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System-level Sensitivity Analysis of
SiNW-bioFET-based Biosensing Using Lock-in

Amplification
François Patou, Maria Dimaki, Claus Kjærgaard, Jan Madsen, and Winnie E. Svendsen

Abstract—Although Silicon Nanowire biological Field-Effect
Transistors (SiNW-bioFETs) have steadily demonstrated their
ability to detect biological markers at ultra-low concentration,
they have not yet translated into routine diagnostics applications.
One of the challenges inherent to the technology is that it
requires an instrumentation capable of recovering ultra-low
signal variations from sensors usually designed and operated
in a highly-resistive configuration. Often overlooked, the SiNW-
bioFET/instrument interactions are yet critical factors in deter-
mining overall system biodetection performances.

Here, we carry out for the first time the system-level sen-
sitivity analysis of a generic SiNW-bioFET model coupled to
a custom-design instrument based on the lock-in amplifier. By
investigating a large parametric space spanning over both sensor
and instrumentation specifications, we demonstrate that system-
wide investigations can be instrumental in identifying the design
trade-offs that will ensure the lowest Limits-of-Detection. The
generic character of our analytical model allows us to elaborate
on the most general SiNW-bioFET/instrument interactions and
their overall implications on detection performances. Our model
can be adapted to better match specific sensor or instrument
designs to either ensure that ultra-high sensitivity SiNW-bioFETs
are coupled with an appropriately sensitive and noise-rejecting
instrumentation, or to best tailor SiNW-bioFET design to the
specifications of an existing instrument.

Index Terms—SiNW-bioFET; System analysis; Diagnostics;
Instrumentation; Lock-in amplification

I. INTRODUCTION

Silicon-Nanowire biological Field-Effect Transistors
(SiNW-bioFETs) were introduced in 2001 as a promising
solution for the real-time, low-cost, label-free, high throughput
analysis of a variety of chemical and biological markers
present at low-concentration in low sample processing
volumes [1]. They have since demonstrated their potential in
a wide variety of applications ranging from the quantification
of metabolites [2], or nucleic acids [3]–[5], to the detection
of myriad proteins [6] and viruses [7], [8]. For all these
applications Limits of detection (LoD) in the picomolar
range are now common while femtomolar LoDs have also
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recently become a reality [9]–[11]. Such low LoDs can be
reached by the fine tuning of static design parameters such
as device dimensionality, and by carefully choosing the
dynamic operation point at which measurements should be
done. Several groups have already thoroughly documented the
benefits of small cross-sectional SiNW channels or of biasing
the sensor in the subthreshold regime [12], [13]. Although
these investigations and experimental validation studies are
sufficiently informative for many applications, they are limited
in addressing the likely scenario of the integration of SiNW-
bioFETs in a custom-built diagnostics system such as the
one we introduced in [14]. Indeed, the SiNW-bioFET design
and operation specifications that promise the greatest LoD
performances are also those that are the most challenging
from an instrumentation perspective. The ultra-narrow
channels and subthreshold regime operation advocated for
best sensitivity indeed require the measurement of extremely
low deviations from the device baseline conductance. This,
in turns, means that the reliable detection or quantification
of the smallest signal variations generated by the binding of
few target analytes at the gate will necessitate the accurate
recovery of challengingly low input signal changes.

Several groups have turned towards CMOS technology to
address these instrumentation challenges since integrated ana-
log front-end amplification can deliver unmatched signal con-
ditioning performances. CMOS analog integration is also pre-
ferred for interfacing massively paralleled sensing structures,
as often needed in applications involving highly-multiplexed
detection schemes. Full analog-CMOS/SiNW-bioFET integra-
tion was achieved recently [15]. Although such integrated
hybrid-systems may rid themselves of many instrumentation
issues, modular configurations, where sensor and instrument
are not tightly coupled, are still predominant. One reason for
this is the common requirement for a variety of instrumenta-
tion techniques and settings to operate individual or mixed-
biosensing technologies. Susloparova et al., for instance, re-
cently used impedance spectroscopy to instrument an ion-
sensitive FET in order to investigate single-cell adhesion and
detachment processes [16]. In this scenario the flexibility of
a versatile modular instrumentation was likely preferred over
the development of a costly Application Specific Integrated
Circuit that would provide the same functionality.

For such non-integrated SiNW-bioFET/instrument systems,
noise and offsets become concerns. Both extrinsic noise
sources and the instrumentation noise itself threaten to de-
teriorate the integrity SiNW-bioFETs signals and to cancel
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Fig. 1. a – Conventional architecture of a SiNW-bioFET. b – Illustration of
the Thomas-Fermi and Debye screening length

the benefits to avail high-sensitivity biosensors altogether. The
following investigation pioneers the system-level analysis of
the effect of SiNW-bioFET/instrumentation couplings, and
in particular the effect of intrinsic instrumentation noise,
on systemic LoD performances. Looking specifically at the
lock-in amplification technique, our endeavour illustrates the
importance of leading system-wide investigations in order to
ensure that ultra-high SiNW-bioFET sensitivity is leveraged
by an appropriately sensitive and noise-rejecting instrumen-
tation, or in order to best tailor SiNW-bioFET design to the
specifications of an existing instrumentation.

II. SYSTEM DESCRIPTION

A. The SiNW-bioFET

1) Generalities: Largely inspired from the physical princi-
ples and design of the metal-oxide semiconductor FET (MOS-
FET), SiNW-bioFETs allow the detection of biological species
in solution by harnessing the field effect produced by the
electrical charges of targeted molecules selectively binding to
the gate of the device. A common planar SiNW-bioFET design
is illustrated in figure 1. The adoption of specific gate surface
chemistries is necessary in order to ensure selectivity towards
the target of interest. The overall charge accumulated at the
gate surface may either deplete the semiconducting SiNW
channel from its majority carriers or induce their accumulation
depending on its sign and distribution. Although recent find-
ings have highlighted the potential of the memresistive effects
of SiNW-FETs in biosensing applications [17], most common
characterizations involve measuring the variation in SiNW
carrier concentration by proxy of measurable changes in SiNW
conductivity using electrical IV instrumentation techniques.

2) Sensitivity: SiNW-bioFET sensitivity and Limit of De-
tection (LoD) are determined by a number of interrelated fac-
tors, including SiNW geometry and the SiNW concentration
of dopant impurities. Generally, smaller SiNW cross-sectional
areas and lower dopant concentrations will facilitate variations

in gate-surface charges to translate into larger drain-source
current fluctuations, and hence higher sensitivities [18]–[22].
That is essentially because smaller SiNW cross-sectional areas
may allow surface charges at the gate to influence SiNW
charge carriers throughout a greater proportion of their semi-
conducting pathway. SiNW length does usually not have any
effect on biodetection sensitivity as SiNW-bioFET channels
are junction-less, and often significantly longer than CMOS
transistors channels. SiNW-bioFETs therefore rarely suffer
from the “short-channel effects”that challenge the design of
CMOS transistors, in particular the trading-off of transistor
size, speed and behaviour predictability.

The SiNW-bioFET model on which we elaborate throughout
the rest of this study is that of De Vico et al. [23]. The device
presents a circular cross-sectional channel as illustrated in fig-
ure 2. This geometry has the merit of simplifying the analytical
investigation of the sensors physico-chemical interactions with
its environment. We discuss the implications of considering an
ideal circular cross-section channel in section V.

We consider a silicon channel of length L = 20 µm, and
radius R = 20 nm. The SiNW is homogeneously p-doped with
boron acceptor ions originally specified with a concentration
NA = 1× 1024 m−3. In an unbiased state, we assume that the
carrier concentration within the channel remains at its intrinsic
value NA. The carriers have a mobility µ = 2 cm2/V s

h = 5 nm

Qc = -3e

AlO2

l = 2.4 nm

R = 20 nm

Fig. 2. Theoretical circular SiNW-bioFET channel cross-section.

