
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, VOL. 12, NO. 6, NOVEMBER/DECEMBER 2006 1123

Ultrahigh-Q Nanocavities in Two-Dimensional
Photonic Crystal Slabs

Takashi Asano, Bong-Shik Song, Yoshihiro Akahane, and Susumu Noda, Member, IEEE

(Invited Paper)

Abstract—In this paper, we discuss methods to suppress the ra-
diation loss of ultrasmall cavities, of the size of the optical wave-
length, in two-dimensional photonic crystal slabs. An important
design concept to suppress radiation loss is introduced: The enve-
lope of the cavity mode field should have no abrupt changes and
should ideally follow a Gaussian function. Cubic wavelength or-
der cavities, with experimental Q factors of 100 000 and nearly
1 000 000 are obtained by tailoring the envelope functions using
air-hole shifts and multistep heterostructures, respectively. In ad-
dition, the experimental Q factors of the latest cavities are shown
to be determined by the imperfections in the fabricated structures
and not by the cavity design. The differences between the experi-
mental and the theoretical Q factors are investigated in order to
demonstrate how higher Q factors could be realized in the future.

Index Terms—Heterostructure, photonic crystal slab, radiation
loss, ultrasmall optical cavity.

I. INTRODUCTION

U LTRASMALL cavities that can confine light strongly
(high-Q photonic nanocavities) are important in a vari-

ety of areas of science and engineering. They are required for
the realization of ultrasmall filters with high resolution [1]–[4],
ultrasmall sensors [5], low-threshold lasers [6], single-photon
emitters [7], compact optical-buffer memories [8], [9], and in
the field of quantum computation. For such applications, it is
especially important to realize cavities that have both high Q
factors and very small modal volumes V because: 1) a large
Q factor means a long lifetime of captured photons; 2) a small
cavity size ensures single-mode operation for a broad range
of wavelengths; 3) a small cavity size enables large-scale inte-
gration; and 4) Q/V determines the strength of the interaction
between the light and the matter in a cavity. Therefore, there is
a growing interest in high-Q photonic nanocavities [10]–[15].

Recently, we reported an important design concept for the
realization of high-Q nanocavities in two-dimensional (2-D)
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photonic crystal (PC) slabs: To suppress radiation loss, the en-
velope of the cavity mode field should have no abrupt changes
and should ideally follow a Gaussian function [16]. We uti-
lized local changes of the photonic bandgap (PBG) effect due
to the shift in air-hole positions in order to tailor the envelope
functions to be similar to Gaussian functions. A cubic wave-
length order cavity, with very high Q factors of 45 000 (ex-
perimental) and 100 000 (theoretical), has been developed by
this method [16]. Variations of this method have been widely
investigated, but in all cases there remain small deviations of the
envelope functions from Gaussian functions, which limit the ex-
perimental and theoretical Q factors to <100 000 and <260 000,
respectively [17]. To overcome this limitation, we designed a
cavity structure based on the novel concept of a photonic dou-
ble heterostructure, which enabled nearly perfect control of the
envelope function of the cavity mode electric field [18]. An ex-
perimental Q factor of 600 000 and a theoretical Q factor of
20 000 000 have been demonstrated in this type of cavity [18].
Guidelines toward achieving further increases in Q factor have
also been suggested [18].

An inverse approach to the problem, where a cavity structure
is calculated from the required envelope function under some
level of approximation, has recently been reported by Englund
et al. [19] . This approach is interesting and useful for the design
of cavities with special envelope functions. They succeeded in
designing a Gaussian envelope cavity [16], which has a Q fac-
tor of nearly theoretical limit. One of the weaknesses of this
approach might be the fact that the structures are automatically
calculated out of consideration of fabrication technique. It might
limit the experimental Q factors of actually fabricated cavities.

In this paper, we explain our concept in detail and show that
it is straightforward to achieve high-Q cavities. We describe the
design and characteristics of the cavities that we have devel-
oped, including a cavity structure with an experimental Q factor
of 0.8–1.0 million. In addition, the differences between the ex-
perimental and the theoretical Q factors are investigated in order
to demonstrate how higher Q factors could be realized in the
future.

II. PRINCIPLE OF THE ENVELOPE FUNCTION APPROACH

The Q factor of a resonant mode of a cavity represents the
optical energy stored in the cavity over the energy loss per cycle
of the light. When the material of the cavity shows no absorp-
tion, the energy loss is determined by the radiation loss from
the surface of the cavity, while the energy stored in the cavity
is proportional to the volume of the cavity, assuming the energy
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Fig. 1. Photonic nanocavity using a defect in a 2-D PC slab.

density is constant. The Q factor of a cavity generally decreases
with the cavity size, as the ratio of the surface area to the volume
increases. The suppression of the radiation loss is crucial to the
realization of high-Q nanocavities. One of the most promising
solutions is the use of photonic crystals (PCs), which are struc-
tures containing periodic changes of the dielectric constant in
two or three dimensions. The repeat distances are of the order
of the wavelength of light. In a three-dimensional (3-D) PC,
there might be a frequency range where no propagating light
modes exist in any direction, called a PBG. A small void, or
dielectric volume, surrounded by such a 3-D PC [20] would be-
come the ultimate photonic nanocavity with an ultralarge Q/V
ratio. However, at present, fabrication techniques are not suf-
ficiently advanced to make 3-D PCs of sufficient size for the
required strong confinement of light (PBG effect). The use of
a 2-D PC is considered to be a feasible alternative. A cavity
surrounded by a 2-D PC slab with a thickness of the order of
the wavelength, as shown in Fig. 1, is a very attractive prospect,
due to its capacity to strongly confine light and the availability
of fabrication process techniques developed for semiconductor
devices. It is relatively easy to fabricate 2-D PCs of a sufficient
size to perfectly confine light in both the inplane directions, but
the 2-D PBG has no effect on light propagating in the direction
normal to the slab plane. Instead, light can be confined in this
direction by the total internal reflection (TIR) at the interface
between the slab and the cladding layer, if the incident angle is
larger than the critical angle. The key to the suppression of the
radiation loss is establishing how to fulfill the TIR condition.

