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ABSTRACT | To enhance the functionality of the standard silicon

photonics platform and to overcome its limitations, in par-

ticular for light emission, ultrafast modulation, and nonlinear

applications, integration with novel materials is being investi-

gated by several groups. In this paper, we will discuss, among

others, the integration of silicon waveguides with ferroelectric

materials such as lead zirconate titanate (PZT) and barium

titanate (BTO), with electro–optically active polymers, with 2-D

materials such as graphene and with III–V semiconductors

through epitaxy. We discuss both the technology and design

aspects.
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I. I N T R O D U C T I O N

The main driver for silicon photonics is the fact that stan-
dard processes and standard materials from the comple-
mentary metal–oxide–semiconductor (CMOS) industry can
be reused for realizing complex photonic integrated cir-
cuits (ICs) with high yield and high volume. As extensively
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described in other articles of this issue, this has allowed the
field to make tremendous progress over the last decade.
However, in some cases, the standard processes and stan-
dard materials of the CMOS industry do not suffice. The
most prominent example is the laser source. Despite con-
siderable research efforts, thus far there has been no viable
path to realizing an efficient on-chip laser relying only on
materials commonly used in the electronics industry. Also,
continued improvement of “standard” modulators and
switches relying on the carrier dispersion effect are increas-
ingly hampered by fundamental tradeoffs between modu-
lation efficiency and losses (see the article by Witzens in
this issue). Furthermore, it is not possible to decouple
phase and amplitude modulation in these devices, while in
many applications pure phase modulation or pure ampli-
tude modulation is desired. Finally, while silicon exhibits
a relatively large third-order nonlinearity, nonlinear losses
inhibit real breakthroughs in fields such as on-chip super-
continuum generation and frequency combs. Hence there
is a growing need to integrate new materials into the sili-
con photonics platform. This includes direct bandgap III–V
semiconductors, which can provide the gain needed for
realizing integrated lasers and optical amplifiers. It also
includes materials exhibiting a large electro–optic (EO)
effect that can be used for realizing more efficient
modulators, and interestingly often also exhibit a large
second- or third-order nonlinearity, such as electro–optic
polymers, ferro–electric materials, graphene and other
2-D materials.

As extensively described in the article by Bowers et al.
in this issue, a first approach to integrate new materials
with silicon waveguides relies on wafer bonding tech-
niques. This approach is maturing rapidly and is extremely
versatile in the sense that it can be extended to a wide
range of different materials. It also preserves the high
quality of the source material without introducing defects,
which is particularly relevant for crystalline materials such
as III–V semiconductors or lithium niobate. Nevertheless,
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Fig. 1. Possible schemes for hybrid integration of an active

material (blue) with a silicon waveguide (orange): on top of (a) a

nonplanarized or (b) planarized waveguide; embedded within (c) a

vertical or (d) horizontal slot waveguide; integrated in (e) a hybrid

silicon-plasmonic waveguide; (f) butt coupling.

in some cases, there is the desire to use true wafer scale
compatible processes such as physical vapor deposition,
spin coating, chemical vapor deposition, or epitaxy. These
integration methods allow for a degree of integration
not achievable with wafer bonding techniques, such as
for the vertical and horizontal slot waveguides discussed
below. In most cases, however, cost is the main driver,
as these wafer scale processes can, in principle, be cheaper,
especially for high volume applications. With each of these
approaches, an important hurdle that must be overcome
is the high development cost associated with introducing
new materials and new processes into a silicon fab. This
hurdle could be lower if the material is also already
being investigated for new applications in the electronics
industry. For example, this is the case for III–V semicon-
ductors and for various 2-D materials, which are being
considered for introduction in next-generation electronic
nodes.

Fig. 1 schematically illustrates how the new materials
can be integrated on the silicon photonics platform. The
most straightforward approach is to simply deposit the
material on top of the waveguide [Fig. 1(a) and (b)]. Pla-
narizing the waveguide [Fig. 1(b)] by chemical mechanical
polishing (CMP) is in certain cases essential for reaching
high yield, e.g., for 2-D materials (see Section IV). In other
cases, in particular for lower index materials, this option
leads to a very low confinement of the optical field in
the optically active material, reducing the efficiency of
the device. One option is, therefore, to embed the active
material in the center of the waveguide core, as shown
in Fig. 1(c) and (d). In the case of a low index active
material, embedded in a higher index waveguide, the
boundary conditions for the surface normal electric field
can further enhance the optical confinement. This is the
so-called slot effect [30] and has been exploited both for

EO polymers, as discussed in Section II and for barium
titanate, as discussed in Section III. The drawback of
this embedding approach is that waveguide manufactur-
ing is typically somewhat more involved. Even greater
field enhancement can be obtained through the use of
plasmonic waveguides, and several different approaches
have been proposed. The common disadvantage shared
by these metallic waveguides are their high optical losses.
The hybrid silicon-plasmonic waveguide shown in Fig. 1(e)
exploits both plasmonic confinement and dielectric con-
finement, offering an interesting compromise between
losses and field enhancement [1]. Finally, the active mate-
rial can be deposited in a separate region. One example
of this is the butt coupling scheme as shown schemat-
ically in Fig. 1(f). When integrating silicon waveguides
with III–V epitaxy, this might be the preferred method
(see Section V). For a particular application, the choice of
the most appropriate integration scheme may also depend
upon other factors, such as the temperature budget of the
processes involved and compatibility of a material with
the fab.

