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Abstract—Vehicular communications networks (VANETs) en-
able information exchange among vehicles, other end de-
vices and public networks, which plays a key role in road
safety/infotainment, intelligent transportation system, and self-
driving system. As the vehicular connectivity soars, and new on-
road mobile applications and technologies emerge, VANETs are
generating an ever-increasing amount of data, requiring fast and
reliable transmissions through VANETs. On the other hand, a
variety of VANETs related data can be analyzed and utilized
to improve the performance of VANETs. In this article, we
first review the VANETs technologies to efficiently and reliably
transmit the big data. Then, the methods employing big data
for studying VANETs characteristics and improving VANETs
performance are discussed. Furthermore, we present a case
study where machine learning schemes are applied to analyze
the VANETs measurement data for efficiently detecting negative
communication conditions.

I. INTRODUCTION

With the development of automobile technologies, vehicles
are expected to be not only safer, but also greener, more com-
fortable and entertaining, while self-driving is also a defining
requirement of the future vehicles. As a promising technology
to meet such expectations, vehicular communication networks
(VANETs) enable automobiles to communicate with each
other through vehicle-to-vehicle (V2V) communication and
the network through vehicle-to-infrastructure (V2I) commu-
nication, and exchange information efficiently and reliably
through the V2V and V2I communications, or more gener-
ally, vehicle-to-everything (V2X) communications. VANETs
can facilitate a variety of useful applications, such as road
safety enhancement, traffic management, vehicular mobile data
services, and self-driving assistance [1], [2].

Due to the ever-increasing demand of mobile services and
the fast development of self-driving technologies, the data
volume required, generated, collected, and transmitted by
VANETs has seen an exponential escalation, which is known
as big data [3]. As explained in [4], the data in VANETs can
well match the “5Vs” of big data characteristics, i.e., volume,
variety, velocity, value, and veracity, which justifies that the
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VANETs data can be treated as big data and can be solved by
big data techniques.

Relying on the big data, the future VANETs will enable a
variety of promising applications and services, such as smart
city and Intelligent Transportation System (ITS) applications,
and significantly change many aspects of the society, including
the transportation system, telecommunication, business, gov-
ernment, as well as the human life style. The VANETs big data
and enabled applications are shown in Fig. 1. For example,
road traffic information can be collected by vehicles and road-
side units, and reported to the ITS cloud server. Based on
large-scale traffic information, real-time traffic prediction and
management functions are conducted, so as to detect the road
anomaly, alleviate traffic jam, and reduce emission and pollu-
tion. Self-driving vehicles will consume or generate multiple
Giga Bytes (GB) data per second, typically from outfitted
high-quality cameras, LiDARs and Radars [5]. Through the
data fusion, analysis and integration of the cloud data such
as weather and road traffic information, and information from
other vehicles, self-driving vehicles can make decisions on
actuating the vehicle for driving autonomously, on a planned
route, and eliminate traffic fatalities. As a potential impact
of self-driving technologies, the vehicles will be more like
home or offices, and thus people will focus on the mobile
applications and services that can better support the in-vehicle
activities, rather than driving the vehicle. Therefore, the future
VANETs will evolve to satisfy the big mobile data demands,
and support a wide variety of promising applications and
services.

The trend of big data can bring new challenges and oppor-
tunities for VANETs. On one hand, the VANETs big data is
with a significantly large amount, from heterogeneous sources,
and having various requirements. To efficiently support the big
data, VANETs should be capable of providing extremely high
data rate, large network capacity, heterogeneous network inte-
gration, and differentiated quality of service (QoS) guarantee.
In addition, besides data communication, the future VANETs
are envisioned to play a critical role in data collection, storage,
and computation. On the other hand, the VANETs big data
such as GPS, vehicle mobility trace, road traffic information,
and network measurements, contains rich valuable network
information. If properly utilized, such big data can reveal a
lot of network characterizations, evaluate the network perfor-
mance, and optimize the network management, by applying
advanced techniques such as big data mining, analysis, and
machine learning mechanisms. The purpose of this article is to
investigate the impacts of big data on VANETs, introduce the
new challenges and opportunities, and discuss corresponding
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solutions. We focus on two related topics, i.e., efficiently
supporting big data in VANETs, and utilizing big data for
better understanding and improving VANETs. Furthermore,
we study a case where machine learning schemes are applied
to analyze the VANETs measurement data for efficiently
detecting negative communication conditions.

