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Fig. 1. Challenges of lane detection in urban streets

Abstract— We present a robust and real time approach to
lane marker detection in urban streets. It is based on generating
a top view of the road, filtering using selective oriented Gaussian
filters, using RANSAC line fitting to give initial guesses to anew
and fast RANSAC algorithm for fitting Bezier Splines, which
is then followed by a post-processing step. Our algorithm can
detectall lanes in still images of the street in various conditions,
while operating at a rate of 50 Hz and achieving comparable
results to previous techniques.

I. I NTRODUCTION

Car accidents kill about 50,000 people each year in the
US. Up to 90% of these accidents are caused by driver faults
[1]. Automating driving may help reduce this huge number
of human fatalities. One useful technology is lane detection
which has received considerable attention since the mid
1980s [15], [8], [13], [10], [2]. Techniques used varied from
using monocular [11] to stereo vision [5], [6], using low-
level morphological operations [2], [3] to using probabilistic
grouping and B-snakes [14], [7], [9]. However, most of these
techniques were focused on detection of lane markers on
highway roads, which is an easier task compared to lane
detection in urban streets. Lane detection in urban streetsis
especially a hard problem. Challenges include: parked and
moving vehicles, bad quality lines, shadows cast from trees,
buildings and other vehicles, sharper curves, irregular/strange
lane shapes, emerging and merging lanes, sun glare, writings
and other markings on the road (e.g. pedestrian crosswalks),
different pavement materials, and different slopes (fig. 1).

This paper presents a simple, fast, robust, and effective
approach to tackle this problem. It is based on taking a top-
view of the image, called the Inverse Perspective Mapping
(IPM) [2]. This image is then filtered using selective Gaus-
sian spatial filters that are optimized to detecting vertical

lines. This filtered image is then thresholded robustly by
keeping only the highest values, straight lines are detected
using simplified Hough transform, which is followed by a
RANSAC line fitting step, and then a novel RANSAC spline
fitting step is performed to refine the detected straight lines
and correctly detect curved lanes. Finally, a cleaning and
localization step is performed in the input image for the
detected splines.

This work provides a number of contributions. First of all,
it’s robust and real time, running at 50 Hz on 640x480 images
on a typical machine with Intel Core2 2.4 GHz machine.
. Second, it can detect any number of lane boundaries in
the image not just the current lane i.e. it can detect lane
boundaries of neighboring lanes as well. This is a first
step towards understanding urban road images. Third, we
present a new and fast RANSAC algorithm for fitting splines
efficiently. Finally, we present a thorough evaluation of our
approach by employing hand-labeled dataset of lanes and
introducing an automatic way of scoring the detections found
by the algorithm. The paper is organized as follows: section
II gives a detailed description of the approach. Section III
shows the experiments and results, which is followed by a
discussion in section IV. Finally, a conclusion is given in
section V.

II. A PPROACH

A. Inverse Perspective Mapping (IPM)

The first step in our system is to take generate a top view
of the road image [2]. This has two benefits:

1) We can get rid of the perspective effect in the image,
and so lanes that appear to converge at the horizon
line are now vertical and parallel. This uses our main
assumption that the lanes are parallel (or close to
parallel) to the camera.

2) We can focus our attention on only a subregion of
the input image, which helps in reducing the run time
considerably.

To get the IPM of the input image, we assume a flat road, and
use the camera intrinsic (focal length and optical center) and
extrinsic (pitch angle, yaw angle, and height above ground)
parameters to perform this transformation. We start by defin-
ing a world frame{Fw} = {Xw, Yw, Zw} centered at the
camera optical center, a camera frame{Fc} = {Xc, Yc, Zc},
and an image frame{Fi} = {u, v} as show in figure 2. We
assume that the camera frameXc axis stays in the world
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Fig. 2. IPM coordinates. Left: the coordinate axes (world, camera, and
image frames). Right: definition of pitchα and yawβ angles.

