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Numerical Aperture of
Single-Mode Photonic Crystal Fibers

Niels Asger Mortensen, Jacob Riis Folkenberg, Peter M. W. Skovgaard, and Jes Broeng

Abstract— We consider the problem of radiation into free
space from the end-facet of a single-mode photonic crystal
fiber (PCF). We calculate the numerical aperture NA = sin θ
from the half-divergence angle θ ∼ tan−1(λ/πw) with πw2 be-
ing the effective area of the mode in the PCF. For the fiber
first presented by Knight et al. we find a numerical aperture
NA ∼ 0.07 which compares to standard fiber technology. We
also study the effect of different hole sizes and demonstrate
that the PCF technology provides a large freedom for NA-
engineering. Comparing to experiments we find good agree-
ment.

Keywords— Photonic crystal fiber, numerical aperture,
Gaussian approximation

I. Introduction

PHOTONIC CRYSTAL FIBERS (PCF) constitute a
completely new class of optical fibers consisting of pure

silica with air-holes distributed in the cladding. Among
many remarkable properties [1] PCFs are believed to have
a potential for high-numerical aperture (NA) applications.
Here we report a calculation of the NA for the class of PCFs
first fabricated by Knight et al. [2], [3]. For this particular
fiber we find a numerical aperture up to NA ∼ 0.07. We
also demonstrate how the NA may be controlled by the
hole size for a given pitch and wavelength.
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Fig. 1

Coupling of light from end-facet of fiber (z = 0) into free

space. The insert shows a micrograph of the end-facet of a

PCF.

The paper is organized as follows: First we consider the
problem of radiation into free space from the end-facet of a
single-mode optical fiber with a mode approximated by a
Gaussian of width w. Solving the scattering problem at the
end-facet of the fiber exactly we check the range of validity
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of the text-book result θ ≃ tan−1(λ/πw) (see e.g. Ref. [4])
where Aeff = πw2 is the effective area. For w ≪ λ we find
deviations whereas nice agreement is found for w > λ. We
then turn to the application of the PCF of Knight et al.

[2] which belongs to the latter regime with w > λ. Finally,
we compare our calculations to experiments.

II. Numerical aperture in the Gaussian
approximation

The numerical aperture NA = sin θ (see Fig. 1) may
be defined in various ways, but often one defines it in the
far-field limit (z → ∞) from the half-divergence angle θν
between the z-axis and the ν-intensity point rν(z), i.e.

tan θν = lim
z→∞

rν(z)

z
, (1)

with rν(z) determined from

∣

∣Ψ>(z, r⊥ = rν)
∣

∣

2

∣

∣Ψ>(z, r⊥ = 0)
∣

∣

2 = ν. (2)

For a Gaussian field Ψ of width w one has the standard
approximate expression for ν = 1/e2 ≃ 13.5% [4]

tan θ1/e2 ≃
2

kw
=

λ

πw
. (3)

For the ν = 5% intensity point

tan θ5% =

√

ln 20

2
× tan θ1/e2 (4)

which is often the one used experimentally. Eqs. (3,4) are
valid for kw ≫ 1, but in order to check the validity in
the limit with kw of order unity we solve the scattering
problem at the end-facet of the fiber exactly. In the fiber
(z < 0) the field is of the form

Ψ<(r) ∝ ψ(r⊥)
(

eiβ(ω)z + Re−iβ(ω)z
)

, z < 0 (5)

where the transverse field is approximated by a Gaussian

ψ(r⊥) ∝ e−(r⊥/w)2 , (6)

which has an effective area Aeff = πw2 at frequency ω. At
the end-facet of the fiber (z = 0) the field couples to the
free-space solution

Ψ>(r) ∝
∫

dk⊥T (k⊥)e
ik⊥·r⊥eik‖z, z > 0 (7)
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which is a linear combination of plane waves with ω = ck =
c(2π/λ) and k = k⊥ + k‖.
In order to solve the elastic scattering problem, ∆ω =

ω(β)−ω(k) = 0, we apply appropriate boundary conditions
at the end-facet of the fiber; continuity of Ψ and ∂Ψ/∂z. At
z = 0 we thus get two equations determining the reflection
amplitude R and the transmission amplitude T . Elimi-
nating R and substituting the resulting T into Eq. (7) we
get

Ψ>(r) ∝ 2πk2
∫ ∞

0

dχχ
2neff

√

1− χ2 + neff

×e−(χkw/2)2J0(χkr⊥)e
i
√

1−χ2kz . (8)