II. BIG DATA IN VANETS

The VANETs big data come from multiple heterogeneous
sources, presenting diversified characteristics, such as volume,
structure, value, requirements for processing delay, etc. We
classify the VANETs big data according to the sources of the
data as follows.

• Vehicle sensing data: Modern vehicles have equipped
various sensors (speedometer, tire pressure sensor, etc.)
to collect vehicle and environmental information. Rich
information from such sensors can enable a wide range
of applications, such as online vehicle diagnosis, road
safety improvement, smart charging planning, accident
detection, and so forth.

• GPS data: GPS devices can provide accurate and struc-
tured location-related information of vehicles, including
longitude, latitude, altitude, and speed. GPS data can be
used for diversified goals, such as navigation, traffic man-
agement, communication routing optimization, vehicular
content caching and sharing, etc. In addition, the datasets
of large-scale vehicle trajectories, generated by tracing
the long-time GPS data of vehicles in a geographical area,
can be investigated to analyze the VANETs characteris-
tics, such as network connectivity, and design efficient
mechanisms, such as routing protocol for delay-tolerant
vehicular network, and radio access network deployment.

• Self-driving related data: The autonomous vehicle will
make big data even bigger. Self-driving technology re-
quires the accurate perception and understanding of the
environment to make proper decisions to control the vehi-
cle. Since traditional sensors have limited capability, and
cannot provide necessary information such as real-time
road vision, accurate distance, and 3D map, advanced
devices like cameras and light detection and ranging
(LiDAR) sensors are equipped for a better perception.
However, the high-definition cameras and LiDAR will
produce a huge amount of data as they continuously
collect high-definition data such as high-quality videos.

• Vehicular mobile service data: In-vehicle infotainment
is becoming more crucial for improving the experience of
both drivers and passengers. Mobile applications such as
video/audio streaming, online gaming, social networks,
and user generated contents (UGC) require or generate a
huge amount of data.

III. SUPPORTING BIG DATA IN VEHICULAR NETWORKS

For big data system to efficiently function, four essential
parts need to be well supported, i.e., data aggregation, storage,
transmission, and computation. In VANETs, the raw data can
be gathered by vehicle sensors, and stored in on-board storage.

Since the raw data contain redundancy, data processing is
conducted to extract valuable information. After accumulating
the data (either raw or processed), there is a demand to
transmit the data to appropriate data storage systems (such as
cloud/edge servers) for further analysis and process. Therefore,
VANETs should be capable of effectively supporting these big
data functions.

Traditional VANETs employ the IEEE 802.11p based dedi-
cated short-range communication (DSRC) technologies, where
data transmission mainly relies on distributed medium access
control (MAC) and multi-hop routing protocols [6]. However,
the traditional VANETs technologies can hardly satisfy the
harsh requirements of big data applications due to the decen-
tralized protocols and bandwidth limitations, which leads to
the lack of network resources and flexibility to support the big
data with diversified QoS requirements. Moreover, issues such
as energy efficiency, caching, and computation capabilities
are not well considered in current VANETs, which are also
essential in supporting the big data. In this section, we discuss
some promising VANETs technologies to better support the
big data, including 5G technologies and opportunistic data
offloading mechanisms. As shown in Fig. III, the 5G macro
cells can provide ubiquitous communication support, while
5G small cells, Wireless Local Area Networks (WLANs),
cognitive radio networks (CRNs) and device-to-device (D2D)
communications offer cost-effective data pipes for VANETs
big data.