In this paper, we will review recent progress in the
field of hybrid integration of novel materials with sili-
con photonics, using wafer scale processes. Specifically,
we will discuss the integration with ferro–electric materials
(Section II), with electro–optical polymers (Section III),
with 2-D materials (Section IV) and with III–V semicon-
ductors (Section V). For each material, we discuss the
integration approaches being investigated, current state of
the art and an outlook to the future maturation of the
related platform.

II. I N T E G R AT I O N W I T H
F E R R O–E L E C T R I C M AT E R I A L S

Lithium niobate (LiNbO3 or LN) has long been the pre-
ferred material for building the high-performance mod-
ulators used in telecom systems. They are also widely
used in sensing applications and, for example, gyroscopes.
They are very attractive because through the large Pock-
els effect in LN they can provide pure phase modula-
tion, without spurious amplitude modulation, contrary
to silicon modulators relying on the carrier dispersion
effect or III–V modulators relying on the quantum con-
fined Stark effect. The recent development of techniques
for realizing thin film LN allows now for the integra-
tion of crystalline LN layers with silicon waveguides
using wafer bonding approaches [2]. Using such an
approach, Zhang [3] demonstrated Mach–Zhender mod-
ulators exhibiting a bandwidth beyond 100 GHz, and a
Vπ L = 2.2 V.cm (in a push–pull configuration). While this
waferbonding-based approach is very promising, thus far
no practical method for integrating LN monolithically on
silicon has been shown. Furthermore, the EO coefficient
of LN is relatively low. An interesting alternative is barium
titanate (BaTiO3 or BTO), which exhibits a very large EO
coefficient (r > 1000 pm/V, for bulk films). McKee et al. [4]
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showed that BTO can be grown on Si using a thin BaO
buffer layer. In later work, it was shown that SrTiO3 (STO)
can be an efficient buffer layer for growing BTO on Si [5].
The STO buffer layer overcomes the chemical incompatibil-
ity between Si and STO and drives the desired 45◦ orienta-
tion between the lattices of both materials, which reduces
the original mismatch in lattice constant between silicon
and STO/BTO (>25%) to less than 2%. More recently, Abel
et al. optimized the STO buffer layer to monolithically inte-
grate BTO on Si for optical applications [6]. An effective
EO constant reff = 148 pm/V was extracted, establishing
the potential of this approach for optical applications.
However, BTO has a relatively low refractive index (nBTO =
2.38) compared to silicon, and therefore simply deposit-
ing it on top of a silicon waveguide [Fig. 1(a) and (b)]
would lead to a low optical confinement. Xiong et al. [7]
therefore proposed to use a slot waveguide, fabricated
by first growing an STO/BTO stack on an SOI substrate
using molecular beam epitaxy, followed by an amorphous
silicon layer. Only the top silicon layer was patterned,
avoiding the need for etching the BTO layer. Several func-
tional devices (grating couplers, ring resonator, MZI) were
demonstrated, including modulators with Vπ L = 1.5 V.cm
(with an applied bias Vbias = 20 V), equivalent with an
effective Pockels coefficient reff ∼ 210 pm/V. The largest
modulation bandwidth obtained was 4.9 GHz, limited by
electrical parasitics. Unfortunately, the waveguide losses
were relatively high (∼ 44 dB/cm). More recently, Abel
et al. [8] used wafer bonding with a thin Al2O3 interlayer
to form the desired horizontal slot waveguide structure,
circumventing the need for amorphous silicon deposition.
Again, a range of different passive devices with good
performance were reported and tuning of a ring resonator
resonance with very low power consumption (<4 μW/nm)
was also demonstrated. The measured Vπ L product was
1.35 V.cm (reff ∼ 300 pm/V). However, waveguide losses
were once again very high, varying from ∼ 50 dB/cm up to
∼ 600 dB/cm depending on the process conditions. An in-
depth study of the origin of these losses was subsequently
carried out and revealed hydrogenation of the STO buffer
to be the primary culprit [9]. This study also showed that
annealing at relatively low temperature (300 ◦C–400 ◦C)
can reduce these losses to 6 dB/cm, a very promising
number for future applications. More recently, a device
working at high data rates was reported in the form of
a BTO-plasmonic modulator, integrated on a silicon plat-
form [10]. The plasmon waveguide ensures a very strong
overlap between the optical and electrical field, resulting in
a very compact device (10 μm). NRZ modulation at data
rates up to 72 Gb/s was demonstrated. Also integration in
the back end of line of a full silicon photonics platform
was shown [11], with excellent performance (25-Gb/s
operation, Vπ L = 0.3 V.cm, loss 5.8 dB/cm). It is important
to note that in order to optimize the EO response of
the integrated device, the relative orientation of the BTO
domains, the applied electric field, and the polarization
of the optical field are crucial [12]. In most cases, the

BTO layer is a-axis oriented (long tetragonal a-axis of the
crystallographic unit cell parallel to the silicon surface),
but it has been shown that through strain engineering
c-axis orientation can also be obtained [13]. Recently,
advanced in-plane piezoforce microscopy (PFM) was used
to investigate in-plane domain dynamics during modulator
operation [14].