Nair et al. were among the first to investigate comprehen-
sively the influence of device geometry on sensing perfor-
mances [20]. They also demonstrated that decreasing SiNW
dopant concentration could benefit SiNW-bioFET sensitivity
until a certain level, beyond which inherent statistical fluctua-
tions in the low discrete number of dopant ions in each channel
would result in unacceptable behavioral inhomogeneity be-
tween several SiNW-bioFETs on the same substrate. Buitrago
et al. later showed that the sensitivity of SiNWs presenting
rectangular cross-sections scaled down to 10 nm × 10 nm was
independent from dopant concentrations [24], findings that
were supported by Elfstöm et al.’s experimental work [25].
The influence of dopant concentration on sensitivity is a con-
sequence of the Thomas-Fermi screening phenomenon (figure
1b): charges borne by the dopant ions in the semiconductor
screen the electrical field generated by the charges at the gate
insulator surface. This phenomenon is quantified by a length
metric, representing the distance from the silicon surface to
the bulk of the material beyond which the electrical field
does not influence the charge carriers anymore. For dopant
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concentrations inferior to 1× 1019 cm−3, this metric is better
approximated by the Debye-Hückel theory. An expression
of the Debye-Hückel screening –or carrier screening– length
λDSiNW for the silicon wire is then given by:

λDSiNW =

√
εSiKT

pe2
, (1)

where p is the dopant concentration, εSi is the permittivity
of silicon, K is the Boltzmann constant, T the temperature in
Kelvin and e is the elementary charge.

Although essential, the consideration of geometry and
dopant concentration does not alone allow the prediction of
the system-level LoD as the latter also depends on the physical
laws binding SiNW properties to the properties of the solution
in which they are immersed. In [20], Nair et al. considered
the effect of the ionic-strength of the solution on sensitivity.
This parameter plays a prominent role in the definition of
the Debye-Hückel screening length of the solution: the metric
translating the relation between the ionic strength of the
solution in contact with the gate with the effective distance
beyond which the charges borne by the molecules of interest
in solution are not contributing to the surface potential at the
gate-liquid interface (equation 2). Charged analyte molecules
beyond λDsol will be screened by surrounding ions in solution,
and will not contribute to building up the surface potential
effectively modulating the SiNW conductance (figure 1b). Nair
et al. derived important recommendations from these findings,
advocating SiNW cross-sectional dimensions in the range or
inferior to the Debye-Hückel screening length in order to
promote efficient sensing. [18]–[20], [22].

λDsol =

√
ε0εsolKT

2NAe2I
(2)

3) Gate properties: The gate properties of SiNW-bioFETs
are key in defining device sensitivity to a particular molecular
target. Common to both MOS-FETs and SiNW-bioFETs, the
thin dielectric layer effectively gating the channel will, for
the latter technology, screen surfaces charges accumulating
at the gate-liquid interface. Reducing the thickness of the
dielectric layer should allow target charges to influence the
channel carriers more effectively [26], a potential optimization
strategy yet compromised by the difficulty of reliably and re-
producibly reaching single-nanometric gate thicknesses using
conventional microfabrication methods.

The functional specificity of the SiNW-bioFET comes from
the biofunctionalization layer coating the surface of the gate.
Numerous strategies for the functionalization of the bare
silicon surface of the SiNW or most often of the thin oxide
layer wrapping the SiNW present as many opportunities for
sensing performance optimisation. Specific bio-conjugation
mechanisms between gate-receptor molecules and their target
analytes, the spatial alignment of the receptor probes or the
use of charged reporter molecules are examples of possible
amelioration schemes, all of which can be combined in
search of greater performances still. An extensive review of
experimental research on these topics is available in [27]. De
Vico et al. were the first to investigate the most significant

properties of the biofunctional layer in their computational
model [13]. They succeeded in doing so by specifying a series
of abstracted parameters helping to circumvent the intricacy
of considering the complex laws and behaviours governing
the interactions between the various biological elements of the
system. More specifically, they abstracted the linker-receptor-
ligand geometries by specifying a point-charge of value Qc

for their molecular complex and the distance l between that
point-charge and the gate-insulator surface (figure 2). They
finally took into account the density of biological receptors
bound to the gate surface: the surface coverage sd, as well
as the dissociation constant Kd of the specific receptor/ligand
complex. Kd determines θ: the fraction of adsorbed ligand at
the surface of the gate as a function of the concentration of
ligand molecules in solution so that:

θ =
[ligand]

[ligand] +Kd
(3)

These latter properties subsequently allow the computation
of the average cumulative surface charge Ncplx covering the
gate once biological steady-state is reached. We will, for the
rest of this study, consider a biofunctional coating made of
ABL-tyrosine kinase receptors, specific to the ATP ligand
molecule, pillar of cell metabolism. Like De Vico et al., we
abstract the ABL/ATP receptor-ligand complex to a single
charge Qc = −3 e, at a distance of l = 2.4 nm from the
gate surface. We assume that Qc is entirely borne by the
ATP molecule and thus that variations in coverage of the
SiNW-bioFET gate surface by ABL-tyrosine kinase receptor
molecules will not alter the intrinsic resistance of the SiNW.
The dissociation constant of the ATP/ABL-tyrosine kinase
complex is Kd = 62.9 nmol/L.

The gate was assumed to be made of h = 5 nm of
aluminium dioxide (εox = 9.34) and the ionic strength
of the surfacing solution was fixed at 1× 10−12 mol m−3.
The surface receptors (ABL) density sd, at the gate was
set at 65× 1012 receptors/m2 according to results from on-
going surface functionalization experimental studies. This as-
sumption enabled us to approximate the number of receptor
molecules Nrcp covering the entire surface area of the gate
oxide Agate by:

Nrcp ≈ sd ×Agate (4)

Nrcp ≈ 65× 1012 × L×
(
2π(R+ h)

)
(5)

By defining the average cross-sectional surface area of the
ligand/receptor complex Acplx, we may derive an approxima-
tion of the maximum number of receptor/ligand complexes at
the gate Ncplx.max, so that:

Ncplx.max = min

(
Nrcp,

Agate

Acplx

)
(6)

Should the size of the ligand be greatly superior to that
of the receptor, then the maximum number of ligand/receptor
complexes at the gate may be limited by the space necessary
for these complexes to form.
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From Ncplx.max we can calculate the approximate number of
complexes Ncplx present at the gate using the adsorbed fraction
θ. We obtain:

Ncplx = Ncplx.max × θ (7)

The overall surface charge density σb, corresponding to the
average charge per unit of surface area from all ligand/receptor
complexes bound to the gate can then be calculated as:

σb =
Ncplx ×Qc

Agate
(8)

σb =
Ncplx ×Qc

L×
(
2π(R+ h+ l)

) (9)

From De Vico et al., the relative change in SiNW channel
conductance can then be calculated as:

∆G

G0
= − 2

Rep0
Γ
(

Γlσb + σs

)
(10)

Γ =

εSiK0

(
B
) λDsol

λDSiNW

I1
( R

λDSiNW

)
[
K0

(
B
)( 1

B

)
+ ln

(
R+ h

R

)
K1

(
B
)εSol

εox

]
εSi

( R

λDSiNW

)
I1
( R

λDSiNW

)
+ εSolK1

(
B
)
I0
( R

λDSiNW

) (11)

with: B =
R+ h

λDsol

We will assume σs, the surface charge density directly at
the gate surface (e.g. from trapped charges), to be null. R
represents the radius of the SiNW. p0 corresponds to the
dopant concentration NA and e is the elementary charge. The
parameter Γ translates the sensitivity of the device according to
equation 11, with I0, I1,K0,K1 the modified Bessel functions
of the first and second kind ; εSi, εox, εSol stand for the relative
permittivities of the SiNW, the aluminium gate oxide and the
solution respectively [13], [28]. Finally, Γl is a dimensionless
parameter quantifying the effect of σb and is defined by:

Γl = 2
R

R+ l

(
1 +

√
R

R+ l
exp (l/λDSol)

)−1
(12)

If the amplitude of the potential applied between source and
drain of the sensor is known then we can calculate the current
IDS flowing through the SiNW channel:

IDS = IDS0

(
1− 2Γ

(
Γlσb + σs
HeNA

))
(13)

IDS0
can be determined in an unbiased transistor state, when

no influence is assumed from charged species in the sample
solution. The carrier concentration within the channel can
then be assimilated to its intrinsic value NA. Ohm’s law and
Drude’s model of conductivity allow us to specify the SiNW’s
intrinsic resistance which in our case can be calculated with
R = 20 nm as:

RSiNW =
1

σ
.
L

πR2
(14)

RSiNW =
1

µ.e.NA
.
L

πR2
, (e = 1.602× 10−19 C) (15)

RSiNW ' 4.967× 108 Ω (16)

The intrinsic current value IDS0 becomes:

IDS0 = VDS.µ.e.NA
πR2

L
(17)

B. Signal conditioning

We consider a SiNW-bioFET as specified in the previous
section. We intend to measure the steady-state SiNW-bioFET
current deviation from its baseline value, upon exposure of
the gate to a solution containing ATP, using Phase-Sensitive
detection (PSD). PSD, also called lock-in amplification, is
an AC-measurement technique used in many scientific and
engineering contexts necessitating the recovery of signals
buried in noise. We elaborate on the elementary principle of
PSD later in this section.