A. 5G Technologies

An intuitive solution to support the VANETs big data is
the pervasive cellular network. As the 4G LTE network is
struggling to support the ever-increasing data volume and
the emerging mobile services with differentiated QoS re-
quirements, 5G networks, the next-generation networks, are
building a way to solve the issues. Based on software-defined
network (SDN) related technologies, 5G networks are de-
signed to serve as a platform to provide satisfying services
for vertical fields, including telecommunication, transporta-
tion, agriculture, economics, government, education, etc [7].
According to the key performance indicators, 5G networks are
capable of offering a 10 Gb/s data rate with less than 1 ms end-
to-end latency [8]. Moreover, machine-type communications
with low power consumption and high reliability requirements
are well supported for the emerging Internet of Things (IoT)
applications.

To better characterize and support different services, 5G
defines three categories of use cases, i.e., enhanced mobile
broadband (eMBB), ultra-reliable and low-latency communi-
cation (URLLC), and massive machine-type communication
(mMTC), and the performance indicators of each categories.
These three categories, together with the well-defined key
technologies, can provide guaranteed performance to VANETs
big data gathering and transmission tasks.

• eMBB: In VANETs, the exponentially increasing big data
demands of the vehicular mobile data services requires a
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Figure 2. Supporting Big Data Through VANETs

high-capacity network that can provide extremely high
date rates. Enabled by promising network technologies,
such as advanced channel coding, mmWAVE, and ultra-
dense small cell networks, eMBB can provide peak data
rate of 10 Gb/s and mobile data volume of 10 Tb/s/km2.
Therefore, with 5G networks, the emerging data-craving
vehicular data applications can be better supported, and
many more will come to reality.

• URLLC: The mission-critical data services in VANETs,
such as safety message transmission, require very low la-
tency and very high reliability. The requirements fall into
the category of URLLC in 5G, which can provide less

than 5 ms latency and higher than 99.999% reliability.
• mMTC: Relying on potential technologies such as

machine-to-machine communication and narrow-band
IoT (NB-IoT), mMTC aims to support ubiquitous
machine-type connections with low energy consumption
and low latency. A large amount of VANETs big data
is generated by the densely deployed light weight de-
vices, such as sensors equipped in vehicles or deployed
along the roads. 5G technologies can accommodate such
massive concurrent connectivity, provide reliable data
transmission, and prolong the device battery life, and
therefore facilitate the big data gathering services.



5G also defines enhanced vehicle-to-everything (eV2X) use
case for supporting the vertical field of vehicular communica-
tion and data services [9]. The requirements for typical V2X
scenarios are defined, including vehicle platooning, advanced
driving, extended sensors, and remote driving.

B. Opportunistic Data Pipes

Although the 5G networks can significantly improve the
network capacity, the ever-increasing big data will still put a
severe burden on the network, resulting in possible network
congestions. In addition, the commercialization and deploy-
ment of 5G networks will start in year 2020, and will be
a long-time process. Therefore, in the near future, the 4G
LTE networks with relatively small capacity will be straining
to accommodate the big data. Moreover, usually using the
cellular network to transmit a large amount of data will
incur prohibitive costs. As a result, alternative data pipes for
supporting the big data are required. WLANs, CRNs and D2D
communications can be employed to offload the VANETs big
data from the cellular network in a cost-effective way.

1) WiFi Offloading: WiFi, operating on unlicensed spec-
trum, is a popular solution to deliver data content at low
cost. The feasibility of WiFi for outdoor Internet access at
vehicular mobility, referred to as drive-thru Internet, has been
demonstrated in [10]. Different from the fully covered cellu-
lar network, WiFi only provides intermittent small coverage
areas along the road. Therefore, although WiFi operates on
unlicensed spectrum, it is spatially/temporal opportunistic for
vehicles to employ due to the vehicle mobility. Therefore,
employing the mobility feature is an important issue in
vehicular WiFi offloading. One example is prediction-based
delayed offloading. Based on the mobility prediction and priori
knowledge of WiFi deployment, the future opportunities of
WiFi access and corresponding throughput can be predicted.
Then, according to the delay tolerance of different users or
applications, offloading decision can be made whether to
wait for WiFi offloading or directly transmit through cellular
networks.

