
Reconstruction and Error-Correction Codes for
Polymer-Based Data Storage

Srilakshmi Pattabiraman
ECE Department, UIUC

Urbana, IL, USA
sp16@illinois.edu

Ryan Gabrys
ECE Department, UCSD

San Diego, CA, USA
ryan.gabrys@gmail.com

Olgica Milenkovic
ECE Department, UIUC

Urbana, IL, USA
milenkovic@illinois.edu

Abstract—Motivated by polymer-based data-storage platforms
that use chains of binary synthetic polymers as the recording
media and read the content via tandem mass spectrometers, we
propose a new family of codes that allows for unique string
reconstruction and correction of one mass error. Our approach is
based on introducing redundancy that scales logarithmically with
the length of the string and allows for the string to be uniquely
reconstructed based only on its erroneous substring composition
multiset. The key idea behind our unique reconstruction ap-
proach is to interleave Catalan-type paths with arbitrary binary
strings and “reflect” them so as to allow prefixes and suffixes of
the same length to have different weights. For error correction,
we add a constant number of bits that provides information about
the weights of reflected pairs of bits and hence enable recovery
from a single mass error. The asymptotic code rate of the scheme
is one, and decoding is accomplished via a simplified version of
the backtracking algorithm used for the Turnpike problem.

Index Terms—Composition errors; Polymer-based data stor-
age; String reconstruction.

I. INTRODUCTION

Current digital storage systems are facing numerous obsta-
cles in terms of scaling the storage density and allowing for in-
memory based computations [1]. To offer storage densities at
nanoscale, several molecular storage paradigms have recently
been put forward in [2]–[6]. One promising line of work
with low storage cost and readout latency is the work in [2],
which proposed using synthetic polymers for storing user-
defined information and reading the content via tandem mass
spectrometry (MS/MS) techniques. More precisely, binary data
is encoded using poly(phosphodiester)s, synthesized through
automated phosphoamidite chemistry in such a way that the
two bits 0 and 1 are represented by molecules of different
masses that are stitched together into strings of fixed length.
To read the encoded data, inter phosphate bonds are broken,
and MS/MS readers are used to estimate the masses of the
fragmented polymer and reconstruct the recorded string, as
illustrated in Figure 1. Ideally, the masses of all prefixes
and suffixes are recovered reliably, allowing one to read the
message content by taking the differences of the increasing
fragment masses and mapping them to the masses of the 0
or 1 symbol. Polymer synthesis is cost- and time-efficient and
MS/MS sequencers are significantly faster than those designed
for other macromolecules, such as DNA. Nevertheless, despite

The work was funded by the DARPA Molecular Informatics program, the
SemiSynBio program of the NSF and SRC, and the NSF CIF grant 1618366.

Fig. 1: The scheme is adapted from [2]. The top figure depicts
a binary string synthesized using phosphoamide chemistry.
The bottom image is an illustration of peak series or MS Spec-
trum obtained by MS/MS readout of the digital polymer. Note
that in ideal conditions, the peaks are supposed to correspond
to the masses of string fragments, or more precisely, masses of
prefixes and suffixes of the string. Due to measurement errors,
spurious peaks arise and one needs to apply specialized signal
processing techniques to identify the correct peaks.

the fact that the masses of the polymers can be tuned to
allow for more accurate mass discrimination, polymer-based
storage systems still suffer from large read error-rates. This
is due to the fact that MS/MS sequencing methods tend to
produce peaks, representing the masses of the fragments that
are buried in analogue noise due to atom disassociation during
the fragmentation process.

In an earlier line of work, the authors of [7] introduced
the problem of binary string reconstruction from its substring
composition multiset to address the issue of MS/MS readout
analysis. The substring composition multiset of a binary string
is obtained by writing out all substrings of the string of all
possible length and then representing each substring by its
composition. As an example, the string 101 contains three
substrings of length one - 1, 0, and 1, two substrings of
length 2 - 10 and 01, and one substring of length three - 101.
The composition multisets of the substrings of length one are
{0, 1, 1}, of length two are {0111, 0111} and of length three
{0112}. Note that composition multisets ignore information

ar
X

iv
:1

90
4.