As the intrinsic resistance of our SiNW-bioFET may be
high, the use of an AC-measurement method requires the con-
sideration of the shunt capacitance Cshunt, the equivalent ca-
pacitance linking the instrumentation input and output, formed
by the network of capacitive components characterising the
sensor and its substrate (figure 3). These parasitic capacitive
components may result from poor sensor design or simply
from the non-idealities of the materials and processes used
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for device fabrication. For highly resistive SiNW channels,
Cshunt will limit the frequency range over which the SiNW
resistance can be measured. The complex impedance of the
RSiNW/Cshunt network is given by:

Zsens(ω) =
RSiNW

1 + jωCshuntRSiNW
(18)

A normalized magnitude Bode plot of the RSiNW/Cshunt
network (i.e. 20 log (|Zsens|/RSiNW)) and phase 6 Zsens for
Cshunt = 100× 10−15 F and RSiNW = 4.967× 108 Ω is
presented in figure 4. The value for Cshunt was set to an
arbitrary yet realistic estimate of what a the shunt capaci-
tance of a SiNW-bioFET patterned on a silicon oxide sub-
strate may be. For excitation frequencies beyond the cutoff
fsens = 1/2πRSiNWCshunt ' 3.204× 103 Hz, the impedance
network magnitude rolls off at 20 dB/decade, limiting the AC-
measurements of the SiNW-bioFET currents to frequencies
significantly inferior to fsens.

shunt

Fig. 3. Transimpedance amplification of the drain-source current IDS flowing
through a SiNW-bioFET. This electric model takes into account the input
current noise in = inn = inp of the amplifier and its input voltage noise
en. These intrinsic noise components are characterized by their Power Spec-
tral Density (PSD). Various noise harmonics will be modulated differently,
depending on the transfer function HTIA(ω) of the TIA.

We now consider the signal conditioning circuitry connect-
ing the sensor to the PSD module (figure 3). The analog
front-end of this block is composed of a single-stage voltage
feedback transimpedance amplifier (TIA) meant to collect and
amplify the SiNW-bioFET drain-source current IDS, convert-
ing it at the TIA output into the voltage signal VTIAout [29].
The TIA is followed by a passive RC circuit meant to drive
the Analog to Digital Converter marking the input of the PSD
stage.

Although various extrinsic noise sources may corrupt signal
integrity along the signal acquisition chain, we assume from
now on the sole contribution of intrinsic noise i.e. noise
originating from the signal-conditioning block components
themselves.

1) Transimpedance amplification stage: For high-
impedance applications such as the measurement of
SiNW-bioFET currents biased in the subthreshold regime,
the sensor shunt capacitance Cshunt will not only determine
the operating point of the sensor but it should also be
considered for specifying the feedback network and hence the

configuration of the TIA. Indeed, Cshunt adds in parallel with
the common-mode capacitance of the TIA inputs Ccm. The
TIA’s transimpedance transfer function HTIA(ω) can then be
defined as:

HTIA(ω) =
VTIAout

ITIAin

=
Zf

1 +
1

A0(ω)β(ω)

(19)

, with according to control theory:
A0(ω) =

1

1 + j ω
ω0

β(ω) =
Zsens

Zsens + Zf
=

1 + j
ω

ωf

1 + j
ω

ωi+f

(20)


ω0 is the amplifier’s open-loop gain cut-off frequency

ωf = 1/RfCf

ωi+f = 1/Rf (Ci + Cf ) , Ci = Cshunt + Ccm

(21)
f0 = ω0/2π

ff = ωf/2π

fi+f = ωi+f/2π

(22)

The cutoff frequency ff corresponds to the frequency
marking the beginning of the roll-off of the TIA’s signal gain
profile (green curve in figure 5). ff should set the ultimate
upper excitation frequency limit for the operation of the TIA.
The practical maximum bandwidth for AC operation of a
high-impedance SiNW-bioFET interfaced to this TIA is thus
restricted to the range in which both sensor and amplifier
operate in their flat-band region or fmax = min (ff , fsens).
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Our TIA stage is built around the AN8608 quad amplifier
[30]. The specifications of both the SiNW-bioFET discussed
throughout the previous section and those of the AN8608 allow
the analysis of the TIA transfer function HTIA(ω). The closed-
loop magnitude Bode plot of HTIA(ω) for Rf = 1 GΩ and
Cf = 1.5 pF is presented in figure 5. The cutoff frequency ff
is limited to ff = 1/2πRfCf = 106 Hz.

We consider the three main noise sources at the TIA stage:
the input voltage noise en of the AN8608 amplifier itself, its
input current noise in and the noise intrinsic to the resistive
components of the circuit. These TIA input noise sources
are additive, and translate at the TIA output by eTIAout . The
contribution of the amplifier’s input voltage noise en translates
at the TIA’s ouput by ev with:

ev = en
A0(ω)

1 +A0(ω)β(ω)
(23)

The expression of ev reveals a dependency on the transfer
function HTIA(ω). The input voltage noise en is characterised
by its Noise Power Spectral Density (NPSD) and is modulated
by the noise gain Nf of the TIA. Nf ’s magnitude profile is
given in figure 5. For frequencies ranging from DC to the
fi+f cutoff Nf = 1 +Rf/RSiNW. At fi+f , the noise transfer
function reaches its first pole. Voltage noise components
beyond fi+f will leak though the input capacitor network Ci

and Nf is increasing at 6 dB octave−1. At ff the noise gain is
stabilized by the zero formed by the RfCf feedback network
of the TIA. Until reaching the second zero in HTIA(ω), we
have Nf = 1 + Ci/Cf . Finally, beyond the cutoff frequency
froll-off = GBP.1/(1 +Ci/Cf ) the noise gain starts to roll-off
at −6 dB octave−1 [31]. We have:


fi+f =

1

2πRf (Ci + Cf )
' 12.63 Hz

ff =
1

2πRfCf
' 106 Hz

froll-off = GBP.
Cf

2π(Cf + Ci)
' 1.3× 106 Hz

(24)

The NPSD profile of the amplifier is usually recovered
from experimental measurements. The NPSD of the AN8608
amplifier is provided by the manufacturer and given in ap-
pendix A. It reveals a 1/f dependency characteristic of many
active electronic components at low frequencies. We assume
a cutoff frequency fnc below which the voltage NPSD is
inversely proportional to the frequency under consideration.
For harmonics superior to fnc we consider the nominal average
NPSD provided by the manufacturer for high-frequencies i.e.
ehigh-freq = 8 nV/

√
Hz. The Root Mean Square (RMS) output

voltage noise ev can thus be computed as advocated in [32].
The details of this derivation are provided in appendix B. We
obtain:

ev ' 8.905× 10−6 Vrms (25)

The second input noise source we must consider for the TIA
stage is the amplifier’s current noise in, which will translate
at the TIA’s output by the RMS noise potential ei so that:
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ei =

√
ENBW

(
inRf + inRbNf

)
(26)

, where ENBW is the Equivalent Noise Bandwidth of the
TIA for this configuration. The ENBW is defined so that the
RMS noise resulting from a constant NPSD over the ENBW
frequency band equals the RMS noise level of the system
under consideration, taking into account its noise and gain
profiles.