Given the high cost of molecular beam epitaxy (MBE),
Kormondy et al. [15] also investigated alternative depo-
sition techniques such as pulsed laser deposition (PLD),
RF sputtering, and chemical vapor deposition (CVD). How-
ever, in each case, the Pockels coefficient of the result-
ing film was strongly degraded. An alternative approach
was proposed in [16], relying on the use of a thin
spin-coated lanthanide buffer layer on which the BTO
layer is deposited using a sol-gel method. The trans-
parent buffer layer can induce a preferential orientation
in the BTO layer. Later this method was extended to
other ferro–electric materials such as PZT, and an effective
Pockels coefficient reff ∼ 150 pm/V was demonstrated. In
[17], these layers were integrated on SiN ring resonators,
demonstrating a VπL ≈ 3.2 V . cm, low propagation losses
(α ≈ 1 dB/cm), bandwidths beyond 33 GHz, and data rates
of 40 Gb/s.

The above results show that the monolithic integra-
tion of BTO on silicon using MBE is very promising: an
effective Pockels coefficient considerably higher than that
of bulk LN was demonstrated by several groups and the
large waveguide losses originally observed seem now to
be understood and resolvable. In addition, this approach
is compatible with standard fabrication methods used
in CMOS foundries. That said, several important issues
remain to be resolved. The best values for the effective
Pockels coefficient were obtained under a large electri-
cal bias. Furthermore, in some cases, other effects (such
as charge accumulation) that might affect practical use
were observed. Finally, the effectiveness and stability of
poling the domains in the BTO layer is not yet well
studied. Consequently, thus far no practical device has
been demonstrated, leaving considerable room for further
research.

III. I N T E G R AT I O N W I T H O R G A N I C
E O M AT E R I A L S

Integration of organic materials with silicon waveguides
allows one to combine the tremendous processing advan-
tages of silicon photonics with the wealth of optical
properties that can be obtained by molecular engi-
neering of organic materials [18]–[20]. Silicon-organic
hybrid (SOH) devices have been demonstrated to provide
both second-order [21]–[25] and third-order [26]–[28]
optical nonlinearities, as well as optical gain [29]. For effi-
cient devices, it is imperative to maximize the interaction
of the optical silicon waveguide mode with the organic
cladding materials, for example by exploiting discontinu-
ous field enhancement in slot-waveguide structures [30],
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Fig. 2. Device concept of a SOH MZM. (a) Device layout: The

device relies on silicon photonic slot waveguides embedded into a

highly efficient organic EO cladding material. The light is split by a

multimode-interference coupler (MMI) into the two arms of the MZM.

(b) Device cross section: Each slot waveguide consists of a pair of

silicon photonic rails (typical width 200–240 nm, typical

height 220 nm), separated by a narrow slot (typical width

80–160 nm). The EO cladding material homogeneously fills the slot.

The signal is applied via a GSG coplanar transmission line, which is

connected to the rails of the slot waveguide by thin conductive

n-doped silicon slabs (typical height 70 nm) and aluminum vias. For

poling of the EO materials, a dc voltage Upol (green circuit) is

applied at an elevated temperature and removed after cooling.

A modulating drive voltage Ud applied to the signal electrode

induces an electric field in the slots (red arrows) that is anti-parallel

(parallel) in the left (right) arm of the MZM, thus leading to efficient

push–pull operation. Insets (1) and (2): Field distributions of the

modulating electrical RF mode and the optical quasi-TE mode,

respectively. The strong overlap of the RF mode and the optical

mode leads to highly efficient modulation. Figure adapted from [32].

also shown in Fig. 1c. The remainder of this section will
focus on SOH EO modulators, since those devices feature
the largest application potential.

SOH EO modulators have been shown to outperform
conventional all-silicon depletion-type pn-modulators both
in terms of speed [31]–[33] and energy efficiency [25],
[34], [35], [36]. The concept of an SOH Mach–Zehnder
modulator (MZM) is sketched in Fig. 2(a) and (b). Each
arm of the modulator consists of a silicon photonic slot
waveguide, comprising a pair of silicon rails. The doped
rails are separated by a narrow slot with typical widths
between 80 and 160 nm, depending on the resolution of
the underlying fabrication technology. The electrical RF
drive signal is applied via a ground–signal–ground (GSG)
transmission line and copropagates with the optical signal
along the device. The transmission line is connected to
the silicon rails of the slot waveguide by metal vias and
conductive n-doped silicon slabs (typical thickness h ≈
70 nm). The electrical RF voltage drops mainly across
the narrow slot, to which the light is highly confined,