2) Cognitive Radio Technology: Cognitive radio is envi-
sioned as a promising spectrum-sharing technology which
enables unlicensed users opportunistically exploit spatially
and/or temporally vacant licensed radio spectrum bands which
are allocated to licensed systems. The CR technology can
employ the vast underutilized spectrum resources to sup-
port the big data transmissions. However, in VANETs, the
high mobility of vehicles may require excessively frequent
spectrum sensing to protect the primary transmissions [11].
The TV white spaces (TVWS) have been suggested for
wireless broadband access due to the abundant and currently
underutilized spectrum resources at VHF/UHF bands and its
superb penetration property. Unlike other licensed system, the
spectrum usage of TV broadcasting system is highly stable and
predictable, and can be inquired from a database. Therefore,
the TVWS is envisioned as a potential solution to CR-enabled
VANETs [12].

3) Device-to-Device Communication: By utilizing the
proximity, mobile users can communicate directly with each
other using the cellular spectrum (or other spectrum bands)
without traversing the base station or the backhaul net-
works, named device-to-device D2D communications. There-
fore, D2D communications can increase the overall spectral
efficiency and reduce communication delay for mobile users,
which may be applied to many VANETs applications such
as video streaming, location-aware advertisement, safety re-
lated applications, and so forth. However, incorporating D2D
communication in vehicular environment introduces several
new challenges. For example, a full channel state information,
which is usually needed in resource allocation schemes for
D2D communication, is hard to track and easy to be outdated
in VANETs. In addition, the topology of VANETs makes the
interference pattern more difficult to model than a general
cellular network where a Poison point process (P.P.P.) can be
applied to model the user spatial distribution.

IV. EMPLOYING BIG DATA IN VEHICULAR NETWORKS

As mentioned above, big data in VANETs can provide
valuable insights of VANETs, which can be employed to
characterize and evaluate the performance of VANETs, and
design new protocols with big data intelligence. In this section,
we show the utilization of two typical data sets in VANETs,
i.e., vehicle mobility trace data and VANETs measurements
data. An overview of big data employment in VANETs is
shown in Fig. 3. The two data sets can be employed to extract
practical channel model and mobility model, and predict
vehicle movement. With such knowledge, VANETs charac-
terization and intelligent protocol design can be achieved.

A. Vehicle Mobility Trace Data

Admittedly, the high mobility of vehicles leads to challenges
to VANETs. However, the mobility can also have benefits on
the network, e.g., mobility-aware protocols and delay-tolerant
data dissemination. Through the analysis of the datasets of
vehicle mobility, an amount of valuable information can
be obtained, such as the practical mobility model, network
connectivity, spatial and temporal density distribution, etc.
There are several databases that stores real and large-scale
taxi mobility trace data from different cities, including San
Francisco, Shanghai, and Shenzhen [13]. Main content of
the trace data includes time stamp, vehicle velocity, driving
direction and vehicle location, which can be used for further
study on VANETs.

Mobility model is widely used in VANETs location-based
protocol design and performance evaluation. Due to the time
intervals of vehicles reporting their trace, the trace data
is always error-prone and has gaps between locations in
two consecutive records. Therefore, some data preprocessing
mechanism is needed. For instance, due to the predictability
property of vehicle mobility, it is possible to fill the gap by
predicting the route through analyzing road map, traffic signs
and the past vehicle trace. Then, a realistic mobility model
can be generated from the modified trace data.