Once again the specification of the current-noise output
ei depends on the expression of the noise gain Nf . The
current NPSD is considered constant across the amplifier’s
bandwidth and according to the AN8608 manufacturer we
have in = 1× 10−14 A/

√
Hz. Following a similar reason-

ing as the one we used for the calculation of ev we can
compute the piecewise contribution of the amplifier’s current
noise throughout the noise gain profile. The details of these
calculations are provided in appendix C. We obtain:

ei ' 1.3744× 10−3 Vrms (27)

Finally, we must account for the thermal noise generated
by the resistive components of the TIA circuitry. Thermal
noise is conventionally considered uniform over the frequency
spectrum. The noise induced by Rf will directly affect VTIAout

so that:

eRf
=
√

4kBTRfENBW (28)

eRf
=

√
4kBTRf

π

2
ff = 2.715× 10−5 V (29)

The SiNW-bioFET sensor itself will inject noise at the
input of the amplifier. Several studies have demonstrated that
the profile of this noise may include a 1/f component [33],



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 7

[34]. As the results supporting these investigations are solely
experimental, we assume that the sensor’s thermal noise is
purely uniform so that:

eRsens =

√√√√4kBTRsens

(
Rf

Rsens

)2

ENBW (30)

eRsens =

√√√√4kBTRsens

(
Rf

Rsens

)2
π

2
ff (31)

eRsens = 3.853× 10−5 V (32)

The thermal noise originating from Rb will be amplified
by the noise gain Nf (appendix B) and similarly to how we
computed ei’s contribution at the TIA output we obtain:

eRb
' 2.02× 10−9 V (33)

The contributions of Rf , Rsens and Rb result in the total
RMS thermal noise eR = 4.714× 10−5 Vrms. Since the
voltage, current and thermal noise sources at the TIA output
can be assumed uncorrelated, we can add their respective
contributions and derive an expression of eTIAout :

eTIAout =
√
e2v + e2i + e2R (34)

eTIAout = 1.378× 10−3 Vrms (35)

Although other current amplification schemes could be
envisaged, our analog front-end is limited to this sole single-
stage TIA amplifier. This configuration is advantageous in
terms of signal-to-noise ratio since an increase in gain in a
single-stage design will translate in a proportional increase
in signal amplitude, whereas thermal noise, and current-noise
will only scale as a function of the square-root of the gain. A
single-stage high-gain design is thus preferable over a dual-
stage design achieving the same signal amplification since, in
the latter case, noise at the output of the first stage would scale
proportionally with the gain at stage 2, translating in a poorer
overall Signal-to-Noise Ration (SNR) [31].

CSH

N-bit search
DAC

SAR

+

-

Data Output Register

RSW
R

S1

. . .

VS

VSH0

tt
ACQ

t0

VCSH(t)

TIAOUT
V

CS

S

Fig. 6. SAR ADC and RC driver circuit. The RSCS network acts both as
an anti-alias filter, cutting-off high-frequency noise to input the ADC and as
a driving element preventing spurious potential bursts to deteriorate the AD
conversion when the switch S1 is closed.

2) RC driver circuit: The next source of noise on the signal
conditioning pathway is the RC filter driving the Analog to

Digital Converter (ADC), entry point to our digital PSD (figure
6). As we saw in the previous section, the high-impedance
AC measurements performed on our SiNW-bioFET are limited
in bandwidth by the feedback network of the TIA. This sets
relatively soft requirements on signal sampling rates. With the
aforementioned specifications, the TIA cut-off corresponds to
ff = 106 Hz. Such a low-bandwidth application can easily be
satisfied using a Successive Approximation Register (SAR)
ADC. The external driving network RSCS has a dual purpose.
First the capacitor CS is needed in order to prevent spurious
bursts or “kicks” to corrupt the input signal and maintain
the signal potential throughout the sampling acquisition and
conversion time. Second, RS should help ensure the stability
of the TIA or buffer amplifier preceding the ADC stage. The
RSCS network forms a single pole anti-aliasing filter, that will
attenuate high-frequency noise beyond fanti-alias = 1/2πRSCS
Hz.

The RSCS driver circuit will thus add thermal noise eRS to
the VTIAout signal so that:

eRS =
√

4kBTRSENBW =

√
4kBTRS

π

2
fanti-alias (36)

The RS and CS values should be specified in order to
allow sampling speeds that will satisfy the Nyquist-Shannon
criteria i.e. fanti-alias > 2fs max . By setting RS = 1× 103 Ω
and CS = 1× 10−9 F the time constant of the RC filter
becomes 1× 10−6 s. The resolution of the ADC will set
the minimum number of time constants for which the S1
switch must remain closed in between acquisitions, so that
the potential across CS can approach that of the input signal
with a maximum deviation of a half Less Significant Bit
(LSB). For a 12-bit ADC, 9 times constants are sufficient.
The best approximation allowed by the SAR ADC could then
be reached in 9×RSCS = 9 µs, limiting the signal bandwidth
for the anti-alias filter to 1/2× 9/2πRSCS ' 55.56 kHz, way
beyond the bandwidth allowed by our TIA stage (i.e. 106 Hz),
and thus not impacting the overall bandwidth of the signal
conditioning block. With these specifications, the noise added
by the RSCS network is:

eRS =

√√√√4kBT103

(
π

2

106

2π

)
= 1.014× 10−3 V (37)

3) Analog to Digital Conversion: Quantization noise is an
inevitable consequence of the discretization of the continuous
input voltage signal. It is determined by the resolution of
the ADC and by the voltage span over which the conversion
occurs. For a single-supply 12-bit ADC referenced at 3.3V,
the expression of the quantization noise eq can be shown to
be :

eq =
LSB√

12
=

3.3/212√
12

= 2.326× 10−4 V (38)

This noise model relies on the assumption that the quan-
tization noise is uncorrelated with the input signal: its power
spectral density then spreads about uniformly over the Nyquist
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bandwidth fs/2, fs denoting the sampling frequency [35].
A non-ideal ADC will inevitably add other spurious noise
harmonics to the quantization noise. We disregard the impact
of ADC non-idealities as these are not always specified by
device manufacturers.

4) Summary: All the aforementioned noise components
sum at the output of the signal conditioning block and
contribute to the quantized noisy signal VADCout = VPSDin .
The unfiltered digital input signal at the input of the PSD
block recovered together with the baseline current for our
SiNW-bioFET biased with VDS = 0.3 V therefore includes
at minima an equivalent RMS noise of amplitude ePSDin =√

(eTIAout)
2 + (eRS)

2 + (eq)2 = 1.727× 10−3 Vrms.

C. Phase-Sensitive Detection

Phase-Sensitive Detection (PSD), also sometimes referred to
as lock-in amplification, is a technique used in many engineer-
ing and scientific disciplines as a solution to varied AC-signals
measurement problems. It offers both the possibility to recover
signals buried in high levels of noise and to quantify relatively
clean signals that may vary in amplitude or frequency over
several orders of magnitude [36]. PSD has been leveraged
by many for recovering the low current variations of highly-
resistive SiNW-bioFETs, outputting signals possibly drown in
instrumentation and extrinsic noise. The simplified schematic
of a lock-in amplifier is provided in figure 7.

Fig. 7. The lock-in amplifier. Reproduced from [37]

The technique consists in retrieving the magnitude and
phase of a periodic AC signal with a known main harmonic
pulsation ωref. An internal reference signal can be used to
generate the excitation signal Vref(t) applied between the
SiNW-bioFET source and drain terminals. Vref(t) oscillates at
a pulsation ωref so that:

Vref(t) = Aref sin (ωreft+ φref) (39)

The buffered reference signal Vref(t) can be applied either
to the drain or source terminal of the sensor while the other
terminal is connected to a fixed reference potential Vbias. Let us
consider this single-ended configuration: the source potential
is maintained at Vbias = 1.65 V while the reference signal
is biased with baseline DC potential of 1.65 V and oscillates
with an amplitude Aref. The amplitude of the excitation signal
applied across the SiNW-bioFET is therefore given by |VDS|,
with:

|VDS| = |VD − VS| = Aref (40)

We exclusively consider the cases for which the SiNW-
bioFET transistor operates linearly, that is that we can as-
sume proportionality between the applied excitation voltage
amplitude VDS and the drain-source current amplitude IDS.
Following the signal conditioning block to which we referred
to extensively in the previous section, PSD requires the de-
modulation of the input signal VPSDin(t), which corresponds
to the digital output signal of the signal conditioning block.
In a noise-free scenario, the expression of VPSDin(t) depends
on the overall transfer function of SiNW-bioFET and of the
signal conditioning block. We can write:

VPSDin(t) = APSDin sin (ωreft+ φPSDin) (41)

