
Wireless Sensor Networks for Environmental
Monitoring: The SensorScope Experience

Guillermo Barrenetxea, François Ingelrest, Gunnar Schaefer, and Martin Vetterli
LCAV, I&C School, EPFL, Switzerland

Email: firstname.lastname@epfl.ch

Abstract—While wireless sensor networks have been exten-
sively studied in the past few years, most results are of theoretical
nature and were obtained outside of a practical context. This
can be problematic for real applications, especially in the area of
environmental monitoring where many factors, such as harsh
weather conditions, can greatly influence the performance of
such a network, while reliable delivery and high-quality measure-
ments are required. SensorScope is an interdisciplinary project,
elaborated by environmental and networking researchers, that
aims at narrowing the gap between theory and practice. Several
successful real-world deployments have already been undertaken
in rugged environments. In this paper, we analyze the partic-
ular requirements of environmental monitoring and how these
requirements have been met in the SensorScope project. We also
present an application example of a deployment, undertaken in
a harsh mountain environment.

I. INTRODUCTION

Sensor nodes are small embedded devices which are mainly

able to perform simple computations and to send/receive

data. Their typical usage is to gather information about their

environment via sensors, to potentially pre-process these data,

and to finally transmit them. An autonomous set of such nodes

is called a wireless sensor network (WSN) [1]. Because of

cost and energy constraints, only one node is generally able

to transmit data from the sensor network to the “outside world”

by means of a longer-range connection (e.g., GPRS). This node

is called a sink since it acts as such with regards to the data

stream coming from the network.

Although sensor networks have many applications, envi-

ronmental monitoring is a domain in which they may have

a huge impact. Recent climate change-related catastrophes

have illustrated how important a detailed understanding of

our environment and its evolution is for human beings. The

capacity of researchers to improve this knowledge is mainly

limited by current data collection techniques, which are based

on very expensive stations (e 60 000—$ 86 000—for a high-

precision station) with limited embedded data loggers. Wire-

less sensor networks are an alternative solution, well-fitted to

these problems. The SensorScope project1 is a collaborative

effort of environmental and computer science researchers to

build a WSN-based measurement system, with the ability to

immediately transmit gathered data to a distant server. As

a result, it allows for real-time (e.g., pollution) as well as

long-term (e.g., ice melting) monitoring of natural events in

potentially large areas.

1http://sensorscope.epfl.ch/

In this paper, we focus on the particularities of environ-

mental monitoring through our experience with SensorScope.

Various aspects of WSNs have indeed been studied over the

past few years (e.g., synchronization, energy efficiency), but

most of these studies are of theoretical nature and may not

apply, depending of the considered application. Environmental

monitoring, in particular, is very demanding due to harsh

outdoor conditions that may greatly impact hardware per-

formance. In SensorScope, we have been faced with many

challenges, and we describe here, how we coped with them.

As a case in point, we have already been able to deploy several

networks, some of them in very harsh conditions, and we

present results from such a deployment, which took place on

a high mountain pass in Switzerland.

In the next section, we describe the requirements of environ-

mental monitoring and their consequences for WSN design.

Section III describes how these requirements are addressed

in SensorScope, while in Section IV we detail a particular

deployment in a mountain environment. We conclude in Sec-

tion V.

II. ENVIRONMENTAL MONITORING

Although some aspects in a wireless sensor networks may

be generic, it is important to carefully consider the spe-

cific requirements of the application, especially when it is

as demanding as environmental monitoring. Such campaigns

generally consist of deploying a number of sensors in the

field to periodically measure meteorological and hydrological

parameters, such as wind speed and direction. Most of them

change relatively slowly in time, which allows for sparse

sampling (one sample every two to five minutes is most often

sufficient). However, as interesting phenomena, such as rock

slides or avalanches, occur seldom and are difficult to predict,

deployments must last long enough to capture them.

We can translate the needed characteristics of an envi-

ronmental monitoring system into the following technical

requirements:

• Autonomy. Batteries must be able to power the weather

stations during the whole deployment. Because the radio

transceiver is a massive energy consumer, the network has

to be energy-wise, even if a renewable source of energy

is used (e.g., solar power). Protocols that require the radio

to be always on must be discarded.

• Reliability. The network has to perform simple and

predictable operations, to prevent unexpected crashes.

Int. Zurich Seminar on Communications (IZS), March 12-14, 2008

98978-1-4244-1682-0/08/$25.00 ©2008 IEEE



Human maintenance should be avoided, first, because

end users may not have networking knowledge, second,

because areas of interest are most often remote. Achiev-

ing reliability is difficult because packet losses are more

likely to happen during harsh weather conditions (e.g.,
heavy rain, intense cold) which are at the same time the

most interesting episodes for data analysis.

