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Abstract—Molecular electronics is envisioned as a promising 

candidate for the nanoelectronics of the future. More than a 
possible answer to ultimate miniaturization problem in 
nanoelectronics, molecular electronics is foreseen as a possible 
way to assemble a large numbers of nanoscale objects (molecules, 
nanoparticules, nanotubes and nanowires) to form new devices 
and circuit architectures. It is also an interesting approach to 
significantly reduce the fabrication costs, as well as the 
energetical costs of computation, compared to usual 
semiconductor technologies. Moreover, molecular electronics is a 
field with a large spectrum of investigations: from quantum 
objects for testing new paradigms, to hybrid molecular-silicon 
CMOS devices. However, problems remain to be solved (e.g. a 
better control of the molecule-electrode interfaces, improvements 
of the reproducibility and reliability, etc…). 
 

Index Terms—molecular electronics, monolayer, organic 
molecules, self-assembly 
 

I. INTRODUCTION 
wo works paved the foundation of the molecular-scale 
electronics field. In 1971, Mann and Kuhn were the first 

to demonstrate tunneling transport through a monolayer of 
aliphatic chains [1]. In 1974, Aviram and Ratner theoretically 
proposed the concept of a molecular rectifying diode where an 
acceptor-bridge-donor (A-b-D) molecule can play the same 
role as a semiconductor p-n junction [2]. Since that, 
molecular-scale electronics have attracted a growing interest, 
both for basic science at the nanoscale and for possible 
applications in nano-electronics. In the first case, molecules 
are quantum object by nature and their properties can be 
tailored by chemistry opening avenues for new experiments. 
In the second case, molecule-based devices are envisioned to 
complement silicon devices by providing new functions or 
already existing functions at a simpler process level and at a 
lower cost by virtue of their self-organization capabilities, 
moreover, they are not bound to von Neuman architecture and 
this may open the way to other architectural paradigms. 

Molecular electronics, i.e. the information processing at the 
molecular-scale, becomes more and more investigated and 
envisioned as a promising candidate for the nanoelectronics of 
the future. One definition is "information processing using 
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photo-, electro-, iono-, magneto-, thermo-, mechanico or 
chemio-active effects at the scale of structurally and 
functionally organized molecular architectures" (adapted from 
[3]). In the following, we will review recent results about 
nano-scale devices based on organic molecules with size 
ranging from a single molecule to a monolayer. However, 
problems and limitations remains whose are also discussed. 

The structure of the paper is as follows. Section II briefly 
describes the chemical approaches used to manufacture 
molecular devices. Section III discusses technological tools 
used to electrically contact the molecule from the level of a 
single molecule to a monolayer. Serious challenges for 
molecular devices remain due to the extreme sensitivity of the 
device characteristics to parameters such as the 
molecule/electrode contacts, the strong molecule length 
attenuation of the electron transport, for instance. Recent 
advances on these challenges are presented in Section IV. In 
section V, we discuss the recent progress towards functional 
molecular devices (e.g. memory, switch,…). It is clear that 
molecular electronics should be considered as a long term 
research goal, and that many (if not all) performances of 
molecular devices cannot compare with more mature CMOS 
and other less exploratory technologies. Section V gives some 
highlights on recent results on molecular devices and 
prototypal chips and discusses some comparisons with other 
technologies when it makes sense. 

II. CHEMISTRY AND SELF-ASSEMBLY 
Making molecular-scale devices requires manipulating and 

arranging organic molecules on metal electrodes and 
semiconducting substrates. Organic monolayers and sub-
monolayers (down to single molecules) are usually deposited 
on the electrodes and solid substrates by chemical reactions in 
solution or in gas phase using molecules of interest bearing a 
functional moiety at the ends which is chemically reactive to 
the considered solid surface (for instance, thiol group on metal 
surfaces such as Au, silane group on oxidized surfaces, etc…) 
[4]. Many reports in the literature concern self-assembled 
monoayers (SAMs) of thiol terminated molecules 
chemisorbed on gold surfaces, and to a less extend, molecular-
scale devices based on SAMs chemisorbed on 
semiconductors, especially silicon. Silicon is the most widely 
used semiconductor in microelectronics. The capability to 
modify its surface properties by the chemical grafting of a 
broad family or organic molecules (e.g. modifying the surface 
potential [5-7]) is the starting point for making almost any 
tailored surfaces useful for new and improved silicon-based 
devices. Between the end of the silicon road-map and the 
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envisioned advent of fully molecular-scale electronics, there 
may be a role played by such hybrid-electronic devices [8, 9]. 
The use of thiol-based SAMs on gold in molecular-scale 
electronics is supported by a wide range of experimental 
results on their growth, structural and electrical properties (see 
a review by F. Schreiber [10]). However, SAMs on silicon and 
silicon dioxide surfaces were less studied and were more 
difficult to control.  This has resulted in an irreproducible 
quality of these SAMs with large time-to-time and lab-to-lab 
variations. This feature may explain the smaller number of 
attempts to use these SAMs in molecular-scale electronics 
than for the thiol/gold system. Since the first chemisorption of 
alkyltrichlorosilane molecules from solution on a solid 
substrate (mainly oxidized silicon) introduced by Bigelow, 
Pickett and Zisman [11] and later developed by Maoz and 
Sagiv [12], further detailed studies [13-16] have lead to a 
better understanding of the basic chemical and 
thermodynamical mechanisms of this self-assembly process. 
For a review on these processes, see Refs. [4, 10]. Moreover, 
grafting on Si offers more stable devices as compared to 
thiolated molecules on Au. Due to the labile Au-S bond, 
SAMs on Au often display current level fluctuations (i.e. 
random telegraph noise) due to sporadic configurational 
changes of the Au-S bond [17-19]. This effect is suppressed 
for SAMs on Si, because the Si-C or Si-O bonds have a larger 
binding energy [20] and it is only observed for single 
molecule with more free space around it [21]. 