1) Demodulation: The first stage of the PSD functional
block often consists of an AC-coupling block, in charge of
removing the DC baseline offset of the AC signal of interest.
PSD then requires the parallel dual-demodulation of the input
signal VPSDin(t) with the in-line reference signal Vref(t) and
with a second reference signal Vref90(t) in quadrature with the
first, i.e. φref90 = φref +90◦ (figure 7). In a noise-free scenario,
the output of the in-line demodulator can be derived as follows:

Vdemod(t) = VPSDin(t).Vref(t) (42)

Vdemod(t) = APSDin sin
(
ωref.t+ φPSDin) (43)

×Aref sin (ωreft+ φref
)

Vdemod(t) =
APSDinAref

2

(
cos
(
φPSDin − φref

)
(44)

− cos
(
2ωreft+ φref + φPSDin

))
A similar computation for the demodulation with the

quadrature reference signal gives:

Vdemod90(t) = VPSDin(t).Vref90(t) (45)

Vdemod90(t) = APSDin sin
(
ωref.t+ φPSDin

)
(46)

×Aref90 sin
(
ωreft+ φref + 90

)
Vdemod90(t) =

APSDinAref90

2

(
sin
(
φPSDin − φref

)
(47)

+ sin
(
2ωreft+ φref + φPSDin

))
Both the expressions of the in-line and quadrature demod-

ulators output let appear a DC component and a harmonic
term pulsating at twice the excitation frequency. The DC
components hold information about both the amplitude and
phase of the PSD input signal VPSDin , which will allow us
to recover information on IDS later on. The purpose of this
dual-demodulation process is to bring the VPSDin(t) amplitude
and phase information to DC. The key to the PSD process
resides in the subsequent low-pass filtering of both in-line and
quadrature demodulated signals. If we consider an ideal filter
with a cut-off pulsation ω < ωref we would expect at the filters
output:
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VLPF(t) =

APSDinAref

2
cos
(
φPSDin − φref

)
VLPF90

(t) =
APSDinAref90

2
sin
(
φPSDin − φref

) (48)

We define Aref = 1 V and φref = 0. We eventually obtain:


VLPF(t)

2
+ VLPF90

(t)
2

=

(
APSDin

)2
4

VLPF90
(t)

VLPF(t)
= tan

(
φPSDin

) (49)

We can now recover the amplitude and phase of VPSDin(t)
as:


∣∣VPSDin

∣∣ = APSDin = 2

√
VLPF(t)

2
+ VLPF90(t)

2

6 VPSDin = φPSDin = arctan

(
VLPF90

(t)

VLPF(t)

) (50)

The IDS current phase is accordingly given by 6 IDS = φPSDin

and its magnitude
∣∣IDS

∣∣ is function of the various gains and
attenuations in effect throughout the signal conditioning block.
In the non-ideal case, the input signal VPSDin(t) will be
corrupted by spurious signal components sourced by intrinsic
noise, extrinsic noise, or resulting from low-frequency signal
drift or DC errors. If VPSDin(t) incorporates a DC component,
then the in-line demodulation of VPSDin(t) gives:

Vdemod(t) = VPSDin(t).Vωref(t) (51)

Vdemod(t) =
(
APSDin sin

(
ωref.t+ φPSDin

)
+ C

)
(52)

×Aref sin
(
ωreft+ φref

)
Vdemod(t) =

APSDinAref

2

(
cos
(
φPSDin − φref

)
(53)

− cos
(
2ωreft+ φref + φPSDin

))
+ CAref sin (ωreft+ φref)

The DC offset input has shifted to the pulsation ωref. This
last equation illustrates the importance of the AC-coupling
block for cancelling of the input signal DC component before
it generates a spurious harmonic of large amplitude at the filter
input.

The precision of the PSD signal recovery process thus
depends on the level of noise corrupting VPSDin(t). Specifically,
the demodulation of noise harmonics at frequencies close to
fexc will fall in the transmission window of the filter and
remain largely unattenuated. For systems exhibiting purely
white noise, the improvement in Signal-to-Noise Ration (SNR)
offered by PSD is specified by:

Improvement Factor =
SNRout

SNRin
=

Bin

Bout
, (54)

where Bin is the Equivalent Noise Bandwidth (ENBW) at
the input of the PSD block and Bout is the ENBW at its
output [36]. In our specific case though, the spectrum of the

signal at the output of the signal conditioning block is likely
to contain various correlated noise components, including
1/f noise sourced from the amplifier and from the SiNW-
bioFET itself. As highly-sensitive SiNW-bioFETs will exhibit
small dimensions or may be biased in a high-resistive regime,
we may not be entitled to choose a measurement excitation
frequency beyond the 1/f noise cut-off fnc and may need
to carry out AC measurements within the 1/f region. The
expression of the improvement factor (equation 54) then does
not hold anymore and a more thorough investigation of the
influence of the PSD stage on the output SNR is needed.

Fig. 8. Magnitude spectrum of a digitized 10Hz demodulated signal (in
blue) and frequency response of a 120 taps FIR filter (in orange). The filter
frequency response illustrates the noise components that will remain mostly
unattenuated: those below fFIRcutoff

We consider a sinusoidal excitation signal at fexc = 10 Hz.
At such a low frequency, the transamplification of IDS is cor-
rupted by the amplifier 1/f noise, rolling off at -3dB/octave.
Figure 8 illustrates the magnitude spectrum of the demodulated
signal. The energy of the input signal initially oscillating at
10 Hz is split, and for half brought back to DC (that is the
signal component we wish to recover) and for half transposed
at 20 Hz, twice the excitation frequency. Here, a 10 Hz pulsa-
tion remains as a result of the non-ideal AC-coupling of the
signal at the demodulator’s input. Figure 8 also illustrates the
challenge of rejecting noise when the excitation frequency is
low. 1/f noise, the projection of DC offsets to fexc and the
projection of half of the energy of the main harmonic signal at
2×fexc will sum as they occupy a narrow frequency spectrum
close to DC. Therefore, the lower the excitation frequency,
the more stringent the requirements on the low-pass filtering
stage. We now elaborate on the implications of these aspects
on the filter design requirements.

2) Low-Pass FIR Filtering: The continuous lock-in recov-
ery of SINW-bioFET current signals is governed by an intrin-
sic trade-off: high TIA gains and narrow operation bandwidth
are likely to corrupt signal integrity by translating in significant
amount of thermal and current noise, thus necessitating low-
cutoff, and sharp roll-off filters. High-order filters, meeting
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drastic stop-band attenuation and sharp transition band re-
quirements will, in turn, exhibit longer time constants limiting
the throughput of measurement points. As we only consider
the recovery of steady-state IDS currents, we assume that
prolonged acquisition times are acceptable and thus that we
may rely on sharp digital filters presenting large number of
taps. We harnessed the Parks-McClellan algorithm to design
six FIR filters of respectively 17, 45, 72, 120, 359 and 449
taps, respecting tolerances of 0.01 dB of ripple in the passband
and a large 60 dB of ripple allowed in the stopband (appendix
F). These filters enable attenuations superior to −90 dB in the
stopband.

Just like we computed the RMS noise level at the TIA
output, we can deduce from the NPSD at the output of the
demodulator what is the RMS noise level at the output of the
filter. We may observe that the demodulation process shifted
the NPSD frequency spectrum at the input of the demodulator
(i.e. the NPSD at the output of the signal conditioning block)
to the left of the frequency domain by an amount of fexc Hz.
As illustrated in figure 8, the total RMS noise ePSDout at the
PSD block output will result from the contributions of the
noise harmonics (blue line) laying within the FIR filter pass-
band (orange line).

A piecewise calculation of these contributions can be de-
rived similarly to what was presented for the various TIA
noise contributions. If we assume the ideal subtraction of
the signal DC offset before demodulation, the calculation for
ePSDout becomes:

ePSDout =
√
e2v-ENBW

+ e2i-ENBW
+ e2RENBW

+ e2RS–ENBW
+ e2q-ENBW

+ V(2fexc)rms

(55)

, where ev-ENBW , ei-ENBW , eRENBW , eRS–ENBW , eq-ENBW the contribu-
tions after demodulation and FIR filtering of the amplifier’s
voltage noise, current noise, of the thermal noise of Rb and
Rf , of RS, of the quantization noise and of the spurious
harmonic remaining at 2 × fexc respectively. The details for
their respective derivations is provided in appendix E. Impor-
tantly, ePSDout corresponds to the average RMS noise level we
expect to corrupt our lock-in amplified IDS signal. Finally, we
may recover the theoretical Limit Of Detection for our SiNW-
bioFET/Lock-in amplifier system from ePSDout , with the LoD
defined as:

LoD = 3× Noise floorRMS (56)

III. METHODS

We implemented a Matlab analytical model of the ATP
detection system described in the previous section. We estab-
lished the relations binding the SiNW-bioFET properties, to
those of the biological sample immersing the gate, to the signal
conditioning block and to the PSD block. We investigated
the influence of various design parameters i.e. the variables
under the control of the various system engineers, on the
overall SiNW-bioFET/lock-in amplifier system sensitivity. Our
overall objective was, from this sensitivity analysis, to identify
optimal designs and recommend specific system operation

configurations. The initial specifications for the SiNW-bioFET,
for the biological matrix and for the instrumentation are given
in Table I.