thus leading to a strong overlap of the optical mode and
the modulating RF field [see insets of Fig. 2(b)]. This
represents a key advantage in comparison to conventional
organic EO modulators [37], [38]. The device is func-
tionalized by filling and coating the slot waveguide with
an EO organic cladding material. To activate the macro-
scopic χ(2)-nonlinearity, the microscopic molecular dipoles
in the organic material need to be aligned in a dedicated
one-time poling process. To this end, a poling voltage
Upol is applied across the (floating) ground electrodes at
an elevated temperature. After cooling down to ambient
temperature, the poling voltage can be removed, and the
molecule orientation remains in the aligned state [indi-
cated by green arrows in Fig. 2(b)]. The modulating field
(red arrows) induced by the RF drive voltage Ud is oriented
parallel to the chromophore alignment in one phase modu-
lator and antiparallel in the other phase modulator, thereby
resulting in efficient chirp-free push–pull operation of the
MZM. While fabrication of SOH modulators for research
experiments has relied on high-resolution electron-
beam lithography [39]–[41], more recent demon-
strations were based on deep-UV (DUV) lithography
processes on a commercial platform, which offers the
full portfolio of silicon photonic devices and SiGe
detectors [31], [32], [42].

Over the last few years, the remarkable performance of
SOH EO modulators has been demonstrated in a series
of experiments, exhibiting efficiencies with voltage-length
products down to Uπ L = 0.3 V.mm and energy consump-
tions of only a few fJ per bit [34]–[36]. Losses are typically
in the order of 2 dB/mm, currently dominated by scat-
tering losses in the slot waveguide. Improved lithography
processes might reduce these such that the doping in the
silicon rails will become relevant as still some light is
guided by the latter. The response of the EO cladding
materials is ultrafast and enables small-signal modulation
at frequencies beyond 100 GHz [42]. The viability of SOH
devices has been demonstrated both for data transmission
using intensity modulation and direct detection (IM/DD)
and for coherent communications. Regarding IM/DD trans-
mission, generation of 100-Gb/s ON–OFF keying (OOK)
data signals and 120-Gb/s pulse amplitude modulation-4
was shown [32], [33]. For coherent communications, gen-
eration of advanced modulation formats such as 16quadra-
ture amplitude modulation (QAM) was demonstrated at
record-low energy consumptions and with symbol rates of
up to 100 GBd transmitted on a single polarization [40],
[41], [33], [43]. The extraordinarily low drive voltage of
SOH modulators allows operation of these devices directly
from standard output ports of field-programmable gate
arrays (FPGAs), without external amplifiers or digital-
to-analog converters [42]. Such schemes can be used
even if higher order modulation formats such as 16QAM
are to be generated [42]. SOH EO modulators have
also proven useful for frequency comb generation [44]
or as ultracompact phase shifters for optical metrology
applications [45].
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Besides boosting the performance of SOH devices,
research efforts have also concentrated on improved
organic EO materials. Currently, in most material systems,
less than 15% of the EO activity inherent in the chro-
mophores is translated to macroscopic EO effects by pol-
ing. Improved theoretical methods [18]–[20] have led to
new classes of organic EO materials and allowed system-
atic improvements of the poling efficiency. This resulted
in macroscopic EO coefficients r33 in excess of 500 pm/V
in thin films [46], [48]–[51] and of up to 390 pm/V in
SOH devices [36]. Theoretical calculations also suggest
that new chromophores with significantly improved molec-
ular first-order hyperpolarizability are possible [46], which
would enable SOH modulators with π -voltages of less
than 100 mV.

Alongside the improvement of EO coefficients, the ther-
mal and photochemical stabilities of EO cladding mate-
rials are also the subject of ongoing investigation and
optimization [47]. Thermal stability is defined by lattice
hardness and usually quantified by the glass transition
temperature Tg of the material [48]. A glass transition
temperature of Tg = 150 ◦C is adequate to satisfy Telcordia
standards, and such temperatures may be achieved by
cross-linking chemistry, for which values of Tg = 200 ◦C
are routinely obtained [48]. A specific advantage of
organic EO materials is that a variety of parameters such
as EO activity, optical loss, dielectric permittivity, lattice
hardness, material compatibility, and ease of material
processing can be simultaneously optimized by system-
atic chemical modification of the material. SOH devices
will hence immediately benefit from future advances
in design and synthesis of functional organic optical
materials.

IV. I N T E G R AT I O N W I T H 2-D M AT E R I A L S

Graphene and other 2-D materials, such as transition
metal dichalcogenides, have attracted a lot of attention
in the electronics industry in recent years. One reason
for this interest is the fact that these 2-D allotropes and
compounds can possess electrical, mechanical, and opti-
cal properties which differ significantly from their 3-D
relatives [52], [53]. Furthermore, they can be stacked
in van der Waals heterostructures to extend their func-
tionality [54]. Consequently, 2-D materials represent an
exciting new platform that may be key to unlocking appli-
cations which are challenging (if not impossible) with
conventional technologies and traditional materials [55].
While the library of available 2-D materials continues to
grow [53], graphene is, at present, the most mature in
terms of production, processing, and integration with exist-
ing Si technology. Graphene’s appeal stems from its unique
combination of properties, including high carrier mobility
(room temperature μ > 100 000 cm2/V.s at low carrier
densities [56]) and the possibility of opening a bandgap
in this intrinsically zero-gap material [57], paving the
way for high-performance graphene-based FETs. However,

for photonics applications, including integrated Si-based
devices, it is graphene’s optical absorption that is the
most fascinating. This single atomic monolayer of carbon,
in the absence of significant doping, absorbs 2.3% of
normally incident light from the visible to mid-infrared
(mid-IR), a value which is solely determined by funda-
mental constants (= πα, where α = e2/h̄c ≈1/137 is the
fine structure constant) [59]. What is more, by increas-
ing the carrier concentration, for example by electrostatic
gating, this absorption can be suppressed [60], making
graphene highly appealing for use in both optical modula-
tors and detectors. Graphene also lends itself naturally to
Si waveguide integration, where the transferred graphene
sheet lies in the plane of the waveguiding components
(parallel to light propagation). If the waveguide mode
has an electric field component parallel to the graphene
surface, then optical absorption can occur, with a mag-
nitude which is then dependent upon the interaction
length.