Langmuir-Blodgett (LB) monolayers (see a review in a text-
book [4]) have also been used in the fabrication of molecular-
based devices [22-33], but they are less robust (mechanically 
and thermally) than SAMs, and chemisorption processes are 
now more systematically used, both for making monolayers 
and to attach a single molecule between nano-electrodes. 
Sublimation of molecules (depending on molecules) can also 
be used in a sub-monolayer regime especially for UHV-STM 
studies. 

III. CONTACTING THE MOLECULES 

A. At the "laboratory" level 
Scanning tunneling microscope (STM) and conducting-

atomic force microscope (C-AFM) are widely used at this 
stage to measure the electronic properties of a very small 
number of molecules (few tens down to a single molecule). 
With STM, the electrical "contact" occurs through the air-gap 
between the molecule or the molecular monolayer and the 
STM tip (or vacuum in case of an UHV-STM). This leads to a 
difficult estimate of the true conductance of the molecules [34, 
35]. A significant improvement has been demonstrated by Xu 
and Tao [36] to measure the conductance of a single molecule 
by repeatedly forming few thousands of Au-molecule-Au 
junctions. This technique is a STM-based break junction 
(STM-BJ), in which molecular junctions are repeatedly 
formed by moving back and forth the STM tip into and out of 
contact with a gold surface in a solution containing the 
molecules of interest. A few molecules, bearing two chemical 
groups at their ends, can bridge the nano-gap formed when 

moving back the tip from the surface (Fig. 1). Due to the large 
number of measurements, this technique provides statistical 
analysis of the conductance data. Using C-AFM as the upper 
electrode [37-39], the metal-coated tip is gently brought into a 
mechanical contact with the monolayer surface (this is 
monitored by the feed-back loop of the AFM apparatus) while 
an external circuit is used to measure the current-voltage 
curves. The critical point of C-AFM experiments is certainly 
the very sensitive control of the tip load to avoid excessive 
pressure on the molecules [40] (which may modify the 
molecule conformation and thus its electronic transport 
properties, or even can pierce the monolayer). On the other 
hand, the capability to apply a controlled mechanical pressure 
on a molecule to change its conformation is a powerful tool to 
study the relationship between conformation and electronic 
transport [41]. If working on an organic monolayer, an easy 
technique for a quick assessment of the electrical properties 
consists in contacting it by a mercury drop [1, 42-45] or a 
GaIn eutectic drop [46]. 

 
Fig. 1. Typical scheme of the STM break junction with the molecule 
arrangement while retracting the STM tip [36]. a) Metallic point contact. b) 
molecule bridging the electrodes. c) no molecule. d) Scanning electron 
microscope image of a typical mechanically breaking junction [47]. e) Layout 
of the technique. f) Scheme of the molecule arrangements in the break 
junction. 

 
Another approach is to use a mechanically breaking 

junction (MBJ), bridged by few dithiol-terminated molecules 
[47-51]. A small and suspended metallic nanowire (typically 
10 x 10 nm) is fabricated by e-beam lithography on a bendable 
substrate. A drop of solvent with the molecules of interest is 
placed on the nanowire, which is elongated and broken by 
bending the substrate with a piezo system. When the nanowire 
breaks, a few molecules can chemically bridge the nano-gap 
and they are simultaneously electrically measured (Fig. 1). 
Weber et al. reported some improvements allowing stable 
MBJ measurements at low temperature [52, 53]. Finally, we 
mention that Au nanoparticles (NP) can be used to connect a 
few molecules, these NP (tens of nm in diameter) being 
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themselves deposited between electrodes or contacted with a 
STM [54-56]. A very recent review on how to electrically 
connect molecules and organic monolayers is given by Haick 
and Cahen [57]. However, it is clear that connecting molecules 
with these “laboratory” techniques is not obvious, and in some 
cases remains at the level of a “tour de force”. 
 