09
28

0v
1

 [
cs

.I
T

]
 1

9
A

pr
 2

01
9

about the actual order of the bits and may hence be seen as
only capturing the information about the “mass” or “weight” of
the string. The problem addressed in [7] was to determine for
which string lengths may one guarantee unique reconstruction
from an error-free composition multiset up to string reversal.
The main results of [7, Theorem 17, 18, 20] asserts that
binary strings of length ≤ 7, one less than a prime, or one less
than twice a prime are uniquely reconstructable up to reversal.

For our line of work, we also rely on the two modeling
assumptions described in [7]:

Assumption 1. We can infer the composition of a polymer
substring from its mass. As long as the masses chosen for 0
and 1 are distinct, and the polymer block length is fixed, this
assumption is naturally satisfied.

Assumption 2. When a polymer block is broken down for
mass spectrometry analysis, we observe the masses of all its
substrings with identical frequency. The masses of all binary
substrings of an encoded polymer may be abstracted by the
composition multiset of a string, provided that Assumption 1
holds. This assumption deviates from the classical ion series
theory in so far that the former only provides information
about the masses of the prefixes and suffixes, while the
abstraction allows one to observe the masses of all substrings,
but without a priori knowledge of their order.

Unlike the work in [7] which has solely focused on the
problem of unique string reconstruction, we view the problem
from a coding-theoretic perspective and ask the following:

Q1. Can one add asymptotically negligible redundancy to
information strings in such a way that unique reconstruction is
possible, independent on the length of the strings? Since only
strings of specific lengths are reconstructable up to reversals,
we aim to devise an efficient coding scheme that encode all
strings of length k ≥ 1 into strings of a larger length n ≥ k
that are uniquely and efficiently reconstructable for all possible
string lengths. Furthermore, we do not allow for both a string
and its reversal to be included in the codebook. One simple
(non-constructive) means to ensure that a string is uniquely
reconstructable up to reversal is to pad the string with bits up
to the shortest length of the form min{p− 1, 2q − 1}, where p
and q primes. For example, if k > 89693, it is known that there
exists a prime p such that k− 1 < p− 1 <

(
1 + 1

ln3 k

)
k− 1.

Unfortunately, the result only holds for very large k that are be-
yond the reach of polymer chemistry. Bertrand’s postulate [8],
applies for shorter lengths k > 3, but only guarantees that
k − 1 < p − 1 < 2k − 4. This implies a possible code rate
reduction to 1/2. Also, eliminating reversals of strings reduces
the codebook by less than a half.

Q2. Can one add asymptotically negligible redundancy to
information strings in such a way that unique reconstruction
is possible even in the presence of errors, independent on the
length of the strings? For simplicity, we focus on the single
deletion-insertion error model, under which the composition
(mass) of one substring is erroneously interpreted as a different
composition (mass).

We answer both questions affirmatively by describing a
coding scheme that allows for unique reconstruction and

correction of a single deletion-insertion mass error. Encoding
is performed by interleaving symmetric strings with Catalan-
type paths, while decoding is accomplished through a mod-
ification of the backtracking decoding algorithm described
in [7]. Our work extends the existing literature in coded string
reconstruction [9], [10].

II. PROBLEM STATEMENT

Let s = s1s2 . . . sk be binary a string of length k ≥ 2.
A substring of s starting at i and ending at j, where 1 ≤
i < j ≤ k, is denoted by sji , and is said to have composition
0z1w, where 0 ≤ z, w ≤ j − i + 1 stand for the number
of 0s and 1s in the substring, respectively. Note that the
composition only conveys information about the weight of the
substring, but not the particular order of the bits. Furthermore,
let C`(s) stand for the multiset of compositions of substrings
of s of length `, 1 ≤ ` ≤ k; clearly, this multiset contains
k − ` + 1 compositions. For example, if s = 100101, then
the substrings of length two are 10, 00, 01, 10, 01, so that
C2(s) = {0111, 02, 0111, 0111, 0111}. =

The multiset C(s) = ∪k`=1C`(s) is termed the composition
multiset. Clearly, the composition multisets of a string s and
its reversal, sr = sksk−1 . . . s1 are identical and hence these
two strings are indistinguishable based on C(·). We define
the cummulative weight of a composition multiset C`(s),
with compositions of the form 0z1w, where z + w = `, as
w`(s) =

∑
0z1w∈C`(s) w. Observe that w1(s) = wk(s), as

both equal the weight of the string s. More generally, one also
has w`(s) = wk−`+1(s), for all 1 ≤ ` ≤ k. In our subsequent
derivations, we also make use of the following notation. For a
string s = s1s2 . . . sk, we let σi = wt(sisk−i+1) for i ≤ bn2 c,
and σdn2 e = wt(sdn2 e), where wt stands for the weight of the
string. For our running example s = 100101, σ1 = 2, while
σ2 = 0. We use Σd

n
2 e to denote the set {σi}i∈[dn2 e], where

[a] = {1, . . . , a}.
Whenever clear from the context, we omit the argument s

and the floors/ceiling functions required to obtain appropriate
integer lengths.