• Robustness. The network must account for a lot of

problems such as poor radio connectivity (e.g., in case

of snow fall) or hardware failures. For instance, humidity

can frequently cause short-circuits leading to unexpected

reboots of stations. The use of any protocol requiring an

initialization phase to be performed synchronously by all

nodes is thus inconceivable.

• Flexibility. One must be able to quickly add, move, or

remove stations at any time depending on the needs of the

applications. For instance, it may turn out that the current

location of the stations is not correct to gather the required

data, or that new stations should be added at new points

of interest. Nodes thus have to automatically detect their

network neighborhood to account for such changes, and

one cannot rely on a priori knowledge when designing

the network.

All these requirements are especially important when de-

ploying a network in remote and difficult-to-access places.

For instance, one of the SensorScope deployments occurred in

high mountain, in collaboration with authorities. A helicopter

was required for carrying hardware and people. Going back

to the site a few days later because a battery is depleted or

because a station needs to be manually rebooted is obviously

inconceivable.

One way to achieve all of this is to keep things simple.

TASK [2] is a set of WSN software and tools, designed

at Berkeley, that has been used for outdoor deployments,

for instance during the Macroscope experiments [3]. The

experience of TASK’s authors is of great value, and they claim

that simple and application-specific approaches provide the

most robust solutions for real-world usage. This is especially

true for environmental monitoring, because gluing existing—

and complex—components together takes a lot of time and

effort for in-depth understanding of their interaction. It is

sometimes, however, not worth this effort because the targeted

application may not require that many features. By keeping

things simple, it is possible to create a robust network, well-

fitted for the intended application and outdoor usage.

III. THE SENSORSCOPE SHOWCASE

SensorScope stations are composed of an aluminium skele-

ton equipped with a solar panel, seven external sensors, and an

hermetic box, enclosing electronic parts. We chose a Shock-

fish TinyNode2, which is composed of a Texas Instruments

MSP430 16-bit microcontroller, running at 8 MHz, and a

Semtech XE1205 radio transceiver, operating in the 868 MHz

2http://www.tinynode.com/

(a) The stack. (b) Packet format.

Fig. 1: The SensorScope communication stack.

band with a transmission rate of 76 Kbps. It has 48 KB ROM

and 10 KB RAM.

To meet our requirements in wireless networking, we have

designed and implemented a complete communication stack

for TinyOS 2.x. Our code is available under an open-source

license on our website3. In the following, we describe the

networking architecture used in SensorScope, and the ground

rules that we have followed during its design.

A. Overall Architecture

Our communication stack, illustrated in Fig. 1a, closely

follows the OSI model. It needs to store only four bytes per

packet in the standard TinyOS payload, leaving 24 bytes for

the application out of the 28 available, as illustrated in Fig. 1b.

We chose to not modify the TinyOS network headers to be

independent of the underlying radio drivers. There are four

different layers:

• Application. This layer is responsible for collecting data

that must be sent to the sink, such as environmental

measurements and battery levels.

• Transport. This layer creates and receives packets, and

if needed queues them, based on their type: data packets

(e.g., measurements) are routed toward the sink, while

control ones (e.g., ACKs) are sent to a particular neighbor.

With overall traffic being low, there is no need for a

congestion control mechanism at this time. Two fields

of the header are filled: the number of hops performed

by the packet and the sequence number.

• Network. This layer gives packets to the MAC layer after

having chosen a next hop in the case of data packets. It

fills the fields containing the sender identifier and the cost

of the route to the sink. All routing decisions are made at

this level, and implementing a new protocol only requires

a new network layer. Our custom network layer is detailed

below.

• MAC. In order to reduce energy consumption, the radio

is turned off as much as possible. If a packet must be sent

while the radio is off, it is kept and sent later on. Only

data packets are acknowledged by sending a small packet

to the previous hop. As the radio driver lacks a carrier

sense, a simple back-off mechanism is used to minimize

collisions.

3http://sensorscope.epfl.ch/network code/

Int. Zurich Seminar on Communications (IZS), March 12-14, 2008

99



B. Networking Features
We describe here the prominent features of our communica-

tion stack, which make the system suitable for environmental

monitoring. In the following, broadcast designates a local

broadcast (i.e., a packet sent to all neighbors); the distance

designates the hop-distance to the sink, not the Euclidean one.
1) Synchronization: Nodes need to time-stamp their mes-

sages to allow for meaningful data analysis. Many synchro-

nization protocols exist [4], [5], [6], and most of them contain

complex algorithms to achieve a high level of accuracy. For

instance, FTSP [6] compensates time drift by means of linear

regression, resulting in microsecond-accurate synchronization.