B. At the "device-like" level 
If we envision device applications, the above techniques are 

no longer suitable, and the deposition of a metal electrode on 
top of an organic monolayer, without a degradation of the 
monolayer and without the creation of metallic shorts, is a 
critical issue. Several studies [58-63] have analyzed (by X-ray 
photoelectron spectroscopy, infra-red spectroscopy,…) the 
interaction (bond insertion, complexation…) between the 
metal atoms and the molecules. When the metal atoms are 
strongly reactive with the end-groups of the molecules (e.g. Al 
with COOH or OH groups, Ti with COOCH3, OH or CN 
groups….) [58-63], a chemical reaction occurs forming a 
molecular overlayer on top of the monolayer. This overlayer 
made of organometallic complexes or metal oxides may 
perturb the electronic coupling between the metal and the 
molecule, leading, for instance, to partial or total Fermi-level 
pinning at the interface [64]. In some cases, if the metal 
chemically reacts with the end-group of the molecule (e.g. Au 
on thiol-terminated molecules), this overlayer may further 
prevent the diffusion of metal atoms into the organic 
monolayer [65]. The metal/organic interface interactions (e.g. 
interface dipole, charge transfer,…) are very critical and they 
have strong impacts on the electrical properties of the 
molecular devices. Some reviews are given in Refs. [66, 67]. 
If the metal atoms are not too reactive (e.g. Al with CH3 or 
OCH3…) [58-63], they can penetrate into the organic 
monolayer, diffusing to the bottom interface where they can 
eventually form an adlayer between this electrode and the 
monolayer (in addition to metallic filamentary short circuits). 
In a practical way for device application using organic 
monolayers, the metal evaporation is generally performed onto 
a cooled substrate (~100 K). It is also possible to intercalate 
blocking baffles on the direct path between the crucible and 
the sample, or/and to introduce a small residual pressure of 
inert gas in the vacuum chamber of the evaporator [27, 28, 
68]. These techniques allow reducing the energy of the metal 
atoms arriving on the monolayer surface, thus reducing the 
damages. 

To avoid these problems, alternative and soft metal 
deposition techniques were developed. One called 
nanotransfer printing (nTP), has been described and 
demonstrated [69]. Nanotransfer printing is based on soft 
lithographic techniques used to print patterns with nanometric 
resolution on solid substrates [70]. The principle is briefly 
described as follows (Fig. 2). Gold electrodes are deposited by 
evaporation onto an elastomeric stamp and then transferred by 
mechanical contact onto a thiol-functionalized SAM. Transfer 
of gold is based on the affinity of this metal for thiol function 
–SH forming a chemical bond Au–S. Loo et al. [69] have used 

the nTP technique to deposit gold electrodes on alkane dithiol 
molecules self-assembled on gold or GaAs substrates. 
Nanotransfer printing of gold electrodes was also deposited 
onto oxidized silicon surface covered by a monolayer of thiol-
terminated alkylsilane molecule [71, 72]. Soft depositions of 
pre-formed metal electrodes, e.g. lift-off float-on (LOFO) 
[73], have also been developed. Recently, a very elegant 
solution to avoid the formation metallic filamentary paths 
within the SAM has been proposed in which a thin conducting 
polymer layer (PEDOT:PSS, poly-ethylene-dioxythiophene) 
stabilized with poly-styrene-sulphonic acid) has been 
intercalated as a buffer layer between the organic monolayer 
and the evaporated metal electrode [74]. With this technique, 
it is possible to manufacture molecular junctions with a large 
area (diameter up to 100 µm), a very high yield (> 95%), and 
with an excellent stability and reproducibility. This simple 
approach is potentially low-cost and suitable for practical 
molecular electronics. It was also reported to use metallic 
electrode made of a 2D network of carbon nanotubes [75]. 

 

 
Fig. 2. Principle for deposition of gold electrodes on a thiolated SAM on 
silicon by nTP method. (a) Bring gold-coated patterned stamp into contact 
with the SH-functionalized SAM. (b) Remove the stamp from the substrate. 
Gold electrodes are transferred on the substrate [69, 71]. 