In 2011, Liu et al. reported the first integration of
single-layer graphene (SLG) with a Si waveguide to
produce a broadband (1.35–1.6 μm) electroabsorption
modulator (EAM) [61]. Electrostatic gating was achieved
with an electrical bias applied between the graphene
and the underlying doped Si waveguide (separated by a
thin dielectric spacer), leading to a modulation depth of
up to 0.1 dB/μm (for quasi-TM polarized light, which
has a higher interaction with the graphene layer than
quasi-TE polarized light; for a detailed discussion, see
[63]). The same group went on to quickly demonstrate a
double-layer graphene (DLG) modulator [62], where two
graphene layers (again, separated by a dielectric spacer)
were placed over the Si waveguide. In this case, the
gate bias was applied between the graphene layers, each
sheet thereby gating the other, to achieve a modulation
depth of over 0.16 dB/μm. The larger modulation depth
per unit length in DLG modulators allows for smaller
devices—crucial when electrical bandwidth is limited by
the inverse of the device resistance–capacitance (RC) prod-
uct. It is worth noting that DLG modulators do not require
a doped waveguide, simplifying one aspect of fabrication
and removing another potential RC contribution, while
also making them compatible with other waveguide mate-
rials such as silicon nitride [63], [64].

Since their first demonstration, the performances of
SLG-Si and DLG-Si modulators have continued to improve.
Large modulation depths (>12 dB) have been achieved
in SLG-Si microring resonators [65], albeit sacrificing
the optically broadband aspect of nonresonant designs.
On the other hand, SLG-Si modulators employing straight
waveguides have been demonstrated with low driving
bias (2.5 V), bit rates of 10 Gb/s, static power con-
sumption < 1 × 10−4 mW and dynamic energy consump-
tion as low as 350 fJ/b [66]. Dalir et al. used DLG
beneath an amorphous Si waveguide to achieve broadband
(1500–1640 nm) athermal (25 ◦C–145 ◦C) modulation
at speeds of 35 GHz [67] (see Fig. 3), although with a
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Fig. 3. Double-layer graphene modulator results. (a) and (b)

Device schematic and calculated quasi-TM optical mode profile.

(b) Transmission versus applied bias between graphene layers.

Insets: Band profiles of graphene (blue and red for unoccupied and

occupied states, respectively). (d) High-frequency response showing

3-dB frequency of 35 GHz. Figure adapted from [67].

relatively low modulation efficiency of ∼0.1 dB/V (note
that in all graphene–Si modulators, a tradeoff typically
exists between modulation bias and speed; thinner gate
dielectrics reduce the required gate bias but increase
device capacitance). Many of the reported graphene–Si
EAM performance figures approach or surpass those of
state-of-the-art SiGe EAMs [66], although further work is
still required to combine them in a single device.

To date, graphene–Si EAMs have been the most inten-
sively studied. However, for some complex modulation
formats, phase modulators are necessary. These too can
be achieved with graphene as its electrostatically con-
trolled absorption can produce a large change in the
effective refractive index of a SLG-Si waveguide (on
the order of 10−3) [68]. Recently, this effect was uti-
lized in SLG-Si phase modulators to achieve modula-
tion depths and efficiencies of 35 dB and 0.28 dB/cm,
respectively [69].

As mentioned above, graphene is also a promis-
ing material for ultrafast integrated graphene–Si pho-
todetectors (GPDs). Its broadband absorption, extremely
short photo-generated carrier lifetimes and high mobility
(enabling fast carrier extraction) make it ideal for ultra-
fast operation. Pulsed laser-based measurement of GPD
response times indicate bandwidths of over 260 GHz [70].
A number of GPD structures have already been demon-
strated, relying on a variety of photodetection mechanisms
such as the bolometric, photovoltaic, photothermoelec-
tric, and photogating effects [71]–[76]. It must be noted
that multiple effects may occur simultaneously in devices
or become dominant under varying operating conditions
[77]. The underlying physics behind each of these effects
is discussed in depth in a recent comprehensive GPD

review [77]. In terms of device performance, the last
few years have seen huge advances. Responsivity val-
ues of tens of mA/W at zero bias and up to hundreds
of mA/W under applied bias have been reported [74],
along with a steady increase in operating speeds, now
reaching >76 GHz [76]. One common drawback of the
lateral metal–graphene–metal architecture employed in
many GPD structures is a high dark current under biased
operation (necessary for high responsivity). An alternative
architecture which avoids this issue is a metal–graphene–Si
plasmonic Schottky photodetector [78]. Goykhman et al.
showed that integration of graphene greatly enhanced
Schottky photodetector performance, giving an internal
quantum efficiency of 7% and good responsivity (85 mA/W
at 1 V reverse bias) with minimal dark current. Under
higher bias avalanche multiplication gives even higher
responsivities (∼0.4 A/W at 3 V reverse bias).

