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Numerical Aperture of
Single-Mode Photonic Crystal Fibers

Niels Asger Mortensen, Jacob Riis Folkenberg, Peter M. W. Skovgaard, and Jes Broeng

Abstract— We consider the problem of radiation into free
space from the end-facet of a single-mode photonic crystal
fiber (PCF). We calculate the numerical aperture NA = sin0
from the half-divergence angle 6 ~ tan~'(\/7w) with Tw? be-
ing the effective area of the mode in the PCF. For the fiber
- first presented by Knight et al. we find a numerical aperture
NA ~ 0.07 which compares to standard fiber technology. We
also study the effect of different hole sizes and demonstrate
that the PCF technology provides a large freedom for NA-
engineering. Comparing to experiments we find good agree-
ment.
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I. INTRODUCTION

HOTONIC CRYSTAL FIBERS (PCF) constitute a

completely new class of optical fibers consisting of pure
silica with air-holes distributed in the cladding. Among
many remarkable properties [m] PCFs are believed to have
O _ a potential for high-numerical aperture (NA) applications.
— Here we report a calculation of the NA for the class of PCF's
first fabricated by Knight et al. [f], [H]. For this particular
fiber we find a numerical aperture up to NA ~ 0.07. We
also demonstrate how the NA may be controlled by the
hole size for a given pitch and wavelength.
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Fig. 1
COUPLING OF LIGHT FROM END-FACET OF FIBER (Z = 0) INTO FREE
SPACE. THE INSERT SHOWS A MICROGRAPH OF THE END-FACET OF A
PCF.

The paper is organized as follows: First we consider the
problem of radiation into free space from the end-facet of a
single-mode optical fiber with a mode approximated by a
Gaussian of width w. Solving the scattering problem at the
end-facet of the fiber exactly we check the range of validity
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of the text-book result § ~ tan=!(\/7w) (see e.g. Ref. [[])
where A.q = mw? is the effective area. For w < \ we find
deviations whereas nice agreement is found for w > A. We
then turn to the application of the PCF of Knight et al.
[B] which belongs to the latter regime with w > . Finally,
we compare our calculations to experiments.

II. NUMERICAL APERTURE IN THE (GAUSSIAN
APPROXIMATION

The numerical aperture NA = siné (see Fig. EI) may
be defined in various ways, but often one defines it in the
far-field limit (2 — oo) from the half-divergence angle 6,
between the z-axis and the v-intensity point r,(2), i.e.

tanf, = lim TV(Z), (1)

zZ—00 z

with 7, (z) determined from

‘\I]>(Za7'J_ = 7'1/)|2 -

5 = (2)
‘\P>(2’,TL = O)‘

For a Gaussian field ¥ of width w one has the standard
approximate expression for v = 1/e? ~ 13.5% [

2 A
tan 6 ~— = 3
AT/ = rw T Tw ®)
For the v = 5% intensity point
In 20
tan O50, = DT X tan by /.2 (4)

which is often the one used experimentally. Egs. (E,) are
valid for kw > 1, but in order to check the validity in
the limit with kw of order unity we solve the scattering
problem at the end-facet of the fiber exactly. In the fiber
(z < 0) the field is of the form

U (r) « w(m_)(ew(“’)z + %e_iﬂ(w)z), z2<0 (5)
where the transverse field is approximated by a Gaussian
W(rL) o e (ra/w)? (6)

which has an effective area A.g = mw? at frequency w. At
the end-facet of the fiber (z = 0) the field couples to the
free-space solution

U (r) /dkj_f(kj_)eik*'“eik”z, z>0 (7)
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which is a linear combination of plane waves with w = ck =
c(2m/\) and k =k + k.

In order to solve the elastic scattering problem, Aw =
w(B)—w(k) = 0, we apply appropriate boundary conditions
at the end-facet of the fiber; continuity of ¥ and 0¥ /Jz. At
z = 0 we thus get two equations determining the reflection
amplitude #Z and the transmission amplitude 7. Elimi-
nating # and substituting the resulting .7 into Eq. () we
get

2Nt

Vl_X2+neff

XE*(ka/Q)zJO(XkTL)ei\/1*X2kz. (8)

U (r) o 27k? dx x
0

Here, x = k1 /k, Jo is the Bessel function of the first kind
of order 0, and nes = (/k is the effective mode-index.
Eq. () is the exact solution to the scattering problem and
in contrast to many approximate text-book expressions (see
e.g. Refs. [ll]) we have here treated the scattering problem
correctly including the small, but finite, backscattering in
the fiber. Thus, we take into account the possible filtering
in transmitted &k, at the fiber end-facet. The solution has
similarities with the Hankel transform usually employed
in the far-field inversion integral technique, see e.g. [H]
Numerically we have found that Eq. (E) gives a close-to-
Gaussian field in the far-field limit.