 
A transistor structure was also investigated (3-terminal 

device) using a bottom gate transistor configuration. The 
difficulties are (i) to make these electrodes with a nanometer-
scale separation; (ii) to deposit molecules into these nano-
gaps. Alternatively, if the monolayer is deposited first onto a 
suitable substrate, it would be very hard to pattern, with a 
nanometer-scale resolution, the electrodes on top of it. The 
monolayers have to withstand, without damage, a complete 
electron-beam patterning process for instance. This has been 
proved possible for SAMs of alkyl chains [76, 77] and alkyl 
chain functionalized by π-conjugated oligomers [78] used in 
nano-scale (15 – 100 nm) devices. However, recently 
developed soft-lithographies (micro-imprint contact…) can be 
used to pattern organic monolayers or to pattern electrodes on 
these monolayers [70]. Nowadays, 30 nm width nano-gaps are 
routinely fabricated by e-beam lithography and 5 nm width 
nano-gaps are attainable with a lower yield (a few tens %) [79-
81]. However, these widths are still too large compared to the 
typical molecule length of 1-3 nm. The smallest nanogaps ever 
fabricated have a width of about 1 nm. A metal nanowire is e-
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beam fabricated and a small gap is created by electromigration 
when a sufficiently high current density is passing through the 
nanowire [82]. These gold nanogaps were then filled with few 
molecules (bearing a thiol group at each ends) and Coulomb 
blockade and Kondo effects were observed in these molecular 
devices [83, 84]. A second approach is to start by making two 
electrodes spaced by about 50-60 nm, then to gradually fill the 
gap by electrodeposition until a gap of few nanometers has 
been reached [85-87]. Recently, carbone nanotubes (CNT) 
have been used as electrodes separated by a nano-gap (<10 
nm) [88]. The nano-gap is obtain by a precise oxidation 
cutting of the CNT, and the two facing CNT ends which are 
now terminated by carboxylic acids, are covalently bridged by 
molecules of adapted length derivatized with amine groups at 
the two ends (Fig. 3). It is also possible to functionalize the 
molecule backbone for further chemical reactions allowing the 
electrical detection of molecular and biological reactions at the 
molecule-scale [88, 89].   

 

 
Fig. 3. A) SEM image of a CNT before cutting and bridging with a molecule. 
B) Scheme of the CNT-molecule-CNT junction [88, 89]. 

IV. THE MOLECULE/ELECTRODE CONTACT CHALLENGE 
As discussed above, it is clear that the difficulties of making 

and controlling electronic connections to molecules are the 
great challenge. It has long been recognized that the electrical 
conductance of a molecular junction (i.e. a molecule or 
monolayer sandwiched between two electrodes, whether they 
are metallic or semiconducting) is strongly influenced by the 
chemical nature and atomic configuration of the 
molecule/electrode contact. Small changes in the contact 
geometry can dramatically change the conductance through 
the molecule [90]. For instance, theoretical calculations have 
predicted that selenium (Se) and tellurium (Te) are better links 
than sulfur (S) for the electronic transport through molecular 
junctions [91, 92]. This was demonstrated in a series of 
experiments using SAMs made of bisthiol- and biselenol-
terthiophene molecules (a π-conjugated molecule prototype of 
a "molecular wire") inserted in a dodecanethiol matrix 
(forming an electrically insulating matrix because alkane 
molecules have a large HOMO-LUMO gap) [93, 94]. Further 
experiments have shown that: i) amine group (NH2) give 

better controlled conductance variability than thiol (SH) and 
isonitrile (CN) [95] and ii) the interface contact resistance is 
lower for amine than for thiol [96]. For further reading on the 
physics of molecule/electrode contacts, on the influence of the 
contact on molecular energetics and how it impacts electron 
transport phenomenon in molecular devices, the interested 
reader can found more in recent review papers [97-99]. 

 

 
Fig. 4. Histogram of the conductance of a Pt/benzene/Pt junction and 
comparison with a Pt-Pt point contact [100].  
 

However, this chemical link acts also as a tunnel barrier for 
electron transfer between the electrode and the molecule 
[101]. As a consequence, the conductance of a molecular 
junction is usually small (typically below 10-2 G0, where 
G0=2e2/h=77.5µS is the conductance quantum)[49, 51, 95, 
102-104]. Consequently, molecular electronics is a “high 
impedance” electronics which implies a large power 
dissipation if we envision a high-density of molecular devices 
in a same chip (related to the small size of molecules).   
Recently, a significant progress was made towards “low 
impedance” molecular electronics. The group of van 
Ruitenbeek reported on a highly conductive molecular 
junction, around G0, obtained with a direct binding of small 
organic molecules (benzene, acetylene, CO, CO2, H2, H20) to 
metallic electrodes (Pt) without the use of anchoring groups 
(Fig. 4) [100, 105]. This result has been ascribed to the good 
reactivity of the Pt, forming direct bonds with the molecule. 
Although all these molecular junctions have about the same 
conductance near G0, the contribution of the molecule in the 
transport properties of the junction has been also evidenced by 
the observation of different vibrational signatures in the 
inelastic electron tunneling transport [105]. 