To investigate light confinement in a 2-D PC slab cavity more
concretely, we introduced a simple model shown in Fig. 2(a),
whose structure is assumed to be uniform in the direction nor-
mal to the paper. Although the model represents a cavity in 2-D
(rather than 3-D) space, the results obtained here can also be
applied to real cavities in 2-D PC slabs. The model cavity con-
sists of a dielectric material with a finite thickness and length;
perfect mirrors enclose both sides of the cavity. Here, “perfect
mirror” is defined as a mirror that has no absorption loss and no
transmission. We considered two extreme cavities having almost
the same size and the same resonant wavelength, but different
inplane confinement. One cavity is confined by sharp reflec-
tion at the cavity edges, where the mode electric field profile
is assumed to have a rectangular envelope function [Fig. 2(b)].
The other is a cavity confined by a spatially distributed reflec-
tion, where the mode electric field profile is assumed to have a
Gaussian envelope function [Fig. 2(d)]. The electric field pro-

Fig. 2. Analysis of cavities with different inplane confinement. (a) Simplified
model of a cavity. (b) Electric field profile of a cavity with a rectangular envelope
function, and (c) its spatial FT spectrum. (d) The electric field profile of a cavity
with a Gaussian envelope function, and (e) its spatial FT spectrum.

files shown here are those along the interfaces between the slabs
and the cladding (air) of the cavities, but they are similar for
all z positions inside each cavity. The real space coordinate is
represented by the unit of the wavelength of the resonant mode
inside the cavity (λ). Fig. 2(c) and (e) shows the spatial Fourier
transformation (FT) spectra of each electric field profile, which
represents the plane wave components of the cavity mode. The
horizontal axis corresponds to the wavevector tangential to the
interface (k//). The wavevector of the light in the cladding is k0;
only plane wave components with |k// |>k0 can be confined by
the TIR. The gray regions in Fig. 2(c) and (e) represent the re-
gion where |k// |<k0, the “leaky region,” where the plane wave
components of a cavity mode are radiated into the cladding. As
can be seen clearly in the figures, the cavity with the rectangular
envelope [Fig. 2(b) and (c)] has a cavity mode with a greater
component inside the leaky region, compared to the cavity with
the Gaussian envelope [Fig. 2(d) and (e)].

An understanding of the difference between the two cavity
modes is considered to be key to the realization of high-Q pho-
tonic nanocavities. We analyzed the mode electric field profiles
by separating them into two functions: A fundamental sinu-
soidal wave with a wavelength of λ, and an envelope function.
A mode electric field profile is expressed as the product of the
fundamental wave and the envelope function in real space, while
the FT spectrum of a mode electric field profile is expressed as
a convolution of the FT spectra of the fundamental wave and
the envelope function. The FT of the fundamental wave gives



ASANO et al.: ULTRAHIGH-Q NANOCAVITIES IN TWO-DIMENSIONAL PHOTONIC CRYSTAL SLABS 1125

Fig. 3. Examples of cavity fields with (a) Gaussian and (b) Lorentzian enve-
lope functions. Here, the parameters are set in order to make the mode volume
of the two cavities equal to one another.

two delta functions at k// = ±2π/λ, and the FT of the enve-
lope gives a function with finite width, according to the shape
in real space. Since the FT of the fundamental wave is out-
side the leaky region, it is clear that the components within the
leaky region are generated by the convolution with the enve-
lope spectra. The convolution of the fundamental delta function
and the envelope spectrum is equal to the sum of two envelope
spectra, shifted by +2π/λ and −2π/λ, respectively. There-
fore, the higher spatial frequency components of the envelope
spectrum, with 2π/λ − k0<|k// |<2π/λ + k0, are transferred
to the leaky region. The FT mode electric field associated with
the rectangular envelope function [Fig. 2(b) and (c)] has a large
component in the higher spatial frequency region, due to the
abrupt changes in the envelope function at both edges, giving
large radiation losses. In contrast, the mode electric field profile
associated with the Gaussian envelope function [Fig. 2(d) and
(e)] has only a small component in the higher spatial frequency
region, due to the smooth variation of the envelope function
in real space, giving small radiation losses. It is clear that the
shape of the envelope function has a critical effect on the radia-
tion loss of the model cavity, and that, to obtain high-Q factors,
abrupt changes in the envelope function should be avoided.
However, the confinement of light to regions with dimensions
of the order of optical wavelengths requires a spatially localized
envelope function of the same dimensions. In order to realize a
high-Q photonic nanocavity, the envelope function should not
have high-frequency components but should remain spatially
localized. As shown here, a Gaussian function can fulfill both
these conditions.

We investigated several functions, which were both gently
varying and spatially localized, in order to check which func-
tion was most appropriate for high photonic nanocavities. Here,
as an example, we compare the Lorentzian and the Gaussian
envelopes. Fig. 3(a) and (b) shows the cavity field profiles with
Gaussian and Lorentzian envelopes, respectively. The parame-
ters of the envelopes were chosen such that the modal volumes of
the cavities were equal. Fig. 4 shows the Fourier transformations
of the cavity fields. We see that the fraction of the Gaussian enve-
lope cavity mode in the leaky region is much smaller than that of
the Lorentzian envelope cavity mode. Although the full-width at
half-maximum (FWHM) of the FT spectrum of the Lorentzian
function is smaller than that of the Gaussian function, the higher
frequency components are opposite, as can be seen in Fig. 4. An

Fig. 4. Energy profiles in Fourier space for the (a) Gaussian and (b) Lorentzian
cavity fields in Fig. 3.