While this may be of theoretical interest, not all applications

require such a level of accuracy. Time-stamping data messages

actually only requires a precision of a few milliseconds.

Moreover, the time drift compensation is specific to the chosen

hardware and may not be as efficient when deployed outdoors.

Temperature, for example, impacts the actual drift, and it is

nearly impossible to account for such variations. From our

experience, it is better to live with a drift rather than assuming

there is none because a high-accuracy solution is used.
In SensorScope, SYNC_REQUEST/SYNC_REPLY messages

are used to propagate the local time of the sink, chosen as the

reference time. When a station wants to update its clock, it

chooses a neighbor closer than itself to the sink, and sends

it a request. This neighbor then broadcasts back the reply to

its own neighbors, all of which update their clock if they are

further away from the sink. By doing so, the reference time is

propagated from the sink, even if its own clock drifts. The

sink also regularly sends its time to the server which can

compute the offset between this time and the absolute one

and use it to convert the timestamps of incoming messages.

This mechanism is simple, robust, and does not involve a huge

overhead, while providing sufficient accuracy.
2) Power Management: Stations are equipped with a solar

panel to allow for long-term outdoor deployments. However,

the radio transceiver is a big energy consumer, and can lead to

a negative energy balance. For instance, the TinyNode’s power

consumption increases by a factor of eight when the radio is

on for receiving messages. As a result, the communication

stack must absolutely turn off the radio as much as possible

to provide for the stations’ required autonomy.
Similarly to TASK [2], we use a synchronized duty-cycling

method in SensorScope: all nodes in the network turn their

radio on at the same time for a short period, and all messages

are exchanged during this period. Since a synchronization

mechanism between stations is already in place, it is quite

easy to apply this energy-saving method. As there may be a

slight time drift, nodes wait a bit before sending messages,

after turning on their radio, to ensure that their neighbors are

indeed “awake”. This, of course, leads to a minor waste of

energy, but it also keeps the whole mechanism simple and

robust. It suffices for a positive energy balance.
3) Routing: To improve robustness, we have chosen not to

use a routing backbone toward the sink. A backbone may in

fact cause load problems when too many nodes are attached to

(a) Global View. (b) Local View.

Fig. 2: The map of the Grand Saint Bernard deployment.

the same next hop, as it may happen when nodes are always

connected to their best parent, as done in MintRoute [7].

Moreover, maintaining a backbone involves a communication

overhead due to control messages, for instance, to detect

broken links.

To avoid such problems, our stations always choose their

next hop at random, greatly increasing the diversity of routes

and thus the robustness. To ensure that messages always arrive

at the sink, the set of next hops is composed only of neighbors

closer to the sink. Since the choice is randomly performed at

each step, load balancing is automatically optimal. To favor

higher-quality neighbors, two thresholds are defined: when

choosing a next hop, a good neighbor (in terms of QoS) is

chosen, and if there is none, then a lower-quality one is used.

Note that the QoS is simply computed by counting missing

sequence numbers of the packets sent by neighbors. Packet

losses result in missing sequence numbers, thus decreasing

the QoS of the corresponding neighbors.

IV. DEPLOYMENT EXAMPLE

In 2007, we have performed six outdoor deployments,

from EPFL’s campus to the high Alps. For lack of space,

we herein focus on one of the most important deployments

which took place at the Grand Saint Bernard pass. The pass

is 2 400 m (7 875 ft) high, located between Switzerland and

Italy. Swiss authorities in charge of risk management asked

us to deploy a network there, because they wanted to get an

accurate hydrological model of the site, which could not be

obtained with traditional measurement methods. The use of

SensorScope allowed them to obtain spatially dense measures,

and the resulting model will help in preventing avalanches and

accidental deaths. This deployment began in September 2007

and lasted for one month and a half.

The 17 stations were deployed on a 900 m (2 950 ft) long

line as illustrated in Fig. 2. Their location was carefully chosen

with the help of our project partners, who are specialized in

hydrology, in order to retrieve meaningful measurements for

the model to be elaborated. The sink, located on the bottom

left of the map (station 1), was equipped with a GPRS module.

All system parameters used are given in Table I.

Int. Zurich Seminar on Communications (IZS), March 12-14, 2008

100



 0

 5000

 10000

 15000

 20000

 25000

 30000

3 4 5 6 7 8 9 10 11 12 13 14 15 17 18 19 20

N
um

be
r o

f r
ep

or
ts

 re
ce

iv
ed

Node ID

1.0 1.0 2.1 1.8 1.1 1.0 1.9 1.0 2.1 1.0 2.1 1.0 1.1 3.0 3.4 3.1 1.0

Duplicate
Unique

(a) Received data packets and distance of stations to the sink.