Further experiments are now required to determine to which 
extent the conclusions drawn for a peculiar molecule and 
metal electrode are valid for any other ones. With all these 
data on hands, one would optimize the design of future 
devices for molecular electronics. 

 
Another issue is the strong dependence of the conductance 

of a molecular junction with the length of the molecule. Due 
to relatively large energy offset at the molecule/electrode 
interface (see above), the conductance is mainly dominated by 
tunneling and the conductance follows a classical exp(-βd) 
law (d is the molecular length) with β ≈ 1 Å-1 for saturated 
molecules (alkyl chain) and ≈ 0.5-0.6 Å-1 for π-conjugated 
molecules.[102] It means that electron transport is limited to 
few nm in these systems. This limitation has been recently 
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overcome. By introducing, step-by-step, metallic ions (Co(II), 
Fe(II)) between π-conjugated oligomers (terpyridine-based), 
the group of M.A. Rampi and coworkers have built "long" 
molecular wires (up to 40 nm) with a very low attenuation 
factor (β ≈ 0.001 Å-1) (Fig. 5) [106]. This result is due to the 
introduction of energy levels, related to the metal ions, in 
close resonance with the Fermi energy of the metal electrodes. 
While this approach is not completely new (see a review in 
[107]), this result opens interesting perspectives for the 
development of molecular wires. 

 
Fig. 5. Schematic representation of the synthesis of the molecular wires, and 
length dependence of the current for the molecular wires with the Co and Fe 
ions. Comparison with classical π-conjugated molecules (polyphenyl chains) 
[106]. 

 
Compared to metal nanowires, the resistance of the above 

mentioned molecular wire remains large (MΩ range), while 
taken a typical resistivity of 10 µΩ.cm [108], metallic 
nanowires of the same size have resistances in the range of 
kΩ. This feature is probably due to a lack of molecule-contact 
optimization as discussed above. Other groups have developed 
different chemical approaches (e.g. based on oligoyne 
derivatives), reporting low attenuation factors (0.06 Å-1) [109]. 
Other theoretical proposals rely on the "doping" of molecules 
by heteroatoms so as to align the molecular orbitals with the 
Fermi energy of the metal electrodes [110].  

V. FUNCTIONAL MOLECULAR DEVICES 

A. Charge-based memory 
Redox-active molecules, such as mettalocene, porphyrin 

and triple-decker sandwich coordination compounds attached 
on a silicon substrate have been found to act as charge storage 
molecular devices [111-114]. The molecular memory works 
on the principle of charging and discharging of the molecules 
into different chemically reduced or oxidized (redox) states. It 

has been demonstrated that porphyrins (i) offer the possibility 
of multibit storage at a relatively low potentials (below ~ 1.6 
V), (ii) can undergo trillions of write/read/erase cycles, (iii) 
exhibit charge retention times that are long enough (minutes) 
compared with those of semiconductor DRAM (tens of ms) 
and (iv) are extremely stable under harsh conditions (400°C – 
30 min) and therefore meet the processing and operating 
conditions required for use in hybrid molecule/silicon devices 
[114]. Due to the high density of molecules on the surface (up 
to 1013-1014 cm-2) a high charge density (10-16 µC/cm2) is 
obtained [114] without the need of complicated device 
structures (deep-trench and stacked capacitances) as in 
classical DRAM technologies. The feasibility of a 1Mbit 
hybrid (molecule on CMOS platform) DRAM has been 
demonstrated that uses 1/10th of the capacitor area of 
conventional technology [115]. Moreover, the same principle 
works with semiconducting nanowires dressed with redox 
molecules in a transistor configuration [116-118]. 
Optoelectronic memories have also been demonstrated with 
polymer-functionalized CNT transistors [119, 120]. However, 
in all cases, further investigations on the search of other 
molecules and, understanding the factors that control 
parameters such as, charge transfer rate, which limit write/read 
times, and charge retention times, which determines refresh 
rates, are needed. For instance, the length and the chemical 
nature of the linker between the redox molecule and the 
silicon must be adjusted to tune the electrical properties of the 
device, such as charging and discharging kinetics and 
retention time [121, 122]. 

B. Configurational switch and memory 
One of the most interesting possibilities for molecular 

electronics is to take advantage of the soft nature of organic 
molecules. Upon a given excitation, molecules can undergo 
configurational changes. If two different configurations are 
associated with two different conductivity levels of the 
molecule, this effect can be used to make molecular switches 
and memories. Such an effect is expected in π-conjugated 
oligomers if one of the monomer is twisted away from a 
planar configuration of the molecule. Twisting one monomer 
breaks the conjugation along the backbone, thus reducing the 
charge transfer efficiency along the molecule. It has been 
verified that the conductance follows the expected law 
G=G0cos2θ, where θ is the torsion angle between the 
monomers (Fig. 6) [104, 123]. While the molecules are not 
exactly the same (various lateral substituents are used to 
impose the tilt through stearic hindrance), the intrinsic role of 
these substituents on the electron transport properties of the 
molecule is negligible compared to the configurational change 
of the bi-phenyl backbone [104, 123]. 