frame XwYw plane i.e. we allow for a pitch angleα and
yaw angleβ for the optical axis but no roll. The height of
the camera frame above the ground plane ish. Starting from
any point in the image planeiP = {u, v, 1, 1}, it can be
shown that its projection on the road plane can be found by
applying the homogeneous transformationg

i T =

h
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i.e. gP = g
i T

iP is the point on the ground plane corre-
sponding toiP on the image plane, where{fu, fv} are the
horizontal and vertical focal lengths, respectively,{cu, cv}
are the coordinates of the optical center, andc1 = cosα, c2 =
cosβ, s1 = sinα, and s2 = sinβ . These transformations
can be efficiently calculated in matrix form for hundreds of
points. The inverse of the transform can be easily found to
be i

gT =



fuc2 + cuc1s2 cuc1c2 − s2fu −cus1 0
s2(cvc1 − fvs1) c2(cvc1 − fvs1) −fvc1 − cvs1 0

c1s2 c1c2 −s1 0
c1s2 c1c2 −s1 0




where again starting from a point on the groundgP =
{xg, yg,−h, 1} we can get its subpixel coordinates on the
image frame byiP = i

gT
gP and then rescale the homoge-

neous part. Using these two transformations, we can project
a window of interest from the input image onto the ground
plane. Figure 3 shows a sample IPM image. The left side
shows the original image (640x480 pixels), with the region
of interest in red, and the right image shows the transformed
IPM image (160x120 pixels). As shown, lanes in the IPM
image have fixed width in the image and appear as vertical,
parallel straight lines.

B. Filtering and Thresholding

The transformed IPM image is then filtered by a two
dimensional Gaussian kernel. The vertical direction is a
smoothing Gaussian, whoseσy is adjusted according to the
required height of lane segment (set to the equivalent of 1m
in the IPM image) to be detected:fv(y) = exp(− 1

2σ2
y
y2).

The horizontal direction is a second-derivative of Gaussian,
whoseσx is adjusted according to the expected width of
the lanes (set to the equivalent of 3 inches in the IPM

Fig. 3. IPM sample. Left: input image with region of interestin red. Right:
the IPM view.

Fig. 4. Image filtering and thresholding. Left: the kernel used for filtering.
Middle: the image after filtering. Right: the image after thresholding

image):fu(x) = 1
σ2
x
exp(− x2

2σ2
x
)(1− x2

σ2
x
). The filter is tuned

specifically for vertical bright lines on dark background of
specific width, which is our assumption of lanes in the IPM
image, but can also handle quasi-vertical lines which produce
considerable output after the thresholding process.

Using this separable kernel allows for efficient implemen-
tation, and is much faster than using a non-separable kernel.
Figure 4 shows the resulting 2D kernel used (left) and the
resulting filtered image (middle). As can be seen from the
filtered image, it has high response to lane markers, and so
we only retain the highest values. This is done by selecting
the q% quantile value from the filtered image, and removing
all values below this threshold i.e. we only keep the highest
(q−1)% of the values. In our experiments,q is set to 97.5%
in the experiments. The thresholded image is not binarized
i.e. we keep the actual pixel values of the thresholded image,
which is the input to the following steps. In this step, we use
the assumption that the vehicle is parallel/near parallel to the
lanes. Figure 4 (right) shows the result after thresholding.

C. Line Detection

This stage is concerned with detecting lines in the thresh-
olded image. We use two techniques: a simplified version of
Hough Transform to count how many lines there are in the
image, followed by a RANSAC [4] line fitting to robustly fit
these lines. The simplified Hough transform gets a sum of
values in each column of the thresholded filtered image. This
sum is then smoothed by a Gaussian filter, local maxima are
detected to get positions of lines, and then this is further
refined to get sub-pixel accuracy by fitting a parabola to the
local maxima and its two neighbors. At last, nearby lines are
grouped together to eliminate multiple responses to the same
line. Figure 5 shows the result of this step.

The next step is getting a better fit for these lines using
RANSAC line fitting. For each of the vertical lines detected
above, we focus on a window around it (white box in left
of fig. 6), and run the RANSAC line fitting on that window.