Position-based routing schemes and MAC protocols are
designed to adapt to the high mobility and frequently changing
topology of VANETs. The mobility model and network char-
acteristics can be obtained by analyzing the mobility trace
data and network measurement data, which are taken into
consideration in the design of routing schemes and MAC
protocols. For instance, position-based routing schemes can
exploit the real-time position and predict vehicle movement to
improve the transmission performance. Position-based MAC
protocols can predict potential packet collisions due to the
vehicle mobility and make effort to avoid them. The historical
mobility trace data can also be used in simulations to evaluate
the designed MAC and routing protocols.

Furthermore, mobility trace data is also useful in analyzing
and improving the connectivity of VANETs. Network connec-
tivity metrics can be evaluated from the mobility trace data,
including link duration, average hops, number of connected
vehicle pairs, and interconnect time distribution. Improvement
of connectivity can also be achieved with the aid of trace data.
The prediction methods of vehicle movement can be developed
to make seamless handoff possible for communication between
vehicles and infrastructures. In addition, through investigating
the real-time trace data generated in VANETs, information of
vehicle traffic flow can be obtained. Then, unmanned aerial
vehicles (UAVs) can be deployed in order to improve the
network connectivity.

B. VANETs Measurement Data

Measurement of VANETs communication plays a vital
role in VANETs characterization, since in VANETs, many
influencing factors are difficult to model, such as mobile
channels, pedestrians, terrain, and obstacles. In order to ob-
tain realistic measurement data, communication devices using
IEEE 802.11p protocol are deployed on vehicles and road-
side units (RSUs) during experiment. These experiments are
conducted in various environments such as urban, suburban,
rural, open fields and freeway, and different measurement data
is collected depending on the characteristics of interest.

WiFi offloading is envisioned as a potential solution to
data explosion problem in cellular networks. However, high
mobility of vehicles makes WiFi offloading in VANETs dis-
tinguished from static WiFi offloading. Measurement data like
connection establishment time, connection time, interconnec-
tion time, max rate and transferable data volume in once
drive-thru is collected to analyze WiFi offloading performance.
Then, a three-phase feature is observed as an important WiFi
offloading characteristic, including entry, production, and exit
phases. It shows that in entry and exit phases, the connection
quality is weaker and data rate is lower than production phase,
which provides guidance to researchers about how to improve
the offloading performance, e.g., reducing the association and
authentication time in order to maximize data transfer in
production phase.

Unlike static or low-mobility wireless channels, the ve-
hicular channel is more complicated due to the shadowing
by nearby vehicles, high Doppler shifts, and inherent non-

stationary [14]. Therefore, building an accurate and practical
channel model is crucial for VANETs performance analysis,
protocol design, and simulation experiments. This can be
done by studying the real communication measurement data,
including both V2V measurements and V2I measurements
in different important environments. The resulting channel
models characterize the vehicular channel from different chan-
nel metrics, including pathloss, signal fading, delay spread,
Doppler spread, and angular spread.

V. CASE STUDY

In this section, we study a case where big data and machine
learning schemes are employed to support efficient protocol
design in VANETs communications.

A. Online NLoS Detection

In VANETs, packets related to safety information should
be delivered perfectly (with transmission chance and with-
out packet loss). However, it is found that non-line-of-sight
(NLoS) condition is a key factor of V2V link performance
degradation [15]. Inspired by the intuition that blindly sending
more packets in harsh NLoS conditions can hardly succeed
but incur resource wasting and increase interference to other
neighboring vehicles, we propose an innovative scheme to
detect NLoS conditions online by learning the V2V measure-
ment data. Given that the NLoS condition can be detected,
more robust protocols can be devised, e.g., allocating scarce
wireless channel resources to those vehicles under line-of-sight
(LoS) conditions or seeking helper vehicles to relay packets
for those vehicles under NLoS conditions. In the sequel, we
will elaborate the scheme in two parts, i.e., measurement
data collection and building detection model using machine
learning methods.