In Fig. P we compare the two approximate solutions
Eqgs. () to a numerically exact calculation of tan 6, from
Eq. (§). The calculation is performed for the realistic sit-
uation with neg = 8/k = 1.444 corresponding to a silica-
based fiber. For kw ~ 1 the deviations increase because
of the small, but finite, backscattering at the end-facet of
the fiber. For kw somewhat larger than unity a very nice
agreement is found. A typical all-silica fiber like the Corn-
ing SMF28 has kw > 10.

III. APPLICATION TO PHOTONIC CRYSTAL FIBERS

We consider the class first studied in Ref. [J] which con-
sists of pure silica with a cladding with air-holes of diameter
d arranged in a triangular lattice with pitch A. For a review
of the operation of this class of PCFs we refer to Ref. [[.

In applying Eq. ) to PCFs we calculate w from the
effective area A.q = mw? given by [ﬂ]

[fdr‘H(r,z)‘z]Q
Ag = . 9
! fdr|H(r,z)|4 ®)

Indeed we find that the corresponding Gaussian of width
w accounts well for the overall spatial dependence of the
field. Of course we thereby neglect the satellite spots seen
in the far-field [E], but because of their low intensity they
only give a minor contribution to the NA [§].

For the field H of the PCF, fully-vectorial eigenmodes
of Maxwell’s equations with periodic boundary conditions
are computed in a planewave basis [E]

Figureﬁ illustrates the effective mode-index and effective
area as a function of wavelength for a PCF with d/A =
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Fig. 2
PLOT OF tan € AS A FUNCTION OF THE DIMENSIONLESS PARAMETER
kw. THE POINTS ARE THE RESULTS OF A NUMERICAL EXACT
CALCULATION FROM EQ. (E) FOR A MODE WITH EFFECTIVE INDEX,
nesr = B/k = 1.444. THE FULL AND DASHED LINES SHOW THE
APPROXIMATIONS EQS. (E,E), RESPECTIVELY.
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Fig. 3
EFFECTIVE MODE-INDEX (SOLID LINE, LEFT AXIS) AND EFFECTIVE
AREA (DASHED LINE, RIGHT AXIS) OF A PCF wiTH d/A = 0.15.
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Fig. 4

HALF-DIVERGENCE ANGLE (SOLID LINE, LEFT AXIS) AND kw (DASHED
LINE, RIGHT AXIS) OF A PCF witH d/A = 0.15.

0.15. The first PCF fabricated by Knight et al. [E] of
this kind had a pitch of A = 2.3 ym and was found to
be single-mode in the range A/\ between 1.5 and 6.8. In
Fig. Ewe show the corresponding half-divergence angle. We
have also shown the value of the dimensionless parameter
kw (dashed line, right axis); the magnitude justifies the
application of the approximate result in Eq. (E) to PCFs.
We note that for non-linear PCFs [[Ld] the value of kw will
approach the regime where deviations from Eq. (ﬂ) arise.

In Fig. ﬂ we show the half-divergence angle for different
hole sizes where the fiber is endlessly single mode [@] For
small hole sizes d/A we note that in practice the operation
is limited by a significant confinement loss for long wave-
lengths where the effective area increases [ In Fig. E
this can be seen as a bending-down of 6 for small A/\. In
general the NA increases for increasing hole size and fixed
pitch and wavelength. By adjusting the pitch A and the
hole size d this demonstrates a high freedom in designing
a fiber with a certain NA at a specified wavelength.

In order to verify our calculations experimentally a PCF
with d/A ~ 0.53 and A ~ 7.2 um has been fabricated. In
Fig. [] we compare our calculations to a measurement of the
NA at the wavelength A = 632 nm. As seen the calculation
agrees well with the measured value.

IV. CONCLUSION

We have studied the numerical aperture (NA) of pho-
tonic crystal fibers (PCF). The calculations is based on the
approximate “standard” result  ~ tan~!(\/mw) which we
have found to be valid in the regime relevant to PCFs. As
an example we have applied it to the fiber first fabricated
by Knight et al. [{f]. By studying the effect of different hole
sizes we have demonstrated that the PCF technology have
a strong potential for NA-engineering in the single-mode
regime.
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Fig. 5
HALF-DIVERGENCE ANGLE OF A PCF FOR DIFFERENT HOLE SIZES.
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Fig. 6
HALF-DIVERGENCE ANGLE OF A PCF witH d/A ~ 0.53 AND
A ~ 7.2 ym. THE SOLID LINE IS A CALCULATION BASED ON THE IDEAL
STRUCTURE AND THE DATA POINTS ARE MEASUREMENTS AT
A =632nm, 780 nm, AND 980 nm OF THE FIBER SHOWN IN THE
LOWER RIGHT INSERT. THE UPPER LEFT INSERT SHOWS A NEAR-FIELD
IMAGE AT A = 632nm.
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