Fig. 5. Hough line grouping. Left: the sum of pixels for each column of
the thresholded image with local maxima in red. Right: detected lines after
grouping.

Fig. 6. RANSAC line fitting. Left: one of four windows (white)around
the vertical lines from the previous step, and the detected line (red). Right:
the resulting lines from the RANSAC line fitting step.

Figure 6 (right) shows the result of RANSAC line fitting on
the sample image.

D. RANSAC Spline Fitting

The previous step gives us candidate lines in the image,
which are then refined by this step. For each such line, we
take a window around it in the image, on which we will be
running the spline fitting algorithm. We initialize the spline
fitting algorithm with the lines from the previous step, which
is a good initial guess for this step, if the lanes are straight.
The spline used in these experiments is a third degree Bezier
spline [12], which has the useful property that the control
points form a bounding polygon around the spline itself.

The third degree Bezier spline is defined by:

Q(t) = T (t)MP

=
[

t3 t2 t 1
]


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1 0 0 0


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
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wheret ∈ [0, 1], Q(0) = P0 andQ(1) = P3 and the points
P1 andP2 control the shape of the spline (figure 7).

Algorithm 1 describes the RANSAC spline fitting algo-
rithm. The basic three function inside the main loop are:

1) getRandomSample(): This function samples from the
points available in the region of interest passed to the
RANSAC step. We use a weighted sampling approach,
with weights proportional to the pixel values of the
thresholded image. This helps in picking more the rel-
evant points i.e. points with higher chance of belonging
to the lane.

2) fitSpline(): This takes a number of points, and fits a
Bezier spline using a least squares method. Given a

Algorithm 1 RANSAC Spline Fitting
for i = 1 to numIterations do
points=getRandomSample()
spline=fitSpline(points)
score=computeSplineScore(spline)
if score > bestScore then
bestSpline = spline

end if
end for

sample ofn points, we assign a valueti ∈ [0, 1]
to each pointpi = (ui, vi) in the sample, whereti
is proportional to cumulative sum of the euclidean
distances from pointpi to the first pointp1. Define
a pointp0 = p1, we have:

ti =

∑i
j=1 d(pj , pj−1)∑n
j=1 d(pj , pj−1)

for ti = 1..n

where d(pi, pj) =
√
(ui − uj)2 + (vi − vj)2. This

forces t1 = 0 and tn = 1 which corresponds to the
first and last point of the spline, respectively. Next, we
define the following matrices:

Q =




p1
...
pn




T =




t31 t21 t1 1
...

t3n t2n tn 1




and solve for the matrixP using the pseudo-inverse:

P = (TM)†Q

This gives us the control points for the spline that
minimizes the sum of squared error of fitting the
sampled points.

3) computeSplineScore(): In normal RANSAC, we would
be interested in computing the normal distance from
every point to the third degree spline to decide the
goodness of that spline, however this would require
solving a fifth degree equation for every such point.
Instead, we decided to follow a more efficient ap-
proach. It computes the score (measure of goodness)
of the spline by rasterizing it using an efficient iterative
way [12], and then counting the values of pixels
belonging to the spline. It also takes into account the
straightness and length of the spline, by penalizing
shorter and more curved splines. Specifically, the score
is computed as:

score = s(1 + k1l
′ + k2θ

′)

where s is the raw score for the spline (the sum of
pixel values of the spline),l’ is the normalized spline
length measure defined asl′ = (l/v)−1 wherel is the
spline length andv is the image height and sol′ = 0
means we have a longer spline andl′ = −1 means a
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Fig. 7. Spline score computation.

Fig. 8. RANSAC Spline fitting. Left: one of four windows of interest
(white) obtained from previous step with detected spline (red). Right: the
resulting splines (green) from this step

shorter spline,θ′ is the normalized spline “curveness”
measure defined byθ′ = (θ − 1)/2 whereasθ is the
mean of the cosine of angles between lines joining
the spline’s control point i.e.θ = (cos θ1 + cos θ2)/2,
andk1 andk2 are regularization factors, see figure 7.
This scoring formula makes sure we favor longer and
straighter splines than shorter and curvier ones, where
longer and straighter splines are penalized less than
shorted curvier ones.