B. Collecting V2V Communication Measurement Data Sets

We collect V2V communication trace data by two exper-
imental vehicles each mounted with a Arada LocoMateTM
OBU (DSRC module) on the roof. The transmitter vehicle
sends a 300-bytes packet every 100 ms to the receiver ve-
hicle, which consists of a sequence number, the latitude,
the longitude, the altitude and the speed information of the
transmitter. Meanwhile, both the transmitter and the receiver
log all the packets transmitted and received. In addition, we
deploy two cameras on each vehicle with one mounted on the
front glass and the other fixed on the rear glass, which record
the whole process for off-line analysis. Fig. 4 (a) shows the
data collection devices.

We conduct data collection campaigns including three major
road types in a city, i.e., highway, suburban, and urban.
Each data set contains following three types information: 1)
communication trace: by comparing packet’s sequence number
at sender and receiver, each packet can be marked as received
or dropped and we can compute the packet delivery ratio
(PDR) throughout all experiment time; 2) GPS trace: both
vehicles have logged GPS trace, which can provide speed,
altitude and distance information; 3) recorded videos: it can be
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Figure 4. Illustration of the data collection campaign

utilized to check the communicating environments, e.g., types
of road, traffic conditions, surrounding obstacles and so on.
Three types of data are within time synchronization for better
observation and comparison. The overall campaign lasts for
over two months with an accumulated distance of over 1,500
kilometers and a total size up to 110GB. We run our testbed
within areas of the above three road types in Shanghai as
shown in Fig. 4 (b). We denote three data sets by H (highway),
S (suburban), and U (urban).

C. Supervised Machine Learning

In this subsection, we use two classic supervised machine
learning methods, i.e., Naive Bayes (NB) and Support Vector
Machines (SVM), to detect NLoS conditions.

Labeling NLoS conditions: Before using machine learning
techniques, we first label out all NLoS conditions. Since the
whole data collection campaigns are recorded by cameras, we
mark all NLoS situations when two vehicles cannot visually
see each other. Although NLoS conditions found by cameras
are not necessarily to be NLoS for RF radios, those visually



NLoS conditions are still good approximations of real radio
NLoS conditions and valuable for learning. Fig. 4(c) and Fig.
4(d) show examples of a LoS condition and a NLoS condition,
where vehicle 1 and vehicle 2 are communicating vehicles, but
vehicle 2 is blocked by obstacles in the NLoS condition and
cannot be found in Fig. 4(d).

Feature Extraction: When machine learning algorithms
are processed, representative tuple of features rather than raw
data is a more effective input. Thus, it is necessary to extract
effective features from raw data set. According to the analysis
in the work [15], PDRs are heavily influenced by LoS/NLoS
conditions and LoS/NLoS durations are with memories due
to the power law distributions. Therefore, we can use history
PDR values as features for training. At this point, we select
three features, i.e., PDR value of the previous 1 second, PDR
value of the previous 5 seconds and PDR value of the previous
10 seconds.

Machine learning with NB and SVM: After feature
extracting, we obtain samples in the form of <3-dimensional
features, label>. We then use parts of samples to train NB and
SVM models. NB methods are a set of supervised learning
algorithms based on applying Bayes’ theorem. Given a label
variable y and a tuple of feature vectors x1 to xn, Maximum
A Posteriori (MAP) estimation is used to estimate P (y) and
P (xi|y). NB learners and classifiers can be extremely fast
compared to some sophisticated methods. The cores in SVM
are the kernel and the similarity function. A kernel is a
landmark, and the similarity function computes the similarity
between an input example and the kernels.

D. Performance Evaluation

To evaluate the performance of machine learning methods,
we define the following metrics based on the True Positive
(TP), True Negative (TN), False Positive (FP) and False
Negative (FN): 1) accuracy: the probability that the identi-
fication of a condition is the same as the ground truth; 2)
precision: the probability that the identifications for NLoS
conditions are exactly NLoS conditions in ground truth; 3)
recall: the probability that all NLoS conditions in ground truth
are identified as NLoS conditions; 4) false positive rate (FPR):
the probability that a LoS condition is identified as a NLoS
condition.