TABLE I
INITIAL SYSTEM SPECIFICATIONS

Sub-system Component Specification Value

SiNW-bioFET

SiNW

Length 20× 10−6 m
Radius 20× 10−9 m

Carrier mobility 2 cm2/V s
Boron doping 1× 1024 m−3

Stray capacitance 1× 10−13 F

Gate

Material AlO2

Thickness 5× 10−9 m
Receptor ABL Tyrosine-kinase

Receptor projection area 3× 10−17 m2

Receptor charge —
Receptor density 65× 1012 receptors/m2

Ligand ATP
Ligand projection area 3× 10−17 m2

Ligand charge −3 e
Charge-surface distance 2.4 nm

Sample
Ionic strength 1× 10−12 mol m−3

Temperature 298 K
ATP concentration var

Signal conditioning circuitry

Excitation Frequency var
Amplitude 0.3 V

TIA

Opamp AN8608
GBW 1× 107 Hz
Ccm 8× 10−12 F
Cdiff 2.2× 10−12 F

Inoise 1× 10−14 A/
√

Hz

ev 8× 10−9 V
√

Hz
Rf var
Cf 1.5× 10−11 F

RC Driver RS 1× 103 Ω
CS 1× 10−9 F

ADC
Resolution 12 bits

Sampling frequency 4× fs
Input span 3.3 V

Phase Sensitive Detector
AC-coupling Output offset error —

Demodulation Frequency fexc
FIR Filtering ENBW var

As we saw in the previous sections, instrumentation prop-
erties are likely to play a role in determining the overall LoD
(and best resolution) of our SiNW-bioFET/lock-in amplifier
assembly. For highly-resistive SiNW channels, e.g. presenting
nanoscale cross-sectional areas or biased in the subthreshold
regime, the sole intrinsic noise of the signal acquisition
chain puts the theoretical high-sensitivity of the biosensor
in jeopardy. Since the SiNW length does not play a role in
defining SiNW-bioFET sensitivity (at least when length is
sufficient to avoid short-channel effects altogether), it presents
an opportunity: shorter SiNWs will show a lower intrinsic
resistance, requiring lower gains, and enabling larger mea-
surement bandwidth possibly pushing the excitation frequency
beyond the 1/f window of the active components in the
circuit. SiNW length, excitation frequency, dopant concentra-
tion (arguably allowing the simulation of transistor operation
in highly depleted regimes) and of course FIR filter design
are therefore critical in defining the overall system LoD. We
carried out a parametric study investigating the influence of
these parameters on the SiNW-bioFET/lock-in amplifier LoD.

As we mentioned before, noise components at the TIA
input only scale with the square-root of the gain of the TIA,
−Rf . This gain should therefore be set to the maximum
allowed value in order to provide the best overall SNR. As
the AN8608 amplifier is operated between ground and 3.3 V,
AC signals amplified to a maximum amplitude of 3.3/2 =
1.65 V were tolerated. The gain specification was decided
upon iteratively for each SiNW-bioFET/lock-in amplifier con-
figuration, starting at Rf = 1 GΩ, and decreased by one order
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of magnitude if saturation was detected at the TIA output for
any of the measurements over the ATP concentration range
[0− 1]mol m−3.
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SiNW-bioFET signal variations are above the noise floor

and thus significant

Fig. 9. SiNW-bioFET response to ATP and Limit of Detection. From
infinitesimal ATP concentration, spurious noise still appears at the output of
the lock-in amplifier. The noise floor, equivalent to 3× ePSDout is represented
by the horizontal purple line. Any signal variation observed at the output
of the lock-in amplifier below this level should be considered as noise.
Variations of amplitude superior to this level can be considered significant. We
may interpolate the ATP concentration for which the noise floor is reached:
this concentration corresponds to the SiNW-bioFET/Lock-in amplifier system
LoD.

We made sure that all the measurement points acquired for
a sweep of ATP concentration were obtained with an identical
TIA gain −Rf . Indeed if binding of a greater number of
target analytes were to necessitate a readjustment of the gain
i.e. if the signal were to saturate at the TIA output, then the
noise calculation would need to be reiterated. Furthermore,
any change in the SiNW resistance cascades in changes in
noise levels throughout the acquisition and signal processing
chains (e.g. from a shifting in the TIA noise gain profile Nf ).
We assumed these changes were negligible and carried out
our noise calculations for each sweep in ATP concentration
using the intrinsic SiNW resistance RSiNW i.e. at [ATP] =
0 mol m−3. After considering the limits beyond which device
fabrication and microfluidics integration becomes challenging,
we limited our parametric investigations to SiNWs presenting
lengths in the 1-20 µm range. Excitation frequency was swept
from fexc = 1× 10−2 Hz to three orders of magnitude
beyond the TIA bandwidth cutoff of each configuration, or
fmax = (1× 103)/2πRfCf Hz.

We were able to recover the LoD for each configuration
by relying on the ideal response curves for the SiNW-bioFET
such as the one presented in figure 9. By interpolating the
analyte concentration for which the corresponding variation
in voltage signal change is 3× ePSDout (equation 55) we could
retrieve the system-level LoD performance.

IV. RESULTS

Results for acquisitions using our 17 taps (FIR17) and
our 449 taps (FIR449) FIR filters reveal the most important

findings of this study. Figure 10 and 11 respectively display the
best-case scenario LoDs one may hope to achieve, for a given
instrumentation hardware configuration, as SiNW channels
vary in length, and as a function of the excitation frequency
of the lock-in amplifier.

For a given FIR filter, we observe quite predictably a
general trend towards higher sensitivities (e.g lower LoD)
as SiNW dopant concentration decreases. Indeed, for dopant
concentrations [dopant] = 1× 1024, 1× 1023, 1× 1022,
and 1× 1021 m−3 the best-case scenario LoD for FIR17
lowers from 2.98× 10−4 to 7.5× 10−6, 2.23× 10−6 and
1.77× 10−6 mol m−3 respectively. This general behaviour is
expected from the analytical model of the SiNW-bioFET
sensor alone. Just as predictably, a comparison of minima in
sub-figures 11a to 11d (FIR449) with their counterparts in
figure 10 (FIR17) reflects the intuitive benefit of sharper roll-
off filters: these help rejecting noise better, which in turn favors
lower LoD values. Choosing FIR449 instead of FIR17, thus
brings down the best achievable LoD level within this design
space from 1.77× 10−6 mol m−3 to 7.21× 10−7 mol m−3, or
the equivalent of a 2.45-fold increase in LoD performance.