The performance of graphene–Si modulators and pho-
todetectors is expected to improve as 2-D material process-
ing techniques continue to mature. Many of the results
to date have relied upon small graphene flakes produced
by mechanical exfoliation from graphite crystals, manually
transferred to devices. Pristine (high μ) graphene is pro-
duced in this way, but submillimeter flake dimensions—
and the time-consuming nature of the process—limit the
scalability of this approach. The most promising alternative
is CVD-grown wafer scale monolayer graphene (typically
grown on metal substrates and transferred to the tar-
get substrate using a polymer support [55]). Although
this graphene is of lower quality than exfoliated mater-
ial, recent high-speed GPD devices have been processed
in a 6-inch semiconductor pilot line using large area
CVD-grown graphene [76] (see Fig. 4). Single-crystal

Fig. 4. Example of a typical lateral metal–graphene–metal

photodetector on a Si waveguide. (a) Device schematics. (b) Devices

were processed using wafer scale CVD-grown graphene,

a significant technological milestone. (c) GPD frequency response of

a typical GPD at various bias voltages. Figure adapted from [76].

Vol. 106, No. 12, December 2018 | PROCEEDINGS OF THE IEEE 2263



Marshall et al.: Heterogeneous Integration on Silicon Photonics

CVD-grown graphene [79], possibly in combination with
graphene transfer printing techniques [80], may lead to
even higher μ and therefore device performance (for
example, higher modulation efficiency and lower inser-
tion loss in graphene–Si EAMs [63]). High contact resis-
tances between graphene and metal, which limited early
device operating speeds [61], can be overcome by using
1-D edge contacts with CMOS compatible metals such
as Ni (< 100 �.μm [81]). Finally, encapsulation of
graphene between thin layers of exfoliated hexagonal
boron nitride (hBN) is known to dramatically improve
graphene quality (giving flatter, higher mobility material,
which is also protected from ambient moisture; a source
of unintentional graphene doping). Ongoing advances in
wafer scale CVD hBN growth are, therefore, expected to
be hugely beneficial to graphene device performance. This
nicely reinforces an important point when looking ahead to
the future of heterogeneous integration of 2-D materials:
Although the use of individual 2-D materials (such as
graphene) can and will lead to novel, high-performance
devices, even greater accomplishments may be achieved
when 2-D materials are combined to reveal their full
potential.

V. I I I–V E P I TA X Y

Thus far, the use of III–V semiconductors provides the
only viable path toward realizing practical laser sources for
applications in integrated photonics. Wafer bonding tech-
niques for integrating direct bandgap III–V semiconductors
on silicon substrates have matured considerably over the
last decade and now provide a viable route toward large
scale integration of efficient lasers on a silicon photonics
platform. On the other hand, monolithic integration of
III–V semiconductors on silicon using epitaxial techniques
remains a very attractive approach to be pursued, as it
would provide the ultimate integration density and the
advantages of wafer scale integration. However, the large
lattice constant mismatch between silicon and relevant
III–V materials such as GaAs (4% mismatch) and InP (8%),
and the formation of antiphase domains (APDs) at the
polar/nonpolar III–V/silicon interface form a big hurdle to
achieving this goal. Nevertheless, very substantial progress
has been made in the last decade, making commercial
deployment of such technology in the coming years a
distinct possibility.

Two main approaches can be discerned. In the first of
these, the III–V is grown over the full wafer, typically
using a few-micrometer-thick metamorphic buffer layer
optimized to suppress threading dislocations inside the
device layer. Until now it is this technology which has
been investigated most intensively and several groups have
demonstrated electrically injected lasers operating at room
temperature. However, at present, this approach does not
offer a straightforward path toward integration with stan-
dard silicon photonics devices. The second main approach
focuses on the selective area growth of III–V materials

(b)(a)

QD

TD

TD

QD

100 nm

105

TD
 d

en
si

ty
 (c

m
-2
) (

lo
g)

Position
1 2 3 4 5 6

108

107

109

1010

106

1

2

3

4

5

6

500 nm

0

2

4

6

8

10

12

14

16
18 °C
28 °C
38 °C
48 °C
58 °C
64 °C
70 °C
75 °CO

ut
pu

t p
ow

er
 (m

W
)

Current density (A cm-2)

c.w.

1000 200 300 400 500 600 700

(d)(c)

Fig. 5. InAs/GaAs QD laser on silicon. (a) Schematic and

brightfield TEM image describing interaction between QDs and

threading dislocations. (b) Brightfield scanning TEM image of defect

filtering layers. (c) Dislocation density measured at positions

indicated in (b). (d) Light output power versus current at various

heatsink temperatures. Figure adapted from [85].

on prepatterned silicon substrates. This provides a clearer
path toward integration with waveguides, but thus far only
optically injected laser devices have been reported. Below
we will discuss the main results obtained using these two
approaches.