 
Catenane and rotaxane are a kind of molecules exhibiting a 

bistable behavior. In brief, these molecules are made of two 
parts, one allowed to move around or along the other one (e.g. 
a ring around a rod, two interlocked rings). These molecules 
adopt two different configurations depending on their redox 
states, changing the redox state triggers the displacement of 
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the mobile part of the structure to minimize the total energy. 
This kind of molecules was tentatively used to build molecular  

 
Fig. 6. a) Bi-phenyl based molecules with different torsion angle between the 
two phenyl rings. b) Measured conductance with the STM break junction 
versus the torsion angle [104]. 
 
 
memories. A voltage pulse of about 1.5 - 2 V was used the 
switch the device from the "off" state to its "on" state. The 
state was read at a low bias (typically 0.1-0.2 V). The on/off 
ratio was about a few tens. A pulse in reverse bias (-1.5 to -2 
V) returned the device to the "off" state. Using these 
molecular devices, Chen and coworkers [32, 33] have 
demonstrated a 64 bits non-volatile molecular memory cross-
bar with an integration density of 6.4 Gbit/cm2 (a factor ~10 
larger than the state-of-the-art today's silicon memory chip). 
The fabrication yield of the 64 bits memory is about 85%, the 
data retention is about 24 h and about 50-100 write/erase 
cycles are possible before the collapse of the on/off ratio to 1. 
Recently a 160 kbit based on the same class of molecules has 
been reported, patterned at a 33 nm pitch (1011 bits/cm2) [124]. 
About 25% of the tested memory points passed an on/off ratio 
larger than 1.5 with an average retention time of ~ 1h. 
However, it has also been observed that similar electrical 
switching behaviors can be obtained without such a class of 
bistable molecules (i.e. using simple alkyl chains instead of 
the rotaxanes) [125]. In this latter case, the switching behavior 
is likely due to the formation and breaking of metallic micro-
filaments introduced though the monolayer during the top 
metal evaporation. The presence of such filaments is not 
systematic and simple techniques, such as the use of a buffer 
film of a conducting PEDOT:PSS polymer, have been 
developed to avoid this “metallic filament” issue (see above, 
section III), however caution has to be taken before to 
definitively ascribe the memory effect as entirely due to the 
presence of the molecules. It is likely that many switching and 
memory effects reported by many authors are just due to some 
metallic filaments effect, that would have been avoided using 
such PEDOT:PSS layer. The advantage of such molecular 
cross-bar memories are i) a low cost, ii) a very high 
integration density, iii) a defect-tolerant architecture, iv) an 
easy post-processing onto a CMOS circuitry and v) a low 
power consumption. For instance, it has been measured that an 
energy of ~50 zJ (or ~ 0.3 eV) is sufficient to rotate the 
dibutyl-phenyl side group of a single porphyrin molecule 
[126]. This is ~104 lower than the energy required to switch a 

state-of-the art MOSFET, and near the kTLn2 (2.8 zJ at 300K, 
or 0.017 eV) thermodynamic limit. 

Alternative technologies for resistive memories [127] 
include, for instance, polymer-based memory [128], 
nanomechanical memory based on NEMS with CNT, 
graphene [129], nanothermal memory such as nanowire PCM 
(phase change memory) [130] using phase transformation 
between amorphous and crystalline phases as in more 
conventional PCM. All these technologies have demonstrated 
data retention times of a few months, and write/erase times in 
the range of ns to ms, the molecular one being the slowest at 
the moment. This is probably not the end of the story; 
chemical reactions (reduction-oxidation, configuration 
switching) of molecules in solution can be fast, and the actual 
limitations likely reflect the lack of device optimization (e.g. 
bad control of molecule-electrode contact, etc…) as discussed 
above. 

 
Another efficient way to trigger a configuration change in a 

molecule is by light. Reversible photoswitching devices were 
demonstrated with diarylethene and azobenzene derivatives 
[131, 132], and open the route for potential applications as 
optical switches in molecular electronics [133-138]. For 
instance, azobenzene molecules show a transition from a more 
thermodynamically stable trans configuration to a cis 
configuration upon exposure to UV light (~ 360 nm), and a 
reversible isomerization under blue light (~ 480 nm). The 
properties of azobenzene in solution (e.g. robust reversible 
photoisomerization, long living states, fast switching) make 
them promising building blocks for molecular-scale devices 
and nanotechnology. The challenge consists in defining 
strategies to use these promising materials at the molecular-
scale on the surface of electrodes for applications as 
molecular-switches and memories for instance.  