Fig. 5. (a) Ex and (b) Ey electric field profiles of the fundamental resonant
mode of the cavity formed by the omission of three air holes, respectively. (c), (d)
2-D Fourier transform spectra of Ex and Ey electric field profiles, respectively.
The leaky regions are indicated by red circles.

exponential envelope function was also investigated. Theoreti-
cally, a sinc function is considered to be the best for suppressing
radiation loss because the FT spectrum is rectangular, however,
it is considered difficult to precisely form an envelope function
of such a complex shape in reality. Therefore, at this moment,
we believe that the Gaussian envelope is the most appropriate
and feasible envelope for confining light in a 2-D PC slab cavity.

III. AIR-HOLE SHIFT CAVITY

A. Design

On the basis of the above considerations, we designed a
high-Q photonic nanocavity in a 2-D PC slab (see Fig. 1). The
basic structure was silicon with a triangular-lattice pattern of
air rods, with a lattice constant of a. The cavity was created
by the omission of three air rods in a line along the Γ–J di-
rection (Fig. 1) [21], [22]. The thickness of the slab and the
radius of the air rods were 0.6a and 0.29a, respectively. The
electric field profiles, Ex and Ey , of the fundamental mode of
the cavity were calculated using a 3-D finite-difference time-
domain (FDTD) method, and are shown in Fig. 5(a) and (b),
respectively. The refractive index of the slab, n, was assumed
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Fig. 6. (a) Ey electric field profile along the centerline along the x direction
of the cavity, shown in Fig. 5 (solid line); a fitting curve obtained by using the
same fundamental wave and Gaussian envelope function (broken line). (b) FT
spectra of the Ey profile (solid line) and fitting curve (broken line).

to be 3.4. Unlike the models discussed in Section II, the 2-D
spatial FT spectra of both Ex and Ey are needed to investigate
the vertical confinement [Fig. 5(c) and (d)]. The leaky regions
correspond to the region inside the circles with a diameter of
k0 [indicated by red circles in Fig. 5(c) and (d)]. It is seen that
the FT spectrum of Ey contains considerable components inside
the leaky region, while that of Ex contains little inside the leaky
region. The results indicate that to reduce the radiation loss, we
should reduce the components of Ey inside the leaky region.
Ex has few components inside the leaky region as the Ex field
pattern in real space is antisymmetric about the centerline of the
cavity along both the x and y directions, as seen in Fig. 5(a),
leading to the cancellation of light in the far field. Although
at first sight this cancellation mechanism appears an attractive
method to suppress radiation loss, it is in fact difficult to obtain
ultrahigh-Q nanocavities using this cancellation effect based on
symmetry alone. We will not go into further detail here, since
this cancellation mechanism has been discussed previously in
many papers [10], [13], [14], [22].

Now let us concentrate on Ey . As discussed before, the com-
ponents in the leaky region of the FT spectrum of Ey are con-
sidered to be generated by abrupt changes of the envelope func-
tion. To simplify the evaluation, we focused on the Ey profile
along the centerline of the cavity along the x direction in real
space [solid line in Fig. 6(a)]. We chose this profile because the
electric field is concentrated here and resembles that of a one-
dimensional cavity resonating along the centerline. In order to
evaluate where and what kind of abrupt changes the envelope
has, we fitted the envelope with a Gaussian function, which we
have shown is ideal for the realization of high-Q nanocavities.
In practice, we fitted the Ey profile with a curve generated from
a sinusoidal wave with the same wavelength as the fundamental

Fig. 7. (a) Designed cavity structure created by displacing two air holes at
both the edges in order to obtain a high-Q factor. (b) Designed cavity structure
created by fine tuning the positions of six air holes near both the edges to obtain
an even higher Q factor.

wave of the Ey profile and a Gaussian function [broken line
in Fig. 6(a)]. The fitting curve agrees well with the Ey profile
around the center of the cavity, but at the edges of the cavity,
the envelope of the Ey profile decreases more abruptly than the
Gaussian function. The FT spectra of both the Ey profile and the
fitting curve were calculated and are shown in Fig. 6(b). As can
be seen in the figure, the former has a large component in the
leaky region, while the latter does not. It is clear that the origin of
the components in the leaky region is the difference between the
Ey profile and the fitting curve at the cavity edges. The abrupt
decrease of the envelope of the Ey profile at the cavity edge
is considered to generate high spatial frequency components in
the Fourier space, which are transferred to the leaky region by
convolution with the fundamental delta functions, as discussed
earlier. Therefore, this abrupt change of the envelope of the Ey

profile at the cavity edge must be reduced in order to increase
the cavity Q factor.

For this purpose, the air-hole positions at the cavity edges
were adjusted to lie slightly outside the cavity, as shown in
Fig. 7(a). By this adjustment, reflections at the cavity edge are
expected to be weakened, as the periodicity of the air holes is
disturbed: therefore, the PBG effect is expected to be weakened.
The electric field distribution calculated for a cavity structure
with an air-hole displacement of 0.20a is shown in Fig. 8(a);
the electric field profile along the centerline (along the x di-
rection) is shown in Fig. 8(b) together with the fitting curve,
generated as described above. As shown in Fig. 8(b), the elec-
tric field profile of the adjusted cavity is more similar to the
fitting curve than that of the original cavity without air-hole
displacement. The FT spectra of the electric field profile of
the cavity and the fitting curve are shown in Fig. 8(c). As can
be clearly seen in this figure, the component in the leaky region
is dramatically reduced in comparison with that of the original
cavity shown in Fig. 5.