We first evaluate the learning results under different scenar-
ios. For more robust model evaluation, we adopt the cross-
validation scheme to validate training models. In specific, for
each data set, i.e., H with 16425 samples, S with 16033
samples and U with 27439 samples, we first split them to
10 subsets, then cross validate the learning models by using
i-th subset, for i ∈ {1, 2, ..., 10}, as validation set and the
remaining subsets together as training sets. Fig. 5(a) shows
the accuracy of NLoS detection under different scenarios
with NB and SVM methods. We have the following two
main observations. First, both NB and SVM methods can
achieve superb accuracy values. For instance, with NB method,
the accuracy can reach about 92.5%, 96.9% and 97.4% in
highway, suburban and urban, respectively, while with SVM,

the values can be about 93.7%, 98.3% and 98.3%, respectively.
Second, the performance of SVM can slightly outperform the
performance of NB. Table I shows other metric values and
similar observations can be obtained.

With the accuracy promise, we then investigate the robust-
ness of the learning models, i.e., the performance of the models
with different sizes of training data. We first split each sample
set into two subsets, one subset (occupying 10% proportion) as
validation set and the other subset (occupying 90% proportion)
as training set. The training set is evenly split into 10 subsets
and for j-th training, for j ∈ {1, 2, ...10}, the union of the
first to j-th subsets behave as the training set. Fig. 5(b) shows
the accuracy of NLoS detection with different sizes of training
data under different scenarios. We have the following two main
observations. First, for NB method, to achieve a very high
accuracy, it requires high diversity training data to cover all
situations in validation set. When the accuracy performance
reaches a supreme value (about 96.5% in the figure), increas-
ing the training size cannot further improve the performance.
For instance, in the highway scenario, the accuracy increases
from 84.3% to 90.9% then to 96.4% with training data size
0.1, 0.2 and 0.3, respectively; with more training data, the
accuracy will oscillate around 96.4%. It is noted that different
subsets of training data may have varied impacts on the model
performance, which explains that in the highway scenario, the
accuracy increases significantly with the 2nd and 3rd subsets
of training data, while in the suburban scenario, the accuracy
increase more obviously with the 5th subset of training data.
Second, SVM method is not as sensitive to the training data
size as NB method does. For instance, the accuracy of SVM
in highway scenario oscillates around 97% regardless of the
training data size. Similar observations can also be obtained in
suburban and urban scenarios. As the results are tightly close
to the highway results which may confuse the figure, they are
not shown in the figure.

VI. CONCLUSIONS

In this article, we have discussed two important issues in
VANETs in the big data era, i.e., efficiently supporting the
big data through VANETs, and employing the big data to
improve VANETs. For the former one, a framework combining
5G cellular network and alternative opportunistic data pipes is
introduced, and is envisioned to provide efficient, reliable, and
flexible support of the VANETs big data. For the latter one,
the mechanisms which analyze and learn typical big data for
characterizing VANETs and designing intelligent protocols for
VANETs are discussed. Furthermore, we have shown a case
study in which urban VANETs measurement data is used to
detect NLoS conditions through machine learning schemes.
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Figure 5. NLoS detection accuracy.

Table I
LEARNING RESULTS

Scenarios Accuracy(%) Precision(%) Recall(%) FPR(%)
NB SVM NB SVM NB SVM NB SVM

Highway 0.9247 0.9367 0.9578 0.9393 0.9359 0.9832 0.0606 0.0189
Suburban 0.9690 0.9831 0.9958 0.9867 0.9715 0.9943 0.0280 0.0035

Urban 0.9735 0.9828 0.9925 0.9851 0.9773 0.9971 0.0216 0.0037
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