3
4
5
6
7
8
9

10
11
12
13
14
15
17
18
19
20

S
ta

tio
n

Time

(b) Time correlation of losses per station.

Fig. 3: Sensing data statistics for a whole month of operation during the Grand Saint Bernard deployment.

Fig. 3 provides statistics on data gathering during one full

month of operation, beginning on the 26th of September 2007.

Above the bars, the distance of the respective stations to the

sink is given. These numbers show that—the site being quite

extensive—most nodes had to use multi-hopping to report

their data, with routes up to 3.4 hops on average for station

18. Overall, results are satisfactory, given the harsh weather

conditions on the pass.

The missing packets were mostly due to hardware failures,

such as short circuits, leading to the loss of several consecutive

packets. This is apparent in Fig. 3b, which shows the time cor-

relation of packet losses per station, each black line represent-

ing a missing packet. For instance, station 11 suffered a severe

short circuit, requiring on-site repair. Subsequent failures were

less pronounced, and the corresponding stations were able

to recover after some time. This figure also shows problems

caused by the GPRS module, resulting in simultaneous losses

for almost all stations. We have since determined that this was

caused by a bug in the GPRS software, leading to the removal

of all enqueued packets upon disconnection from the cellular

network.

V. CONCLUSION AND FUTURE WORK

Through the various deployments, we have been able to

thoroughly test our communication stack in real outdoor

conditions, and it has proven to be robust and well-fitted

for environmental monitoring. Most of the problems we had

to face were caused by hardware malfunctions and are all

being addressed. One of the lessons learned is that remote

management of the network is of utmost importance, and we

are currently lacking such mechanism. For this reason, we

are studying the possibility of incorporating Deluge [8] into

our software, in order to be able to remotely reprogram the

network in the event a bug is detected.

ACKNOWLEDGMENTS

This work was partially financed by the Swiss National

Competence Center in Research on Mobile Information and

Layer Parameter Value

Application Sampling 120 s

Network Poor-quality neighbor ≥ 70 %
Good-quality neighbor ≥ 90 %
Synchronization frequency 1 h (± 72 ms drift)

MAC Sleep state length 108 s
Active state length 12 s
Transmission power 15 dBm

TABLE I: System parameters used during the deployment.

Communication Systems (NCCR-MICS), the European Com-

mission under the Framework 6 IST Project “Wirelessly

Accessible Sensor Populations (WASP)”, and Microsoft Re-

search.

REFERENCES

[1] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
sensor networks: A survey,” Computer Networks, vol. 38, pp. 393–422,
2002.

[2] P. Buonadonna, D. Gay, J. Hellerstein, W. Hong, and S. Madden, “TASK:
Sensor network in a box,” in Proceedings of the IEEE European Workshop
on Wireless Sensor Networks and Applications (EWSN), Jan. 2005.

[3] G. Tolle, J. Polastre, R. Szewczyk, D. Culler, N. Turner, K. Tu, S. Burgess,
T. Dawson, P. Buonadonna, D. Gay, and W. Hong, “A macroscope in
the redwoods,” in Proceedings of the ACM International Conference on
Embedded Networked Sensor Systems (SenSys), Nov. 2005.

[4] J. Elson, L. Girod, and D. Estrin, “Fine-grained network time synchro-
nization using reference broadcasts,” in Proceedings of the Symposium
on Operating Systems Design and Implementation (OSDI), Dec. 2002.

[5] S. Ganeriwal, R. Kumar, and M. Srivastava, “Timing-sync protocol for
sensor networks,” in Proceedings of the ACM International Conference
on Embedded Networked Sensor Systems (SenSys), Nov. 2003.

[6] M. Maróti, B. Kusy, G. Simon, and A. Lédeczi, “The flooding time
synchronization protocol,” in Proceedings of the ACM International
Conference on Embedded Networked Sensor Systems (SenSys), Nov. 2004.

[7] A. Woo, T. Tong, and D. Culler, “Taming the underlying challenges
of reliable multihop routing in sensor networks,” in Proceedings of the
ACM International Conference on Embedded Networked Sensor Systems
(SenSys), Nov. 2003.

[8] J. Hui and D. Culler, “The dynamic behavior of a data dissemination
protocol for network programming at a scale,” in Proceedings of the
ACM International Conference on Embedded Networked Sensor Systems
(SenSys), Nov. 2004.

Int. Zurich Seminar on Communications (IZS), March 12-14, 2008

101