Next, the Q factors of the cavities were calculated with vary-
ing displacement of the air holes at position A (see Fig. 7) from
0.0a to 0.3a; the Q factors are evaluated from the decay time of
the energy stored in the cavity. The results are shown in Fig. 9(a),
together with the modal volumes V , evaluated by the following
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Fig. 8. (a) Electric field (Ey ) of the cavity with air-hole displacement of 0.2 a.
(b) Ey electric field profile along the centerline of the cavity (solid line) and
a fitting curve obtained by using the same fundamental wave and Gaussian
envelope function (broken line). (c) FT spectra of the Ey profile (solid line) and
the fitting curve (broken line).

equation [17]:

V =
∫

ε(r)|E(r)|2d3r

max[ε(r)|E(r)|2] (1)

where ε(r) is the dielectric constant and E(r) is the electric
field.

As seen in the figure, the Q factor increases from 5000
to 100 000 by displacement of the air holes from zero up to
∼0.2a, while the modal volume remains almost constant. This
result clearly indicates that the displacement of the air holes is
a promising method to increase the Q factor, as expected from
the analysis of the electric field profile. The reason that the Q
factor decreases for displacements >0.2a can be explained as
follows: When the displacement is >0.2a, the local decay of the
envelope function around |x| = 2.5a becomes smaller than that
required to fit the Gaussian function. As a result, the amplitude
of the envelope decreases more slowly than the Gaussian func-
tion up to |x| =∼2.5a, and then decays more rapidly outside the
shifted holes. The rapid decrease of the envelope function cre-
ates higher frequency components in the Fourier space, which
lead to reduction of the Q factor. It can be said that fitting the
envelope to a Gaussian function is important to obtain high-Q
factors.

Fig. 9. (a) Cavity Q factors and modal volumes V , obtained theoretically for
cavities with a range of displacements of air holes at position A (the nearest
neighbors). (b) Those for cavities with a range of displacements of air holes at
position B (the second nearest neighbors), while fixing the position of air-holes
A at the optimum value of 0.200a. (c) Those for the cavities with a range of
displacements of air holes at position C (the third nearest neighbors), while
fixing the positions of air-holes A and B at their optimum values of 0.200a and
0.025a, respectively.

A closer examination of the two curves in Fig. 8(b) shows
that, even with an air-hole displacement of 0.20a, some dis-
crepancy between the modal profile and the fitted curve exists
in the region |x|> 2.5a. A reduction in this discrepancy is ex-
pected to further increase the Q factor of the cavity. We there-
fore displaced the air holes at position B (the second nearest
neighbors, |x| = 3a) as shown in Fig. 7(b), while fixing the
air holes at position A at an optimum displacement of 0.200a.
The resulting calculated Q factors and the modal volumes are
shown in Fig. 9(b). The maximum Q factor, ∼130 000, was
obtained for a displacement of air holes B of 0.025a. We then
shifted the air holes at position C (the third nearest neighbors,
|x| = 4a), while fixing the positions of air holes A and B at
their optimum values. The results are shown in Fig. 9(c). The
maximum Q factor, ∼260 000, was obtained for a displacement
of air holes C of 0.200a. The maximum Q factor calculated here
was 50 times larger than that of the cavity without displaced air
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Fig. 10. SEM images of one of the fabricated samples, including the point-
defect cavity with displaced air-holes A, B, and C. (a) Magnified view of the
point-defect cavity. (b) Top view of the sample. A line-defect waveguide was
introduced near the point-defect cavity.

holes (Q ∼ 5200). Fig. 9 shows that calculated modal volumes
were almost constant with varying air-hole displacements. The
modal volume corresponding to the maximum Q factor was
V = 7.4 × 10−14cm3[=0.73(λ0/n)3].

B. Experimental

In order to practically test these theoretical results, we fabri-
cated samples having various air-hole displacements. Initially,
a silicon-on-insulator substrate was coated with a resist mask
(ZEP-520). PC patterns were drawn on this resist mask by
electron-beam lithography. The resist patterns were then trans-
ferred to the upper silicon layer using inductively-coupled
plasma reactive-ion etching. After the dry-etching procedure,
the resist was removed using an O2 plasma. Finally, the SiO2

layer under the PC layer was selectively etched away using hy-
drofluoric acid, to form an air-bridge structure. We selected a
lattice constant a of 420 nm and used the same parameters as
for the calculated structure described earlier. The PC area was
15 × 250µm. Scanning electron microscope (SEM) images of
one of the fabricated samples, including the point-defect cav-
ity with displacement of air holes A, B, and C, are shown in
Fig. 10(a) and (b). A line-defect waveguide was also introduced
near the point-defect cavity, as shown in Fig. 10(b).

Photons were injected from a line-defect waveguide facet,
and the cavities were excited via the waveguide. Light emitted
from the cavity into the free space, and that transmitted through
the waveguide, was observed. Transmission and radiation spec-
tra are shown in Fig. 11(a) and (b), respectively. From both the
spectra, it was possible to evaluate the cavity Q factor experi-
mentally. It is important to note that the Q factor obtained from
the line width of the radiation spectrum shown in Fig. 5(b) is
the Q factor loaded by the excitation waveguide (Qloaded). The
intrinsic Q factor, denoted Qexp, is determined by the coupling
loss to free space only. From coupled mode theory Qexp can be
expressed as

Qexp = Qloaded/
√

T (2)

where T is the transmittance at the resonant wavelength of
the cavity [17]. The transmittance T is defined as the ratio
of the transmitted energy in the presence of the cavity, to the
transmitted energy in the absence of the cavity. Experimentally,
we can evaluate T as T2/T1 [as shown in Fig. 11(a)].

