pregenerated 
benchmark data sets offered on the Web pages of these software 
packages. The synthetic cell images are still available only for 
just a few cell types and several cell components but can be gen-
erated in large quantities with different levels of noise, various 
cell densities, and are accompanied by ground truth data. 
Lately, also time-lapse sequences of such synthetic image data 
have become available and have been used, for example, in the 
Cell Tracking Challenge, available at http://www.codesolorzano.
com/celltrackingchallenge/.

Bottom-up approaches
Parallel to these black box-modeling efforts, there are attempts 
to mathematically model the intricacies of the signaling path-
ways that govern the cellular function of the cell. These models, 
if properly populated with a complete list of substances (e.g., 
genes, ribonucleic acids (RNAs), proteins), rules (e.g., transfor-
mation of molecular species, reaction kinetics) and cellular spa-
tial or functional compartments, can simulate the molecular 
machinery of the cell. E-CELL, developed by Tomita et al. [53] is 
a software environment that simulates the behavior of a cell 
from the activity of gene sets derived from entire genomes. As a 
proof of principle, the authors presented a model of a minimal 
cell based on a subset of genes of Mycoplasma genitalium, 
whose complete 580-kbit genome was sequenced in 1995. This 
simplified model simulates how proteins interact within the liv-
ing cell. Specifically, it models how changes in the amount of a 
protein (by knocking out the corresponding gene or altering its 
expression level), or the medium (e.g., starving the cell by 
removing glucose) may affect its behavior (e.g., mitotic rate, 
probability of entering in apoptosis) and its survival. 

These mathematical models are becoming increasingly com-
plex to account for higher organisms and more temporal scales. 

Simultaneously, computational models [54] are being developed 
which, instead of representing cell processes with equations, pres-
ent recipes (algorithms) that mimic natural phenomena. Instead of 
searching for a mathematical solution to a complicated list of equa-
tions, it provides algorithms that steer into different states or con-
figurations of a cell. The rules of navigation are operational, hence 
the name executable biology. In both types of models (mathemati-

cal and executable biology), there is a 
close connection with the experimen-
tal image-based data that feeds the 
models and are used to validate, and 
when necessary, update them.

Finally, the recent developments 
in the field of mechanobiology allow 
integrating morphological and 
molecular aspects with the mechani-
cal interactions between the cell and 
its environment, thus creating 
mechanical models of the cell. These 
efforts are fed with information 

about morphological changes (see the section “Cell Segmenta-
tion and Tracking”), traction force and viscosity data (obtained 
using among others, some of the tools described in the section 
“Measurement of Forces”), coupled to the trafficking of mechano-
sensitive and mechanotransductive biomolecules (see the section 
“Particle Detection and Tracking”). Most of these methods have 
been used to model cell motility, mostly of cells crawling on a 
surface [55], from the treadmill of actin that implies persistent 
front-to-back asymmetry, through a synchronized assembly–dis-
assembly directional process. These models explain the formation 
and release of lamellas and protrusions, as well as the adhesion-
mediated contraction that facilitates the push-and-pull mecha-
nism required for the cell to move on its substrate. Other models 
focus on mechanosensing in general [56], and on how the 
mechanical properties of the cell, defined by the composition and 
structure of its cytoskeleton self-adjust as a reaction to the 
mechanical properties of the extracellular environment. 

Fusion of available know-how
Top-down and bottom-up approaches are complementary to each 
other. As the coverage of the former ones goes down the scale and 
deeper into the cell (thanks to the development of imaging tech-
niques enabling observations of subresolution targets with 
increasing spatial as well as temporal resolution) while the cover-
age of the latter ones goes up the scale (due to the advances in 
molecular biology, cellular biochemistry, or the development of 
high-throughput screening methods), they tend to meet and 
cover certain cell components or events both from the rules side 
and from the imaging side. For example, within the MitoCheck 
project (http://www.mitocheck.org/), systematic analysis of genes 
and proteins that are required for chromosome segregation and 
cell division in human cells was performed by inactivating all 
22,000 human genes one by one in cultured human cells using 
RNA interference (RNAi) and recording cellular phenotypes by 
high-throughput live-cell imaging.

the advent of novel 
imaging techniques, 

coupled with the use of 
advanced computational

and signal processing  
methods, has opened the 
door to understanding

many crucial aspects 
of the cell.
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Besides advances in imaging and bio-
techniques, advances in computer vision 
and artificial intelligence may also help 
integrating all pieces of know-how together 
into a single model of the cell. Besides the 
ability of learning from image data (as in 
the case of learning-based modeling meth-
ods), they can offer multimodal fusion of 
knowledge from different sources [57] inde-
pendent of the application—the data can be 
related to studying human appearance and 
behavior in a video sequence as well as 
studying cell appearance and behavior in a 
time-lapse series. Multimodal fusion tech-
niques can help integrate pieces of informa-
tion obtained from different sources 
depicted in Figure 2, which could be the 
key for defining an accurate cell model.

DISCUSSION AND PERSPECTIVE
The cell is an extremely complex machine. 
Its changing morphology and its dynamic 
spatial relationship with the surrounding 
environment depend on the biochemical 
composition of the latter, internal and 
external mechanical stresses, electrical sig-
nals, gravity, etc. Furthermore, the cell’s 
metabolic production (i.e., its phenotype) is 
regulated by genetic and epigenetic factors 
that depend and have an impact on its mor-
phology. Consequently, a faithful model of 
the cell should take into account the inter-
play of all these factors in their precise spa-
tiotemporal context.