It is well known that photoisomerisable molecules need to 
be electronically decoupled from the metal surface to properly 
work, i.e. to reversibly switch between the two isomers. STM 
experiments on a single azobenzene molecule physisorbed on 
gold show that reversible switching is only observed when 
tert-butyl legs lift the molecule up [138]. In several works 
using SAMs, the photoisomerisable molecules are chemically 
attached to the substrate using various spacers: short alkyl 
chains (2 to 6 carbon atoms) [133, 139, 140], ethylene bond 
[137] or phenyl or thiophene moieties [132, 134, 138, 141, 
142]. The role of this linker is crucial. In the case of 
diarylethene, the observation of reversible switching depends 
on its nature (e.g. phenyl vs. thiophene) [142]. Contradictory, 
some authors associate the higher "on" conductance state to 
the trans isomer [133, 137, 140, 143-146], while others 
conclude in favor of the cis form [134, 138, 147]. In all these 
results, the "on/off" conductance ratio is lower than 50 (Fig. 7-
a). Moreover, up to now, azobenzene derivatives do not 
exhibit a clear intrinsic conductance switching. The apparent 
change in the measured conductance has been attributed to a 
change in the length of the molecule during the isomerization 
rather than to an intrinsic conductance switching associated 
with changes in the electronic structure of the molecular 
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junction [134, 138]. Many reasons can explain these results; 
details on the molecular arrangements in the monolayers and 
the nature of the coupling between the molecule and the 
electrode contact are among the most important factors that 
can influence the electrical behavior. For instance, Cuniberti et 
al. [143, 148] showed by first principles calculations that Gtrans 
> Gcis when the azobenzene is chemically linked between two 
carbon nanotube electrodes, while Gcis > Gtrans in case of silicon 
electrodes (Gtrans and Gcis are the conductances of the junction 
for the trans and cis isomers, respectively). Obviously, the 
role of the spacer is also critical. A short spacer should favor 
the electron transfer rate through the junction and increases its 
conductance, while a longer spacer could improve the 
decoupling of the azobenzene moiety from the substrate, thus 
allowing a larger dynamic of the switching event, and thus a 
larger "on/off" conductance ratio. 

 
Fig. 7. Current-voltage curves (C-AFM measurements) of the SAM of two 
types of azobenzene derivatives in the trans and cis conformations: a) Ref. 
[134] b) Refs. [149, 150]. 
 

Recently, we reported the synthesis and the electrical 
properties of a new molecular switch in which the azobenzene 
moiety is linked to a bithiophene spacer and a short (4 carbon 
atoms) alkanethiol [149, 150]. Such a design is expected to 
combine the benefit of a rather long spacer, while preserving a 
sufficiently high level of current due to the presence of 
electron-rich bithiophene unit (compared to a fully saturated 
spacer with the same length). A record on/off ratio up to 7x103 
between the cis ("on") and trans ("off") configurations was 
demonstrated (Fig. 7-b). The analysis of these results using 
well-established electron transport models and molecular 
frontier orbitals from first principles DFT calculations 
indicates that this high photo-induced on/off ratio results from 
a synergistic combination of SAM thickness variation and 
modification of the energy offset between the lowest 

unoccupied molecular orbital (LUMO) and the electrode 
Fermi energy. Moreover, these azobenzene derivatives can 
switch their configuration with the top electrode deposited on 
the SAM [138] and they can have switching times ~ 1-10 µs 
comparable to molécules in solution [150], thus they are prone 
for solid-state molecular switch devices for low-demanding, 
low-cost applications. 

C. Molecular transistors 
A true transistor effect (i.e. the current through 2 terminals 

of the device controlled by the signal applied on a third 
terminal) embedded in a single three-terminal molecule (e.g. a 
star-shaped molecule) has not been yet demonstrated. Up to 
date, only hybrid-transistor devices have been studied. The 
typical configuration consists of a single molecule or an 
ensemble of molecules (monolayer) connected between two 
source and drain electrodes separated by a nanometer-scale 
gap, separated from an underneath gate electrode by a thin 
dielectric film (Fig. 8). 

 

Fig.  8. Scheme of two molecular-based transistors, with a single molecule 
(left) [151] and with a self-assembled monolayers (right) [78]. 