First, we investigated samples with displaced air holes at
position A, and evaluated Qexp using the method described ear-

Fig. 11. Examples of the measured spectra of a cavity with displaced air holes.
(a) Transmission spectrum and (b) radiation spectrum. The insets in the figures
show the geometry of the measured photon fluxes.

lier. The results are shown in Fig. 12(a). For each fixed air-hole
displacement, we measured several samples with line defect
waveguides at different distances from the point-defect cav-
ity. The measurements clearly demonstrate good reproducibil-
ity. As the air-hole displacements were increased from zero to
0.3a,Qexp increased drastically and then decreased, in agree-
ment with an earlier work [16]. A maximum value of Qexp

of 63 000 was obtained for a displacement of air holes A of
0.176a. A comparison with the calculated results [Fig. 3(a)] in-
dicates that the theoretical and experimental results were qual-
itatively similar in terms of variation of Qexp as a function of
air-hole displacement. The experimental values were lower than
the theoretical ones, for reasons that are discussed in Section V,
later.

Next, we displaced the air holes at position B while fixing
the positions of air holes A at the optimum value of 0.176a.
Qexp values are shown in Fig. 12(b). The maximum value
of Qexp ∼65 000 was obtained for a small shift of air holes
B. Finally, we displaced air holes at position C while fixing
positions of air holes A and B at their optimum values, and
measured the Q factor of the cavities. The results presented in
Fig. 12(c) show that a maximum value of Qexp (∼100 000) was
obtained for an air-hole C displacement of 0.176a. Qexp was
20 times larger than that of a cavity with no air-hole displace-
ment (Qexp ∼ 5000). These experimental results indicate that
displacing the air holes at positions A, B, and C is an effective
method for significantly increasing cavity Q factors. The ex-
perimental results shown in Fig. 12 and the theoretical results
presented in Fig. 9 are qualitatively very similar in terms of the
variation of Qexp as a function of displacement of not only the
air-holes A, but also displacements of the air-holes B and C.

IV. DOUBLE HETEROSTRUCTURE CAVITY

The results described in Section III clearly demonstrate that
the design concept of the envelope function tuning is very ef-
fective. However, the strategy for the adjustment of air-hole
positions is not very clear when multiple air holes are shifted:
Further increases in the Q factor seem to be difficult to obtain.
The relationship between the changes in the structure and those
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Fig. 12. (a) Cavity Q factors (Qv) obtained experimentally for cavities with
various displacements of air holes at position A. (b) Those for cavities with
various displacements of air holes at position B, while fixing the position of
air-holes A at the optimum value of 0.176a. (c) Those for the cavities with
various displacements of air holes at position C, while fixing the positions of
air-holes A and B at their optimum values of 0.176a and 0.024a, respectively.

in the electric profile becomes very complex: for example, a shift
of the position of an air hole increases the distance to the neigh-
boring air hole on one side and decreases the separation on the
other side. Also, a change of the distance of the air holes induces
both a local shift of the PBG central frequency and a local change
of the PBG width. A more comprehensive and straightforward
method to tune the envelope function of the cavity is required to
increase the Q factor further. For this purpose, we proposed the
concept of “photonic double-heterostructures” [18], described
later.

The basic PC structure used in the construction of the pho-
tonic double heterostructure is shown in Fig. 13(a): It is a 2-D PC
slab with a triangular-lattice structure and a line-defect waveg-
uide formed by a missing row of air holes in the Γ–J direction.
The band diagram of the structure is presented in Fig. 13(b) and
shows that the lower frequency edge of the waveguide mode
exists within the PBG frequency range. The frequencies above
this edge lie within the transmission region, in which propaga-
tion modes exist in the waveguide, while the frequencies below
this edge lie within the mode-gap region where propagation

Fig. 13. Basic PC structure and photonic double heterostructure investigated
in this paper. (a) 2-D PC slab of triangular-lattice structure with a line-defect
waveguide formed by a missing row of air holes in the Γ–J direction. (b) The
calculated band structure for the 2-D PC shown in (a). The blue arrow indicates
the transmission region, in which the propagation of photons is allowed through
the waveguide, while the red arrow indicates the mode-gap region in which the
propagation is inhibited. (c) Photonic double heterostructures, constructed by
connecting the basic PC structures I and II. PC I has a triangular-lattice structure
with a lattice constant of a1. PC II has a deformed triangular-lattice structure
with a face-centered rectangular lattice of constant a2(>a1) in the waveguide
direction; it retains the same constant as PC I in the orthogonal direction in order
to satisfy the lattice-matching conditions. (d) Schematic of the band diagram
along the waveguide direction. Photons of a specific energy can exist only in
the waveguide of PC II.

modes do not exist but evanescent modes can be excited [18].
Two PCs (I and II) were joined to form a double heterostruc-
ture [Fig. 13(c)], where the lattice constant of PC I (a1) is
smaller than that of PC II (a2). As the lattice constants of PCs I
and II vary, the transmission frequency range of the line defect
also varies [Fig. 13(d)]. This variation ensures that light with
a frequency slightly above the mode edge of PC II becomes a
propagation mode in the line defect in PC II and becomes an
evanescent mode in PC I. When the width of the PC II region
and the lattice constant difference are set appropriately, a con-
fined mode is formed, which has a cosine-like envelope in the
center and an exponentially decaying envelope at the edges, as
will be discussed later.