For realizing lasers operating at a wavelength of 1.3 μm,
self-assembled InAs quantum dot (QD) layers show partic-
ular promise. III–V QD lasers have been shown to be less
sensitive to nonradiative defects due to carrier localization
within the individual dots. Fig. 5(a) shows a schematic and
an SEM picture of a threading dislocation passing through
a QD-based device layer (from [85]). Following the first
demonstration of lasing at 1.3 μm under pulsed electrical
injection [82] most efforts have focused on optimizing
the buffer layer, aiming to suppress threading dislocations
and APD-formation [83]–[85]. Using a Ge/Si substrate,
Liu et al. [84] demonstrated lasing with a low threshold
current (16 mA), high output power (176 mW), and high
continuous-wave (CW) operating temperature (119 ◦C).
Chen et al. [85] used a strained-layer superlattice (SLS)
based on periodic In0.18Ga0.82As/GaAs layers as a defect
filter to reduce the defect density to values below 106 cm−2

[see Fig. 5(b) and (c)]. This allowed the demonstration
of a laser operating with a threshold as low as 62 A/cm2

(12.5 A/cm2 per QD layer) up to temperatures of
75 ◦C [Fig. 5(d)]. The lasers were also operated (in CW)
for up to 3100 h.

While very impressive, all of the above results
were obtained with off-cut Si substrates (4◦–6◦ toward
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(b)(a)

Fig. 6. InAs QD laser structure grown on a GaP/Si substrate.

(a) Cross-sectional schematic. (b) Single-side CW LIV curves at 20 ◦C
from a 2600 µm × 8 µm laser with as-cleaved facets. The inset shows

temperature-dependent single-side CW LI curves from

20 ◦C–80 ◦C. Figure adapted from [90].

the [110] plane) in order to avoid the formation of
antiphase domains. Unfortunately, such substrates are
not compatible with standard CMOS processing. Recent
research has therefore focused on exact (001) silicon sub-
strates. In one approach, KOH is used to define v-shaped
grooves along the [110] direction in the Si substrate,
exposing the {111} surfaces that allow the growth of
APD-free III–V layers. This allowed the demonstration
optically pumped and later electrically pumped microdisk
lasers [87]. In [86], a high-temperature Si substrate prepa-
ration step was used to promote the growth of an APD-free
GaAs layer. However, the most successful approach to date
relies on the use of a GaP/Si buffer layer [89], [90].
The GaP layer is almost lattice matched to silicon and
terminates APDs within ∼40 nm of the interface. Using
GaP/Si (commercially obtained from NAsPIII/V GmbH
and grown by MOCVD), Jung et al. [90] developed an
optimized GaAs-buffer layer (grown by MBE) containing
strained InGaAs dislocation filter layers to reduce the
defect density to a few 106 cm−2. A QD-based laser
stack containing four QD layers was grown on top of
this buffer [full stack shown in Fig. 6(a)]. A record low
threshold current for a III–V-on-silicon laser of 6.7 mA
(Jth = 132 A/cm2 or 36 A/cm2 per QD layer), a wall plug
efficiency of 38%, operation up to 80 ◦C and output powers
above 100 mW were obtained [see Fig. 6(b)]. Follow-up
reliability tests at 35 ◦C for 1500 h showed an extrapolated
mean-time-to-failure of more than one million hours [91],
a significant step forward, attributed to the low defect
density.

Despite this enormous progress, reaching the important
1.55-μm wavelength is very challenging when relying on
InAs-based QDs as the gain medium. A possible solution is
to use Sb-based materials. It has been shown that using the
correct growth conditions during MBE of III–Sb materials
on silicon the high strain can be released through the
formation of pure 90◦ misfit dislocations arranged in a
2-D network at the Si/III–Sb interface [92]. This leads to
a very low threading-defect density without the need of a

thick metamorphic buffer. Exploiting this effect, CW lasing
at 1.55 μm was demonstrated [93].

As previously mentioned, the second approach to over-
come the large lattice mismatch between III–V semicon-
ductors and silicon relies on selective area growth in
narrow trenches patterned on silicon (001) substrates. The
trenches are defined using a shallow trench isolation (STI)
process—a standard process in CMOS foundries—and then
treated with a wet etch to expose the {111} faces of
the silicon substrate. In initial work, bulk InP mater-
ial was grown in 500-nm-wide trenches [94]. The InP
growth conditions (MOCVD) were optimized such that
the lattice mismatch toward Si was accommodated via
partial dislocations in a highly twinned region parallel
to the {111} facets. This section of microtwins is only
a few tens of nanometers thick at the Si/InP interface.
Following definition of a DFB grating in the top surface
of the InP ridge, the silicon substrate was removed to
avoid leakage of the optical field. Single-mode lasing at a
wavelength of ∼900 nm was obtained under pulsed optical
pumping. In later work, a 50-nm InGaAs gain layer was
grown on top of the InP material (after planarization using
CMP); see Fig. 7. This allowed shifting of the lasing wave-
length to 1.3 μm and a reduction of the lasing threshold
to ±8 mW.