Figure 8 shows a sample result for the algorithm. The left
side shows a window of interest (white) around the lines
output from the RANSAC line step, with the detected spline
in red. The right side shows the four output splines in green.

E. Post-processing

The final step of the algorithm is to post-process the output
of the previous stage to try to better localize the spline and
extend it in the image, figure 9. This is done both in the
IPM image, and in the original image after back projecting
the splines from the IPM space to the image space. Here we
perform three steps:

1) Localization: We start with the initial spline (blue
spline in figure 9), and then we sample points on the spline
(blue points), extend a line segment through these sampled
points that are normal to the spline tangent direction at
that point (black line segments). Then, we get the grayscale
profile for this line segment by computing the pixel locations
that this line passes through, convolve that with a smoothing
Gaussian kernel, and look for local maxima of the result. This
should give us better localization for points on the spline to
give better fit for the road lanes (green points). In addition,
one more check is performed on the angle change of the
newly detected point, and this new point is rejected if it lies

localized spline

normal lines

lane

initial spline

extended spline

Fig. 9. Spline localization and extension.

Fig. 10. Post-processing splines. Left: splines before post-processing in
blue. Right: splines after post-processing in green. They appear longer and
localized on the lanes.

so far from the expected location. Finally, we refit the spline
with the localized points (green spline).

2) Extension: After the spline’s position has been im-
proved, we perform an extension in the IPM and original
images, in order to give an even better fit of the lane. This is
done similarly by looking both forward and backward from
the spline end points along the tangent direction (red points),
and creating line segments through the normal direction
(red line segments), and finding the peak of convolving
the grayscale profile of these segments with the smoothing
Gaussian filter. The new peak is not accepted if it’s below a
certain threshold (homogeneous area with no lines in it), orif
the orientation change from the dominant spline orientation
exceeds a certain threshold, in which case the extension
process stops.

3) Geometric Checks: After each of the previous two
steps, we also perform geometrical checks on the localized
and extended splines, to make sure they are not very curved
or very short, in which case they are replaced by the
corresponding line from the RANSAC line fitting stage.
Checks are also made to make sure fitted splines are near
vertical in the IPM image, otherwise they are rejected as
valid splines. Figure 10 shows the results before and after
post-processing the splines.

III. E XPERIMENTS

A. Setup

We collected a number of clips on different types of urban
streets, with/without shadows, and on straight and curved
streets. Unlike previous papers that would just mention rough
percentages of detection rates, and in order to get an accurate
quantitative assessment of the algorithm, we hand-labeled
all visible lanes in four of these clips, totaling 1224 labeled



TABLE I

DATASETS

Clip# name #frames #lane boundaries

1 cordova1 250 919
2 cordova2 406 1048
3 washington1 336 1274
4 washington2 232 931

Total 1224 4172

frames containing 4172 marked lanes (table I). The system
was prototyped using Matlab, and implemented in C++
using the open source OpenCV library. These clips are quite
challenging, for clip #1 has a lot of curvatures and some
writings on the street, clip #2 has different pavement types
and the sun is facing the vehicle, clip #3 has lots of shadows
(at the beginning) and passing cars, and finally clip #4 has
street writings and passing vehicles as well (fig. 1).

The detection results shown in the next section are com-
puted automatically using the hand-labeled data. In each
frame, each detected lane boundary is compared to ground
truth lanes, and a check is made to decide if it is a correct
or false detection. To check if two spliness1 and s2 are
the same i.e. represent the same lane boundary, we sample
points on both of themp1i andp2i . For every pointp1i on the
first spline, we compute the nearest pointp2j on the second
spline and compute the distanced1i between the two points.
We do the same for the second spline, where for every such
point we get the nearest distanced2i to the first spline. We
then compute the median distancesd̂1 & d̂2 and the mean
distances̄d1 & d̄2. Now to decide whether they are the same,
we require that both

min(d̂1, d̂2) ≤ t1

&

min(d̄1, d̄2) ≤ t2

be satisfied. In our experiments, we usedt1 = 20 and t2 =
15.