Here, χ = k⊥/k, J0 is the Bessel function of the first kind
of order 0, and neff = β/k is the effective mode-index.
Eq. (8) is the exact solution to the scattering problem and
in contrast to many approximate text-book expressions (see
e.g. Refs. [4]) we have here treated the scattering problem
correctly including the small, but finite, backscattering in
the fiber. Thus, we take into account the possible filtering
in transmitted k⊥ at the fiber end-facet. The solution has
similarities with the Hankel transform usually employed
in the far-field inversion integral technique, see e.g. [5].
Numerically we have found that Eq. (8) gives a close-to-
Gaussian field in the far-field limit.
In Fig. 2 we compare the two approximate solutions

Eqs. (3,4) to a numerically exact calculation of tan θν from
Eq. (8). The calculation is performed for the realistic sit-
uation with neff = β/k = 1.444 corresponding to a silica-
based fiber. For kw ∼ 1 the deviations increase because
of the small, but finite, backscattering at the end-facet of
the fiber. For kw somewhat larger than unity a very nice
agreement is found. A typical all-silica fiber like the Corn-
ing SMF28 has kw > 10.

III. Application to photonic crystal fibers

We consider the class first studied in Ref. [2] which con-
sists of pure silica with a cladding with air-holes of diameter
d arranged in a triangular lattice with pitch Λ. For a review
of the operation of this class of PCFs we refer to Ref. [6].
In applying Eq. (3) to PCFs we calculate w from the

effective area Aeff = πw2 given by [7]

Aeff =

[ ∫

dr
∣

∣H(r, z)
∣

∣

2]2

∫

dr
∣

∣H(r, z)
∣

∣

4 . (9)

Indeed we find that the corresponding Gaussian of width
w accounts well for the overall spatial dependence of the
field. Of course we thereby neglect the satellite spots seen
in the far-field [2], but because of their low intensity they
only give a minor contribution to the NA [8].
For the field H of the PCF, fully-vectorial eigenmodes

of Maxwell’s equations with periodic boundary conditions
are computed in a planewave basis [9].
Figure 3 illustrates the effective mode-index and effective

area as a function of wavelength for a PCF with d/Λ =
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Fig. 2

Plot of tan θ as a function of the dimensionless parameter

kw. The points are the results of a numerical exact

calculation from Eq. (8) for a mode with effective index,

neff = β/k = 1.444. The full and dashed lines show the

approximations Eqs. (3,4), respectively.
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Effective mode-index (solid line, left axis) and effective

area (dashed line, right axis) of a PCF with d/Λ = 0.15.
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Fig. 4

Half-divergence angle (solid line, left axis) and kw (dashed

line, right axis) of a PCF with d/Λ = 0.15.

0.15. The first PCF fabricated by Knight et al. [2] of
this kind had a pitch of Λ = 2.3µm and was found to
be single-mode in the range Λ/λ between 1.5 and 6.8. In
Fig. 4 we show the corresponding half-divergence angle. We
have also shown the value of the dimensionless parameter
kw (dashed line, right axis); the magnitude justifies the
application of the approximate result in Eq. (3) to PCFs.
We note that for non-linear PCFs [10] the value of kw will
approach the regime where deviations from Eq. (3) arise.

In Fig. 5 we show the half-divergence angle for different
hole sizes where the fiber is endlessly single mode [11]. For
small hole sizes d/Λ we note that in practice the operation
is limited by a significant confinement loss for long wave-
lengths where the effective area increases [12]. In Fig. 5
this can be seen as a bending-down of θ for small Λ/λ. In
general the NA increases for increasing hole size and fixed
pitch and wavelength. By adjusting the pitch Λ and the
hole size d this demonstrates a high freedom in designing
a fiber with a certain NA at a specified wavelength.

In order to verify our calculations experimentally a PCF
with d/Λ ∼ 0.53 and Λ ≃ 7.2µm has been fabricated. In
Fig. 6 we compare our calculations to a measurement of the
NA at the wavelength λ = 632 nm. As seen the calculation
agrees well with the measured value.

IV. Conclusion

We have studied the numerical aperture (NA) of pho-
tonic crystal fibers (PCF). The calculations is based on the
approximate “standard” result θ ≃ tan−1(λ/πw) which we
have found to be valid in the regime relevant to PCFs. As
an example we have applied it to the fiber first fabricated
by Knight et al. [2]. By studying the effect of different hole
sizes we have demonstrated that the PCF technology have
a strong potential for NA-engineering in the single-mode
regime.
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Half-divergence angle of a PCF for different hole sizes.

Fig. 6

Half-divergence angle of a PCF with d/Λ ∼ 0.53 and

Λ ≃ 7.2µm. The solid line is a calculation based on the ideal

structure and the data points are measurements at

λ = 632 nm, 780 nm, and 980 nm of the fiber shown in the

lower right insert. The upper left insert shows a near-field

image at λ = 632 nm.
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