The most important feature of the photonic double-
heterostructure nanocavity is that the evanescent behavior of
the light in the PC I region is determined by the mode-gap ef-
fect in the waveguide, not by the PBG effect [2], [18], [23]. The
cavity mode can be determined from the connection of the prop-
agating mode in the PC II region and the evanescent mode in
the PC I region. In this cavity, the frequency of the fundamental
mode is slightly above the mode edge, of which the wavevector
is near the Brillouin zone edge (kx = π/a). According to the
Bloch theorem, the propagating mode in the PC II region can
be expressed as

u(x, y, z) exp
(
j
π

a
x
)

exp (j∆kxx) (3)

where u(x, y, z) is a Bloch function with a periodicity of a in
the x direction, ∆kx is the difference of the propagation con-
stant from the Brillouin zone edge, and u(x, y, z) exp(jπx/a)
is a function with a periodicity of 2a in the x direction, which
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Fig. 14. (a) Real part of the actual dispersion relation in the PC waveguide I
(a1 = 410 nm) [Fig. 13(c)] calculated by a 3-D FDTD. (b) Imaginary part of
the wavevector (κ) obtained by Taylor expansion of the dispersion curve near
the mode edge (f0) in (a). The complex wavevector is expressed as π/a1 + jκ.

corresponds to the fundamental sinusoidal function discussed
in Sections II and III. The last part is a slowly varying function
that corresponds to the envelope function.

The evanescent mode in the PC I region can be expressed as

u′(x, y, z)exp
(
j
π

a
x
)

exp (−κx) (4)

where u′ is a Bloch function with a periodicity of a in the x
direction, u′(x, y, z)exp(jπx/a) corresponds to the fundamen-
tal sinusoidal function, and exp(−κx) corresponds to the outer
part of the envelope function. Fig. 14 shows the relationship
between the frequency and κ in the mode gap, which was ob-
tained by Taylor expansion of the dispersion curve near the
mode edge [18]. The cavity frequency was determined so as to
fulfill the continuity condition between the propagating modes
in PC II and the evanescent modes in PC I at the boundary (or
heterointerface). Since a Gaussian function consists of a cosine-
like shape in the center region and an overexponential decaying
shape at the outer regions, an envelope function formed by
exp(j∆kxx) and exp(−κx) may be similar to a Gaussian func-
tion. It is important to note that κ is spatially constant in the PC
I region, so decay of the envelope can be controlled with spatial
uniformity. This feature is different from the air-hole shift ap-
proach, in which the decay of the envelope around the shifted
air holes is changed in a complex way. Since the dependence
of κ on the lattice constant difference was known [Fig. 14(b)],
we could determine the structural parameters needed to make
the envelope function similar to a Gaussian function. Further-
more, we could extend the double heterostructure to a multistep
heterostructure, where the outer part of the envelope function
is divided into multiple parts, each of which have appropriate
values of κ chosen to approximate the Gaussian function more
rigorously.

Fig. 15(a) and (b) shows the calculated electric-field distribu-
tion of the photonic double-heterostructure cavity and its pro-
file along the waveguide direction, respectively. In Fig. 15(b),
the solid-black- and broken-red lines indicate the calculated
electric-field distribution and an ideal Gaussian profile, respec-
tively. For the calculation, we used a 3-D FDTD method, assum-
ing lattice constants for PCs I and II of a1 = 410 nm and a2 =
420 nm, respectively, and a slab thickness of T = 0.6a2. The
electric-field profile of the photonic double-heterostructure cav-

Fig. 15. Calculated results that illustrate the effect of a photonic double het-
erostructure. (a) Electric-field distribution in the photonic double heterostructure
cavity, and (b) its profile along the waveguide direction. A 3-D FDTD method
was used for this calculation. The solid-black- and broken-red lines in (b) indi-
cate the calculated results and the ideal Gaussian profile, respectively.

ity was very close to the ideal Gaussian curve. The Gaussian-like
envelope in the photonic double-heterostructure cavity was con-
sistent with the theoretically calculated Q-factors of 2000 000.
The modal volume of the photonic double-heterostructure cavity
was ∼ 1.2(λ0/n)3.

It should be pointed out that the increase in the modal volume
is modest even though the difference between PC I and PC II
is small. This is due to the unusual dispersion of the waveguide
mode, shown in Fig. 14. As can be seen in Fig. 14(b), the
dispersion curve behaves like a step function near the mode
edge (f0), and the imaginary part of the wavevector (κ) takes
a relatively large value even though the frequency is close to
the mode edge. Therefore, the penetration length of light from
PC II into PC I, which can be expressed as 1/2κ, is small, even
though the lattice-constant difference between PC I and PC II
is small and the cavity resonant frequency is close to the mode
edge in PC-I (online supplemental information in [18]).

In light of these theoretical calculations, a photonic double-
heterostructure cavity was fabricated by the same method as
described in Section III. A plan-view SEM image of the fabri-
cated sample is shown in Fig. 16(a); note that the lattice constant
difference is too small to be distinguished by the naked eye. An-
other waveguide (the input waveguide) was formed parallel to
that of the double heterostructure in order to inject photons
into the cavity, as shown in Fig. 16(a). For this purpose, the
input waveguide was 0.1a1 wider [20] than that of the double-
heterostructure waveguide.

The cavity Q factor was estimated by the same method as
described in Section III. The inset in Fig. 16(b) shows the near-
field image observed using an infrared camera, when photons
were trapped by the cavity. The trapped light spectrum is shown
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Fig. 16. Experimental results of a double-heterostructure cavity. (a) SEM
image of the fabricated photonic double-heterostructure cavity. (b) Resonant
spectrum of the cavity over a wide range of wavelengths. The insets show the
near-field image observed using an infrared camera and the detailed spectrum
at the resonance, respectively. Extremely narrow line widths of 2.8 pm, corre-
sponding to a Q factor of 600 000, were obtained.

in Fig. 16(b). An extremely narrow line width of 2.8 pm was
obtained. The intrinsic Q factor was estimated to be 600 000,
taking into account the effect of coupling between the cavity and
the input waveguide. This Q factor is six times larger than the
best air-hole-modified cavity, shown in Fig. 12, which indicates
that the double heterostructure approach is a more powerful way
to tailor the electric field envelope of a cavity mode compared
to the air-hole-shifting approach. It is more powerful because
the decay constant of the envelope is spatially uniform and is
straightforwardly determined by the lattice-constant difference,
as discussed earlier.