B. Results

We ran the algorithm in two different modes:1) 2-lanes
mode: detecting only the two lane boundaries of the current
lane, which is similar to previous approaches; and2) all-
lanes mode: detecting all visible lanes in the image. In the
first mode, we just focus on the middle of the IPM image by
clipping the left and right parts, while in the second mode
we work on the whole IPM image. Tables II and III show
results for the two modes. The fist column shows the total
number of lane boundaries in each clip, the second shows
the number of detected lane boundaries, the third the correct
detection rate, followed by the false positive rate, and finally
the false positive/frame rate. Figure 11 shows some detection
results samples from these clips. The complete videos can
be accessed online athttp://www.vision.caltech.
edu/malaa/research/iv08.

TABLE II

RESULTS FOR2-LANES MODE

Clip #total #detected correct rate false pos. rate fp/frame

1 466 467 97.21% 3.00% 0.056
2 472 631 96.16% 38.38% 0.443
3 639 645 96.70% 4.72% 0.089
4 452 440 95.13% 2.21% 0.043

Total 2026 2183 96.34% 11.57% 0.191

TABLE III

RESULTS FOR ALL-LANES

Clip #total detected correct rate false pos. rate fp/frame

1 919 842 91.62% 5.66% 0.208
2 1048 1322 85.50% 40.64% 1.049
3 1274 1349 92.78% 13.11% 0.497
4 931 952 93.66% 8.59% 0.345

Total 4172 4517 90.89% 17.38% 0.592

IV. D ISCUSSION

The results show the effectiveness of our algorithm in
detecting lanes on urban streets with varying conditions. Our
algorithm doesn’t use tracking yet i.e. these are the results
of detecting lanes in each image independently without
utilizing any temporal information. However, when detecting
only the lane boundaries of the current lane, we achieve
comparable results to other algorithms (e.g. [?], [7]), which
used both detection and tracking. We also achieve good
results for detecting all the visible lane boundaries, which
is a first step towards urban road understanding, and which
was not attempted before (as far as we know). We get
excellent results in clear conditions, however we get some
false positives due to stop lines at cross streets, at cross
walks, near passing cars, see figure 12.

False positives are mostly found when driving on the
right lane of the street with no right lane boundary, and
we detect the curb as the right lane boundary (fig. 12), and
that’s the reason for the high false positive rate in clip #2.
However, this is not a real problem, as the curb is really a
lane boundary, but not painted as such, and this won’t affect
the objectives of the algorithm to detect lane boundaries.

In the current algorithm, we only work on the red channel,
which gives us better images for white and yellow lanes than
converting it to grayscale. However, there is plenty to be done
to further improve this algorithm. We plan on using the color
information to classify different lane boundaries: white solid
lines, double yellow lines, ..etc. This will also allow us to
remove the false positives due to curbs being detected as
lanes, as well as confusing writings on the streets, which
are usually in yellow and can be filtered out. Furthermore,
we plan on employing tracking on top of the detection step,
which will help get rid of a lot of these false positives.

V. CONCLUSION

We proposed an efficient, real time, and robust algorithm
for detecting lanes in urban streets. The algorithm is basedon



Fig. 11. Detection samples show robustness in presence of shadows, vehicles, curves, different road structures and pavements. First two rows are for the
2-lanes mode, and last two rows are for the all-lanes mode

Fig. 12. False detections samples, showing confusion due tostreet writings, crosswalks, right curb, vehicles, and stop lines on cross streets. Correct
detections are in green, false positives are in red, while false negatives (missed lanes) are in blue.

taking a top view of the road image, filtering with Gaussian
kernels, and then using line detection and a new RANSAC
spline fitting technique to detect lanes in the street, which
is followed by a post-processing step. Our algorithm can
detectall lanes in still images of urban streets and works
at high rates of 50 Hz. We achieved comparable results to
other algorithms that only worked on detecting the current
lane boundaries, and good results for detecting all lane
boundaries.
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