In more recent work, GaAs nanoridges where grown,
in this case starting from much narrower trenches
(60–120 nm) [96]. Again, the v-shaped bottom of the
trench suppresses APD formation, while the high aspect
ratio of the trenches suppresses threading dislocations by
trapping them at the sidewalls [see Fig. 8(a)]. This results
in high crystalline quality of the material growing out of
the trenches and no threading locations are observed in
the region above the substrate. For more details on the
epitaxy process, see [97]. Changing the growth condi-
tions allows one to control the ratio of the vertical and
horizontal growth speed, thereby controlling the shape
of the resulting nanoridge. In this way, the nanoridge

(a) (b)

(c)

Fig. 7. (a) Schematic plot of the monolithically integrated

InGaAs/InP DFB lasers on silicon. The silicon pedestal (and the

silicon oxide hard mask) under the near end has been removed for a

better view of the III–IV waveguide. (b) STEM image of a typical

cross section of the grown InGaAs/InP/Si waveguide. (c) Detail of the

InGaAs/InP interface. Reproduced from [95].
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(a)

(c)

(b)

(d)

Fig. 8. GaAs nanoridge laser. (a) HAADF–STEM images. The upper

one shows zoomed-in QWs, barriers and the passivation layer while

the lower high-resolution (HR) TEM shows that defects are trapped

in the V-shaped trench. (b) The guided TE-like mode calculated by

FDE simulation. (c) Room-temperature spectra of a DFB laser under

different pump powers (100-nm trench width, 170-nm grating

period, and 340-nm second-order grating coupler period). (d) L–L

curve on logarithmic and linear (insert) scale of the measured DFB

nanoridge laser. Black circles and solid line represent the

experimental data the rate equations fit, respectively. Figure

adapted from [96].

waveguide can be designed such that leakage of the optical
mode toward the substrate is avoided and high optical
confinement in the InGaAs quantum well gain region is
obtained [see Fig. 8(b)]. An InGaP capping layer was used
to passivate the GaAs surface. Single-mode lasing under
pulsed optical pumping with a threshold of 37 mW was
obtained, showing the high quality of the material [see
Fig. 8(c) and (d)].

In a rather different approach, the so-called template-
assisted selective epitaxy (TASE) growth method, the III–V

(a) (b)

Fig. 9. (a) Schematic and SEM images of monolithically integrated

GaAs microdisks on Si. (b) Power-dependent PL spectra measured at

room temperature. The insets show the normalized spectra, L–L

curve, and optical image of an excited microdisk. The lasing

threshold is approximately 15 pJ/pulse (reproduced from [98]).

material is grown from a small silicon seed in a SiO2

cavity. In the example shown in Fig. 9(a), the gain material
is grown in 5 μm × 5 μm, hollow SiO2 growth tem-
plates [98]. SEM images reveal GaAs microdisks with
diameters of approximately 3.1 μm and heights of 390 nm.
Fig. 9(b) shows lasing under room-temperature pulsed
optical pumping of these devices.

The approaches based on selective area growth have the
distinct advantage that, in principle, they can be integrated
in a standard CMOS process flow (actually, in several
cases, they are derived from processes developed for future
CMOS nodes). While integration with waveguides seems
rather straightforward, the integration of the electrical
contacts (required for electrical injection) without intro-
ducing excessive absorption losses is challenging. As such,
at this point, it is not clear which approach will dominate
the field in the future.

VI. C O N C L U S I O N

In this paper, we reviewed the recent progress and status
of the integration of novel materials, providing new or
improved functionality, on the silicon photonics platform.
Tremendous progress has been made in the field over the
last few years. Quantum dot lasers, epitaxially grown on
standard (001) wafers, now show extrapolated mean-time-
to-failure of more than one million hours [91]. A bitrate
of 72 Gb/s was demonstrated in hybrid plasmonic-BTO
modulators which were only 10 μm long [10]. SOH mod-
ulators exploiting new electro–optically active polymers
now outperform standard silicon modulators relying on
the carrier dispersion effect on all performance parameters
[25]. On the other hand, graphene offers modulation and
ultrafast detectors in a single platform, possibly leading to
considerable cost savings. Nevertheless, there is still need
for concerted research and development efforts before
these new materials are offered in a standard platform.
Thus far no integration of III–V lasers epitaxially grown
on silicon with actual silicon waveguides has been shown.
While the hybrid BTO-plasmonic modulator is proof of
the materials intrinsic properties, successful demonstra-
tion of ferroelectric materials used in a more standard
Mach–Zehnder modulator configuration is essential for
their broader uptake. Processing of 2-D materials on 200-
and 300-mm scales is under development but still a lot of
progress is needed, especially with respect to the transfer
of graphene from its growth substrate to the device wafer.
And also for the silicon-organic hybrids a viable way to
integrate these modulators in an industrial platform needs
to be demonstrated. All of this will still require consider-
able resources. Fortunately, we can rely on parallel efforts
carried out by the electronics industry, pursuing integra-
tion of often identical or at least very similar materials into
next-generation electronic chips. As a consequence, it is
very likely that these efforts will be successful and that
several of these materials will indeed be taken up by the
photonics industry in a foreseeable timeframe. �
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