More interestingly now, we observe in both figure 10
and figure 11 behaviours we would not expect from an
analysis of the sensor alone. First, although the least-doped
sensors provide the single highest LoD performance for this
design space (sub-figures 10d and 11d), LoD performances
over most of the design space are actually worse-off at
[dopant] = 1× 1021 m−3, than for sensors doped 10 times
more. Indeed, minima in figure 10d and figure 11d are guarded
in between the steep walls of the “slanted half-pipe” surface
curve that describes LoD performances for the most poorly
doped SiNW channels. On the opposite, LoD performance
curves for [dopant] = 1× 1022 m−3 (sub-figures 10c and 11c)
are relatively flat. The slanted half-pipes of sub-figures 10d and
11d translate the stronger dependency of detection limits on
both lock-in excitation frequency and on SiNW length, as the
SiNW channel dopant concentration is reduced. This peculiar
behaviour is a consequence of the limitations of the lock-
in amplifier. As the baseline resistivity of the SiNW channel
increases, the instrument cannot cope with the drop in baseline
signal amplitude. The noise injected downstream of the SiNW-
bioFET by the signal conditioning electronic components
progressively represents a larger part of the signal recovered
by the PSD stage of the amplifier. The latter, depending on
the performance of its filtering stage, cannot withstand the
decrease in SNR of the input signal. Noise eventually leaks
through the FIR filter and LoD performances decrease. This
decrease in performance is aggravated both at higher and lower
excitation frequencies. At higher frequencies, two detrimental
effects combine: the sharp increase in the TIA noise gain Nf

(for fexc > fi+f ), and the TIA signal gain starting to roll-
off as fexc approaches the TIA RfCf cutoff. This behaviour
directly translates the operation range limits we discussed in
the introduction: fexc < min (ff , fi+f ). At lower frequencies
now, we observe the clear impact of 1/f noise on system-level
LoD as SiNW channel dopant concentration is reduced. This
is especially true for the least performing FIR filter (FIR17),
which rejects lower frequency harmonics very poorly when
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Fig. 10. a-d – Best-case scenario LoD for PSD with the FIR17 filter for various SiNW dopant concentrations. The best performance is LoD =
1.77× 10−6 mol m−3. It is achieved for a SiNW dopant concentration of 1× 1021 dopant/m3 for a SiNW length of 1 µm, at an excitation frequency
of fexc = 100 Hz.

FIR449 performs reasonably well.
Figures 10d and 11d also reveal stronger dependency of

LoD performances on SiNW length. This dependency is
explained by the same reason behind the greater dependency
on excitation frequency: a greater amount of noise is injected
in the acquisition signal if the SiNW is lengthened. We can
see that this dependency is not as strong for FIR449 as it is
for FIR17, once again a consequence of the sharper roll-off
filter being more resilient to noise injection.

Finally, figure 10a reveals another interesting behaviour.
The LoD performance surface curve appears to be fragmented
in 3 distinct surfaces, and a significant LoD step-response is
associated with devices which lengths decrease below the 7 µm
threshold. Notice also that this step is curled, depicting both
increasing LoD values as excitation frequencies tend toward
DC and seemingly a return to lower LoD values as SiNW
length is reduced further. This behaviour is the consequence
of the availability of a discrete and limited number of gains
for the TIA stage. Indeed, the successive gains of the current
amplifier are one order of magnitudes apart from one another

(Rf = 1 × 109, 1× 108 Ω...). For the very short SiNW
channels, a lower gain may need to be selected in order
to prevent signal saturation. This is what happens at the
critical threshold L = 7 nm: the selection of a lower gain,
brings down the baseline signal at the TIA output, meaning
that the noise injected downstream of the acquisition chain
(i.e. at the RC driver circuit stage and at digitization) will
represent a larger portion of the acquired signal. Also note that
switching to a smaller feedback resistance Rf will decrease
the noise it generates following a square-root relationship,
whereas the effective signal will decrease proportionally to
Rf . These phenomena will contribute to degrade the SNR at
the input of the PSD. This, in turn, inevitably results in higher
LoDs. The reason the LoD flattens again as SiNW lengths
are reduced is that the relative increase in noise induced by
the selection of a smaller TIA gain is compensated by shorter
channels being less resistant, and therefore injecting less noise
downstream of the acquisition chain. One can notice once
again that the system-level consequences of these effects are
more pronounced for FIR17 than for FIR449: the latter filter
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Fig. 11. a-d – Best-case scenario LoD for PSD with the FIR449 filter for various SiNW dopant concentrations. The best performance is LoD =
7.21× 10−7 mol m−3. It is achieved for a SiNW dopant concentration of 1× 1021 dopant/m3, at an excitation frequency fexc = 398 Hz and for a
SiNW length of 1 µm. The higher noise rejection capabilities of the FIR449 filter need to be traded off against longer filter settling times.

benefits from a lower cut-off frequency and from a sharper
roll-off which allow it to be more resilient to a decrease in
SNR.

V. DISCUSSION

Much effort has been spent on the development of novel
SiNW-bioFET architectures and on the investigation of their
behaviours. Our understanding of underlying science, together
with advances in SiNW-bioFET design and fabrication tech-
niques have progressively driven down SiNW-bioFET LoD
levels, mostly via the successfull trade-off of a set of now
well-known sensor design parameters: SiNW geometry, car-
rier dopant concentration, operation regime, gate oxide ma-
terial and thickness, and the physico-chemical properties of
the biofunctionalization layer. Although various designs have
demonstrated sub-femtomolar detection capabilities, our inves-
tigation shows that the maximization of SiNW-bioFET design
performances alone cannot always permit the maximisation
of performances of the sensor-instrumentation integration. A

focus on systemic performances should yet prevail if SiNW-
bioFET technology is to be more easily translated into diag-
nostic practices.

Our research addressed this limitation by demonstrating the
tight coupling existing between SiNW-bioFET design param-
eters affecting LoD and those related to noise injection and
rejection at the instrumentation level. Although our analytical
model is only that of a specific SiNW-bioFET/instrumentation
instance and could not possibly be trusted quantitatively
to predict the detection performances of another SiNW-
bioFET/instrument system, it illustrates the grand principles
of sensor/instrument interactions and can be adapted to the
specificities of various biological targets, sensor designs or
instrumentation techniques.

The analytical model of the circular cross-section SiNW-
bioFET we have been using throughout this study is certainly
over-simplifying as it does not translate the specific behaviours
unique to each SiNW-bioFET design variant. Yet the generic
nature of that model helps us make our point: irrespectively of
the peculiar SiNW-bioFET design or operation mode, SiNW
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length does play a role on system-level LoD although studies
on SiNW-bioFET alone do not predict that dependency (except
if we consider short-channel effects but these are rarely a
concern for junction-less bioFETs with channels at least a
few micrometers long). The magnitude of the influence of
SiNW length on LoD levels is itself function of the operation
regime and dopant concentration of the SiNW: the higher
the resistivity, the greater the systems LoD dependency on
SiNW length. Along the same line of reasoning, it appears
that the subthreshold regime, advocated for the high-sensitivity
operation of SiNW-bioFETs may not always provide the best
system-level LoD performances. SiNW-bioFET brought close
to the subthreshold regime would indeed present very low in-
trinsic conductance, and impose the same stringent sensitivity
and noise rejection requirements on the instrument as very-
poorly doped SiNWs would. Figures 11d and 11c illustrate
this apparent paradox: Scenarios where sensor baseline con-
ductance is the lowest (figure 11d) provide better system LoDs
for only a small subset of SiNW length/excitation frequency
configurations whereas SiNWs presenting a higher baseline
conductance provide consistent system LoD performances
over the SiNW length/excitation frequency parameter space.
The influence of the SiNW-bioFET operation regime was not
precisely accounted for here as our analytical model does not
allow for the specification of biasing conditions. Further work
in that direction is therefore needed.

Also, we mentioned in our introduction that a SiNW-
bioFET/instrumentation system-level sensitivity analysis was
desirable whenever a custom-, non-integrated instrumentation
was to be coupled to a SiNW-bioFET array. In such a case
it appears that if the design of a new SiNW-bioFET were to
follow the design of its instrumentation, then the analytical
noise- and signal processing model of the instrument ought to
be taken into consideration when designing the sensor. In our
case, the availability of a limited number of gains at the TIA
stage should drive us to design SiNWs that are slightly longer
than 7 nm if the dopant concentration is 1× 1024 m−3. There,
baseline resistance of the sensor and optimal gain selection of
the instrument would ensure optimal LoD performance.

Finally, our choice for the lock-in amplifier model may
appear somewhat arbitrary if not for the fact that lock-in ampli-
fication is commonly the instrumentation of choice for SiNW-
bioFET investigations that do not rely on a silicon-integrated
analog front end. Our investigation of the SiNW-bioFET/lock-
in amplifier coupling is therefore indicative of a few trade-offs
system designers should be aware of. In particular, we showed
that highly-resistive sensor configurations (e.g. low dopant
concentrations, sub-threshold operation) narrowed down the
range of usable excitation frequencies for the lock-in amplifier:
too low and the LoD suffers from the injection of 1/f noise;
too high and the signal rolls-off beyond the TIA RC filter
cutoff. This consideration can have important ramifications,
for instance if continuous impedance monitoring is needed
(e.g. for impedance-based cytometry, etc.) as TIA gains and
operable frequency bandwidth are tighly coupled: if one is
required to excite the sensor continuously at a high frequency
then sharp FIR filters may not be selectable as they may not
have time to complete their computations in real time. This

would mean using less efficient FIR filters at the detriment of
LoD performance, which may be an issue for spectroscopic
applications looking at small signals. Conversely, high LoD
performances may require the constriction of the excitation
frequency to a very low bandwidth: spectroscopic applications
could then be deprived of higher frequency measurements,
which may impede their utility this time, or other perfor-
mances, such as throughput [16].