Needless to say, such a model cannot be based on static obser-
vation of the cell, much like the complexity of the universe cannot 
be explained based on a single snapshot of the skies. The cell is in a 
particular environment, and the cell is in a precise developmental 
stage. That explains why the exact genetic content gives rise to 
such a diverse display of cell types and phenotypes that coexist in a 
living organism. Therefore, a model of the cell should integrate all 
the factors involved (e.g., genes, RNAs, molecular/metabolic sig-
naling pathways, structural elements of the cell nucleus and cyto-
skeleton, forces, biochemical factors) in its precise time and 
location. Light microscopy, as described in this article, provides 
visually quantifiable information that feeds into these models. Fig-
ure 2 presents a graphic summary of how quantitative image anal-
ysis provides information about the cell and its dynamic processes. 

Simultaneously visualizing and quantifying all these internal 
and external players during the entire life of a cell, within its 
native tissue context is beyond all possible imagination, due to 
technical and physical limitations. However, the advent of novel 
imaging techniques, coupled with the use of advanced computa-
tional and signal processing methods has opened the door to 
understanding certain aspects of the cell that can be used to 

populate a computational model. In this article, we have reviewed 
the history and the state of the art of both hardware and software 
that are contributing to this enterprise.

In the hardware arena, the existing microscopy techniques 
can capture a few events in a relatively limited spatiotemporal 
framework, mostly in 2-D in vitro setups. The use of synthetic 
hydrogels of controlled biomechanical properties has recently 
facilitated the study of cells in more realistic 3-D environments, 
thus taking full advantage of the sectioning and 3-D imaging 
capabilities of the diverse flavors of confocal and multidimen-
sional microscopy. Simultaneously, two complementary techno-
logical efforts are being pursued. In particular, the development 
of novel superresolution microscopy methods (especially, those 
that may work in 3-D and time lapse) and the development of 
large-scale, whole organ, or whole animal imaging systems, 
where resolution is sacrificed for the benefit of spatial complete-
ness. Both efforts require significant input from the signal pro-
cessing community in the areas of efficient data sampling, 
single-molecule detection, fast sparse-image reconstruction, 
compression, and data handling.

Software development necessarily follows the advances in 
image acquisition, thus leading the way to novel 3-D particle and 

Cell Tracking

Cell Model
Particle Tracking

MicrorheologyTFM

Cell Tracking

CelCelCelCelCelCC l MMMMMModeodeodeodeodeodeodellllll
Particle Tracking

MicrorheologyTFM

[Fig2]  A summary of image analysis techniques described in the article. From the top 
left, counterclockwise: Cell tracking provides dynamic information about morphological 
changes of a moving cell; TFM calculates tensional forces between a cell and its 
surrounding environment from the displacement (red arrows) of fluorescence beads 
(yellow dots) embedded in the extracellular substrate; microrehology informs about the 
viscoelastic properties of the intracellular space from the microscopic movements (black 
arrows) of ballistically injected fluorescent nanobeads (yellow dot) under the stress of 
fibers (green lines), which can be represented as soft and stiff spring series (read arrows); 
and particle-tracking algorithms provide information about the movement (red arrows) 
and trafficking of subcellular elements (red dots).
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cell tracking routines. The existence of high-sensitivity sensors 
has placed the emphasis on the need for fast, optimized tracking 
methods, while the increasing use of high-throughput systems for 
big-data analysis pushes toward the development of very robust 
segmentation and tracking algorithms that may work in low SNR 
situations. Similarly, the incipient field of mechanotransduction 
demands novel, more efficient methods for the calculation of cell 
traction forces, especially in 3-D environments.

Finally, partial, in silico models of the cell, based on simple 
genetic and molecular approximations are already available. Those 
are being complemented with morphomechanistic models of cell 
behavior as it is visualized using an optical microscope of tunable 
properties. Mechanical models that incorporate the role of forces, 
and viscoelastic properties in the homeostasis and dynamics of 
cells are also being developed. These models are far from being 
complete, and work only as partial descriptions of some cellular 
processes during limited temporal steps. Furthermore, it remains 
to be defined how the models of the cells will be incorporated into 
similarly complex models of both subcellular–molecular models 
and dynamic models of complete organs or even entire organisms. 
The tremendous challenge posed to the signal processing and 
modeling community is how to integrate all the information 
about the cell—biochemical, structural, and mechanical—into a 
single unifying, multiscale, and spatiotemporal model that may 
open the door to the explanation and engineering of life. This, far 
from being a science fiction exercise, is the goal of the field of syn-
thetic biology. For instance, in what could be considered a break-
through in the field, Annaluru et al. [58], have reported the 
synthesis of a functional 272,871–base pair designer eukaryotic 
chromosome, based on the 316,617–base pair native Saccharomy-
ces cerevisiae chromosome III. The future is indeed here, since the 
descriptive models of the cell will provide mechanistic information 
eventually leading to the production of functional cells. The use of 
this artificial life, properly empowered by bioethical principles, 
may clear the way to a new era in the field of tissue engineering 
and regenerative medicine.
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