The key to obtaining cavities with high Q factors is the con-
trol of the envelope function, especially the decay behavior of
the envelope function in the evanescent region. We utilized a
varying lattice constant along the waveguide to control κ, but
there are other methods to obtain the same effect. For example,
the variation of the waveguide width or variation of the air-hole
diameter along the waveguide are also considered capable of
tuning the decay of the envelope function, however, the result
would be the same. Furthermore, it is very clear that the en-
velope function can be controlled more flexibly by introducing
multistep heterostructures. The lattice constant of a step is de-
termined as a function of the decay constant required for that
step to approximate the Gaussian function. An example of a
multistep heterostructure cavity, in this case with three steps,
is shown in Fig. 17. The lattice constants of the central, the
intermediate, and the outer regions were 420, 415, and 410 nm,
respectively. The calculated Q factor and the volume of the cav-
ity were ∼16 000 000, and 1.23(λ0/n)3, respectively. (A cavity
with a theoretical Q factor of 20 000 000 has also been de-
signed by changing the air-hole size slightly [18]. The Q factor
of 16 000 000 is that calculated for the air-hole size measured in
the fabricated cavity.)

The measured emission spectrum of the cavity is plotted in
Fig. 18 (filled circles); a sharp resonant peak with a width of the
order of a few picometers was seen. The solid lines in Fig. 18
are the Lorentzian fits to the spectrum with FWHM values of

Fig. 17. SEM image of the multistep heterostructure PC cavity designed to
have a Q factor of 16 000 000.

Fig. 18. Measured cavity characteristics of the multistep heterostructure pho-
tonic crystal cavity (Fig. 17): Emission spectrum of the cavity (filled circles),
fitted by Lorentzian functions with FWHM values of 1.8 pm (red line) and
2.1 pm (blue line); transmittance spectrum of the excitation waveguide (open
circles).

1.8 pm (red) and 2.1 pm (blue).1 The experimental Q factor of
this three-step cavity, evaluated from the values of the FWHM
and the waveguide transmittance, was 820 000–950 000. Further
increases in the theoretical Q factor are possible by extending
the number of steps in the heterostructures to control the en-
velope function more rigorously. However, the theoretical Q
factor seems to have a minor role in determining the experi-
mental Q factors of the latest cavities, as will be discussed in
Section V. Since the resonant spectra of high-Q nanocavities are
approaching the resolution limits of conventional wavelength
meters as described earlier,1 it is necessary to check the val-
ues of Q factors from another type of experiments based on a
different principle. Q factor is a measure of cavity loss and is
proportional to the lifetime of photons in the cavity (τ). The

1We believe that it is necessary to reveal the measurement method in detail
since the FWHM of the spectrum is of the order of picometers, almost at
the limit of resolution. An external cavity, tunable wavelength, semiconductor
laser was used (SANTEC, TSL-210). The emission wavelength was changed
by controlling the cavity length with a piezo actuator. The width of the laser
line was <1 MHz (∼ 8 fm at 1570 nm). Each time the emission wavelength
was altered, it was measured using a wavelength meter (Agilent 86122-A-opt-
002: with a high-precision option). The differential accuracy of the wavelength
meter was ±0.15 pm. The best Lorentzian fit to the resonant spectrum had a
FWHM value of 1.95 pm. We evaluated the range of FWHM value as 1.8–2.1
pm by adding an error value of ±0.15 pm to the best-fit value. (In addition
to the accuracy of the measurement system, there is a problem of temperature
fluctuation since temperature dependence of the cavity resonant wavelength is
as large as 80 pm/K [31]. This might widen the evaluation range of the FWHM
further, namely, the FWHM value might be smaller than 1.8 pm or larger than
2.1 pm.
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Fig. 19. Results of time-resolved measurement of light emission from cavities.
(a) Light emitted from the cavity having a line width of 1.8–2.1 pm (Fig. 18).
Solid line is a fitting result that assumes the photon lifetime of ∼1 ns. (b) The
evolution of the light emitted from a cavity having a line width of ∼4.5 pm.
Solid line is a fitting result that assumes the photon lifetime of ∼400 ps. (c) The
input light pulse. Solid line is the fitting result that assumes a Gaussian shape
having FWHM of 360 ps.

relationship between them is expressed as Q = ωτ . Therefore,
we can evaluate the Q factors by measuring the time-domain
responses of the cavities [24]. Very recently, we have succeeded
in measuring the photon lifetime in the high-Q nanocavities.
The samples measured were the cavity shown in Fig. 17, which
has a line width of 1.8–2.1 pm, and the same-type cavity which
has a line width of 4.5 pm. Light emitted from the tunable con-
tinuous wave semiconductor laser was modulated by an external
electro-optical modulator, and light pulses whose widths were
about 300 ps were produced. The light pulses excited the cavities
where the center wavelengths were set at the resonance wave-
lengths, and a photomultiplier tube detected the light emitted
from the cavities. The time-resolved signals were obtained by
time-correlated single-photon counting method. Time resolution
of the measurement system was about 300 ps. The measurement
results are shown in Fig. 19. It is seen that the light emitted from
the cavities have decaying tails in the later time side, and the
decay of the tail is longer for the sample with narrower line
width. Numerical fitting of the data were carried out by convo-
luting the input light pulse shape [Fig. 19(c)] and decay func-
tion of exp(−t/τ). The results are shown by the solid lines in
Fig. 19, where the best fitting results were obtained for τ = 1 ns
and ∼ 400 ps for the cavities with line widths of 1.8–2.1 pm and
∼ 4.5 pm, respectively. The obtained lifetimes of ∼ 1 ns and
∼ 400 ps correspond to Q factors of about 1.2 and 0.5 million,
respectively. The Q factors of the cavities obtained from the
time-domain measurement are slightly larger than that obtained
from the wavelength-domain measurement. However, the orders
of both results are the same, which ensures the validity of the
measured Q factors.