 
At a single molecule level (single-molecule transistor), 

these devices have been used to study Coulomb blockade 
effects and Kondo effects at very low temperature. For 
instance, Coulomb blockade (electron flowing one-by-one 
between source and drain through the molecule due to 
electron-electron Coulomb repulsion, the molecule acting as a 
quantum dot) was observed for molecules such as fullerene 
(C60) and oligo-phenyl-vinylene (OPV) weakly coupled to the 
source-drain electrodes.[152, 153] In this latter case, up to 8 
successive charge states of the molecule have been observed 
[153]. With organo-metallic molecules bearing a transition 
metal, such as Cobalt terpiridynil complex and divanadium 
complex, Kondo resonance (formation of a bound state 
between a local spin on the molecule, or an island, or a 
quantum dot, and the electrons in the electrodes leading to an 
increase of the conductance at low bias, around zero volt) has 
also been observed in addition to Coulomb blockade.[83, 84] 
Kondo resonance is observed when increasing the coupling 
between the molecule and the electrodes (for instance by 
changing the length of the insulating tethers between the metal 
ion and the electrodes). Using such hybrid silicon-molecule 
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transistor configuration, it was recently shown that it is 
possible to electrostatically modulate the current through the 
molecule by gating the molecular orbital with the underneath 
Si gate [154]. This hybrid silicon-molecule transistor 
configuration is also suitable to study and control the spin 
states and spin transport through molecules [151, 155-158]. 

At a monolayer level, self-assembled monolayer field-effect 
transistors (SAMFET) have been demonstrated at room 
temperature.[78, 159] The transistor effect is observed only if 
the source and drain length is lower than about 50 nm, that is, 
more or less matching the size of domains with well organized 
molecules in the monolayer. This is mandatory to enhance π 
stacking within the monolayer and to obtain a measurable 
drain current. SAM of tetracene, [159] terthiophene and 
quaterthiophene [78] derivatives have been formed in this 
nano-gap. Under this condition, a field effect mobility of about 
3.5x10-3 cm2V-1s-1 was measured for a SAMFET made with a 
quaterthiophene (4T) moiety linked to a short alkyl chain 
(octanoic acid) grafted on a thin aluminum oxide dielectric. 
This value is on a par with those reported for organic transistor 
made of thicker films of evaporated 4T (10-3 to 10-2 cm2V-1s-1) 
[78]. The on/off ratio was about 2x104. For some devices, a 
clear saturation of the drain current vs. drain voltage curve has 
been observed, but usually, these output characteristics display 
a super linear behavior. This feature has been explained by a 
gate-induced lowering of the charge injection energy barrier at 
the source/organic channel interface.[76]. Recently, 
improvements in the fabrication and control of the structural 
organization of the molecules within the SAM have allowed 
extending this concept to 40 µm channel length SAMFET 
with improved mobility of 4x10-2 cm2V-1s-1 [160]. Such 
molecular devices are suitable for large area, flexible 
electronics, and a 15-bit code generator has been demonstrated 
with hundreds of SAMFETs addressed simultaneously. 

VI. CONCLUSION 
This review describes several functions and devices that 

have been studied at the molecular scale. However, a better 
understanding and further improvements of their electronic 
properties are still mandatory and need to be confirmed. These 
results often suffer from lab-to-lab dispersion and more efforts 
are now required to improve reproducibility and repeatability. 
For viable applications, more efforts are also mandatory to test 
the integration of molecular devices with silicon-CMOS 
electronics (hybrid molecular-CMOS nanoelectronics). 
Moreover most of these devices are 2-terminals, a true/fully 
molecular 3-terminals device is still lacking. We have also 
pointed out that the molecule-electrode coupling and 
conformation strongly modify the molecular-scale device 
properties. Molecular engineering (changing ligand atoms for 
example) may be used to improve or adjust the electrode-
molecule coupling. Albeit, many improvements have been 
recently obtained, a better control of the interface (energetics 
and atomic conformation) is still compulsory. Beyond the 
study of single or isolated devices, more works towards 
molecular architectures and circuits are required. Albeit not 

exclusive for molecular electronics, more new architectures 
must be explored (e.g. non von Neuman, neuronal and 
quantum computing…). For instance, the simplest instance of 
Shor's algorithm: factorization of N = 15, was implemented 
using seven spin-1/2 nuclei in a molecule as quantum bits 
[161], and other theoretical works investigate the possible use 
of molecules for quantum computing [162, 163]. Also, 
molecules, CNT and nanoparticles are suitable objects for the 
implementation of neuro-inspired devices [164, 165]. Open 
questions also concern the right approaches for inter-
molecular device connections and nano-to-micro connections, 
the interface with the outer-world, hybridation with CMOS 
and 3D integration [166-170]. Beyond the CMOS probably 
asks to bet on devices non-based on the electron charge. 
Molecular devices using other state variables (e.g. spin, 
molecule configuration,…) to code a logic state are still 
challenging and exciting objectives. 
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