VI. CONCLUSION

The SiNW-bioFET technology is in many aspects promising
for the detection of low concentration of biological markers
in solution. We demonstrated that system-level considerations
including both sensor and instrumentation may yet better
inform on the performances one might expect from a complete
sensor-instrumentation diagnostic system. We showed from
such analyses that although the role of SiNW length and
dopant concentration are well established when considered
from a strict sensor perspective, they may need to be revisited
when instrumentation is taken into account and if one wishes
to leverage sensitive SiNW-bioFETs with an appropriately
sensitive instrumentation or tailor the design of a novel SiNW-
bioFET if it is to be coupled to an existing instrument.

APPENDIX A
AN8608 VOLTAGE NOISE POWER SPECTRAL DENSITY

Fig. 12. Voltage noise spectral density of the AN8608 amplifier. The PSD
shows the typical 1/f dependency of many active electronic components at
low frequency.

APPENDIX B
CONTRIBUTION OF THE AMPLIFIER’S VOLTAGE NOISE

Generally speaking, for a given frequency interval [fL−fH ],
i.e. bandwidth, the expression of the TIA output RMS voltage
noise ev is obtained from the integration of the amplifier’s
input NPSD from fL to fH , taking into account the noise gain
profile over this particular bandwidth [32]. If we consider a
noise gain Nf = 1, we obtain:

ev =

∫ fH

fL

(
NPSD×Nf

)
.df =

∫ fH

fL

PSD.df (57)
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If the PSD spectrum is flat over the fH − fL bandwidth,
(white-noise spectrum) we have:

ev =

∫ fH

fL

C.df = C(fH − fL) (58)

Conversely if the PSD spectrum consists purely of 1/f noise
we get:

ev =

∫ fH

fL

K2

f
.df = K2 ln

fH
fL

(59)

with K2 a characteristic device constant.
Let us consider a noise PSD constituted of 1/f noise for

frequencies inferior to fnc, and displaying white noise for

frequencies superior to fnc. We obtain K2/fnc = C and the
expression of ev becomes:

ev = C
(
fnc ln

fH
fL

+ (fH − fL)
)

(60)

At 10 Hz, the AN8608 input voltage noise PSD is
29.8× 10−9 V/

√
Hz. It can be shown that K2 =

(
(29.8 ×

10−9)2 − e2high-freq

)
× 10 [38] and thus that fnc = K2/C2 '

128 Hz. We have fnc < fi+f , meaning that the 1/f noise
components will be amplified by Nf = 1 + Rf/Rsens which
simplifies the calculations. We can segment the integral of
equation 58 and derive the set of equivalence in (61).



e
v
[
0.01:fi+f

] = 8× 10−9
(

1 +
Rf

Rsens

)√
fnc ln

(
fi+f

0.01

)
+ fi+f − 0.01 = 8.848× 10−7 V

e
v
[
fi+f :ff

] = 8× 10−9
(

1

fi+f

)(
1 +

Rf

Rsens

)√
ff
3
− fi+f

3
= 7.924× 10−11 V

e
v
[
ff :+∞

[ = 8× 10−9
(

1 +
Ci

Cf

)√(π
2
froll-off − ff

)
= 8.861× 10−6 V

(61)

We arbitrarily chose a lower bound for the first segment at
f = 0.01 Hz as the integral converges when f tends towards
0 Hz. The third segment is unbounded at high-frequencies i.e.
fH = +∞, but we know that the noise gain profile limits
system bandwidth beyond froll-off = 1.3× 106 MHz with a
−6 dB octave−1 single-pole filter roll-off. The contribution
of the attenuated noise components beyond that cut-off are
incorporated by using by the expression of the Equivalent
Noise Bandwidth (ENBW) of a single-pole filter for this
segment [32], giving:

ENBW =
π

2

(
froll-off − ff

)
Hz (62)

The total TIA RMS output noise ev attributable to en is
then:

ev =

√(
e
v
[
0.01:fi+f

])2 +
(
e
v
[
fi+f :ff

])2 +
(
e
v
[
ff :+∞

[)2
ev ' 8.905× 10−6 Vrms

APPENDIX C
CONTRIBUTION OF THE AMPLIFIER’S CURRENT NOISE



e
i
[
0:fi+f

] = 1× 10−14
(
Rf +Rb

(
1 +

Rf

Rsens

))
fi+f = 3.807× 10−4 V

e
i
[
fi+f :ff

] = 1× 10−14
(
Rf +Rb

(
1 +

Rf

Rsens

)( 1

fi+f

))√ff
3
− fi+f

3
= 4.762× 10−5 V

e
i
[
ff :+∞

[ = 1× 10−14
(
Rf +Rb

(
1 +

Ci

Cf

))√π

2
(froll-off − ff ) = 1.3197× 10−3 V

(63)

We can conclude:

ei =

√(
e
i
[
0:fi+f

])2 +
(
e
i
[
fi+f :ff

])2 +
(
e
i
[
ff :+∞

[)2
ei ' 1.3744× 10−3 Vrms
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APPENDIX D
CONTRIBUTION OF RB



e
Rb

[
0:fi+f

] =

√
4kBTRb

(
1 +

Rf

Rsens

)2
fi+f = 7.542× 10−7 V

e
Rb

[
fi+f :ff

] =

√
4kBTRb

(
1 +

Rf

Rsens

)2( 1

fi+f

)2(ff
3
− fi+f

3

)
= 1.529× 10−8 V

e
Rb

[
ff :+∞

[ =

√
4kBTRb

(
1 +

Ci

Cf

)2(π
2

(froll-off − ff )

)
= 4.493× 10−5 V

(64)

APPENDIX E
DEMODULATED FILTERED NOISE CONTRIBUTIONS



ev-ENBW = 8× 10−9
(
1 +

Rf

Rsens

)√
fnc ln

(fexc + ENBW
fexc

)
+ ENBW

ei-ENBW = 1× 10−14
(
Rf +Rb

(
1 +

Rf

Rsens

))
.ENBW

eR-ENBW =

√
4kBT

(
Rf +Rb

(
1 +

Rf

Rsens

)2
+Rsens

( Rf

Rsens

)2)
.ENBW

eRS-ENBW =
√

4kBTRS.ENBW

eq-ENBW =

(LSB√
12

)
√(fs

2

) .ENBW

(65)

Note that the distribution for the quantization noise power
spectral density is assumed to be uniform over the entire ADC
bandwidth fs/2 [35].

The expression of V2.fexcrms corresponds to the FIR filtered
harmonic at 2.fexc. As discussed previously, this harmonic
corresponds to half the energy of the main harmonic signal
at the input of the ADC, taking into account the possible
attenuations/gain throughout the signal conditioning block. We
can thus derive :

V(2fexc)rms =
Vdemodout(2.fexc).|HFIR(2.fexc)|√

2

V(2fexc)rms =
Vexc.|HTIA(fexc)|.|Hanti-alias(fexc)|.|HFIR(2.fexc)|

Zsens2
√

2

For this specific case (fexc = 10 Hz), the expression of the
ePSDout gives:

ePSDout =
(
e2vENBW

+ e2iENBW
+ e2RENBW

+ e2RSENBW

+ e2qENBW

)1/2
+ V(2fexc)rms

ePSDout =
(

1.533× 10−13 + 4.483× 10−9

+ 2.222× 10−9 + 7.373× 10−16

+ 1.212× 10−7
)1/2

+ 1.826× 10−3}

ePSDout = 2.184× 10−3 V

APPENDIX F
FIR FILTER BANK
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17 taps FIR filter

(a)

45 taps FIR filter

(b)

72 taps FIR filter

(c)

120 taps FIR filter

(d)

359 taps FIR filter

(e)

449 taps FIR filter

(f)

Fig. 13. FIR filter bank frequency response
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