V. DISCUSSION ON THE DIFFERENCE BETWEEN

EXPERIMENTAL AND THEORETICAL Q FACTORS

Although very high-Q nanocavities were achieved by using
double- and multistep heterostructures, the experimental (Qexp)
factors obtained (600 000–950 000) were found to be smaller
than the theoretical Q factors determined by the cavity design
Qdesign), which were as high as 2 000 000–16 000 000. This
mismatch can be explained by introducing an additional Q factor
due to imperfections of the fabricated cavity (Qimperfect), such
as roughness and contamination. The relationship between these
three Q factors is given by

1
Qexp

=
1

Qdesign
+

1
Qimperfect

. (5)

Qimperfect was evaluated to be 850 000, and 860 000–1
010 000 for the double- and multistep heterostructure cavi-
ties, respectively, indicating that the loss due to imperfections
(1/Qimperfect = 1/850 000–1/1010 000) was larger than the loss
determined by design (1/Qdesign = 1/2000000–1/16000000).
This means that Qexp was determined by 1/Qimperfect and not
by 1/Qdesign. The fact clearly indicates that Qexp will saturate
at the level of Qimperfect despite further increases in Qdesign.
We, therefore, conclude that the key to further increasing the ex-
perimental Q factor is to reduce the losses due to imperfections.

As a first step toward this aim, the details of the losses due to
imperfections were analyzed. The origins of such losses were
categorized as follows:

A) imperfections of the cavity shape;
A1) surface roughness of the Si slab;
A2) surface roughness of the inner walls of the air holes;
A3) variation in the radii of the air holes;
A4) variation in the positions of the air holes;
A5) tilt of the inner walls of the air holes;

B) imperfections of the cavity material;
B1) optical absorption by residual free carriers in the Si

slab;
B2) optical absorption by material, such as water [26],

adsorbed [27] to the surfaces of the cavity.
The losses due to each of the previous factors were quanti-

tatively evaluated [28] for the three-step heterostructure cavity.
Here, we present the results without showing the evaluation
methods due to space limitations. Table I contains the measured
quantities on which the calculations were based, and the calcu-
lated loss Q factors for each of the seven categories (denoted by
A1–A5, B1, and B2).

The inverse of the total theoretical additional loss Q factor
(1/Qimperfect) was obtained by summing the inverses of all the
calculated Q factors in Table I, giving Qimperfect = 900000.
This theoretical value is of the same order as the experimental
value, indicating that the results in Table I can be regarded as a
measure of the real situation, despite the assumptions used. The
dominant losses were associated with the tilt of the inner walls
of the air holes (Q∼ 3 000 000 for a tilt of 3′), the variation in
the radii of the air holes (Q ∼3 000 000), the absorption by the
surface water (Q ∼4 000 000), and the surface roughness of the
inner walls of the air holes (Q ∼5 500 000 for radiation to free
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TABLE I
SUMMARY OF THE ORIGINS, MEASURED QUANTITIES, AND CALCULATED

Q FACTORS FOR EACH LOSS

space and transverse magnetic-like slab modes [28], [29]). The
tilt and surface roughness of the inner walls of air holes and the
variation in air-hole radii are likely to be decreased by reviewing
the fabrication processes, e.g., dry etching and electron-beam
lithography. The extent of absorption by the surface water (Q ∼
4 000 000) is also large, but it is poorly understood and needs to
be investigated further: measurements in vacuo may clarify the
extent of the problem. Another surface absorption mechanism
such as absorption by the surface states [30] might also have
some contribution.

VI. CONCLUSION

We have investigated the confinement mechanism of point-
defect cavities in 2-D PC slabs, and have established an impor-
tant design concept for high-Q nanocavities, namely that the
envelope function should be gently varying but remain spatially
localized (like a Gaussian function). On the basis of this con-
cept, we have proposed a method of shifting air-hole positions
to obtain the desirable envelope function. Using this method, we
have designed a cavity with a theoretical Q factor of 200 000
and a cavity volume of 0.71(λ0/n)3 and succeeded in experi-
mentally demonstrating a high-Q factor of 100 000. We have
further proposed an improved method of tuning the envelope
function, using multistep heterostructures, and have designed
and fabricated a cavity with a theoretical Q factor of 16 000 000
and a cavity volume of 1.23(λ0/n)3. The experimental Q fac-
tor of this cavity was almost 1 million, which indicates the
power of the multistep heterostructure method. The difference
between the theoretical and the experimental Q factors is dis-
cussed from the viewpoint of the effect of imperfections in the
fabricated structures. The important imperfections of the fabri-
cated structures have been categorized, and the associated losses
have been quantified for a multistep heterostructure cavity. It has
been shown that the dominant sources of loss are the tilt and
roughness of the inner walls of the air holes, variation in air-hole

radii, and optical absorption by material (water) adsorbed on the
cavity surfaces. We believe that experimental Q factors of the
order of a few to several millions will be obtained in the future
by solving these problems. We also believe that these results
will accelerate developments in various areas, including single-
photon emitters for quantum communication and computing,
zero-threshold nanolasers, ultrasmall photonic chips, atom trap-
ping, biosensing, and accurate environmental monitors.
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