The two problem of interests are as follows. The first
problem pertains to reconstruction codes: a collection of binary
strings of fixed length is called a reconstruction code if all
the strings in the code can be reconstructed uniquely based on
their multiset compositions. We seek reconstruction codes of
small redundancy and consequently, large rate.

In the second problem, one is given a valid composition
multiset of a string s, C(s). Within the multiset C(s), only
one composition is arbitrarily corrupted. We refer to such
an error as a single composition error, or single insertion-
deletion pair. For example, when s = 100101, the multiset
C2(s) = {0111, 02, 0111, 0111, 0111} may be corrupted to
C2(s) = {02, 02, 0111, 0111, 0111}. Single composition errors
for strings of even length are detectable, since if an error
occurs in only one of the two sets C` or Ck+1−`, then
w` 6= wk+1−`. We seek reconstruction codes capable of
correcting one composition error.

Our main results are summarized below.

Theorem 1. There exist efficiently encodable and decodable
reconstruction codes with information string length k and
redundancy at most 1

2 log (k) + 6.

Theorem 2. There exist efficiently encodable and decodable
reconstruction code with information string length k capable
of correcting a single composition error and redundancy at
most 1

2 log (k) + 9.

III. SOME TECHNICAL BACKGROUND

Our codebook design relies on the backtracking algo-
rithm [7], motivated by the Turnpike problem. We provide
an example illustrating the operation of the algorithm.

Example 1. Let s = 1010001010. It can be shown that the set
Σ5 = {σ1 = 1, σ2 = 1, σ3 = 1, σ4 = 1, σ5 = 0} is uniquely
determined from the composition multiset. For example, σ1 =
1 can be deduced from the two compositions of length 9,
0514 and 0613. How to determine Σk/2 from the composition
multiset will be discussed in more detail in the next section.
Backtracking starts by determining the first and last bit of the
string and then proceeding with inward bit placements. In our
example, s1 = 1 and s10 = 0. From Σ5, we easily see that
one composition of length 8 equals 0513; removing this set
from C8 allows us to determine {wt(s81),wt(s103)}. Given C
and the previous information, we deduce that s2 = 0 and
s9 = 1. Note that these values were determined correctly
since wt(s1) 6= wt(s10). The same steps can be repeated
iteratively, but in general, the algorithm will only be able to
determine the compositions of the prefix/suffix extensions, but
not their actual placement. This phenomenon can be observed
in the next step, since the weights of the currently available
prefix and suffix are equal. In this case, the algorithm makes
an arbitrary assignment. For instance, the algorithm could
make the assignments s31 = 100 and s108 = 110. Nevertheless,
at some point, combining the information in Σ5 with the
current estimate of the prefix and suffix may produce an invalid
composition. In this case, the algorithm backtracks to the
first position at which an arbitrary assignment was made and
reverses it. Thus, the algorithm will backtrack depending on
the weights of the prefixes and suffixes of the same length.

Theorem. [7, Theorem 32] Let `s
def
= |{i ≤ n/2 :

wt(si1) = wt(snn+1−i) and si+1 6= sn−i}|, Es
def
= {t : C(t) =

C(s)}, `∗s
def
= maxt∈Es

`t. For a given input C(s) and `s, the
backtracking algorithm outputs a set of strings that contains s
in time O(2`sn2 log (n)). Furthermore, Es can be recovered
in time O(2`

∗
sn2 log (n)).

Clearly, if the string has a length that does not allow for
unique reconstruction, the algorithm will return a set of strings
and in the process backtrack multiple times. Backtracking is
possible even when the string is uniquely reconstructable, and
one condition that ensures non-backtracking is to impose the
constraint that no prefix has a matching suffix of the same
length and same weight. To see how such strings may be
constructed, we introduce strings related to Catalan paths.

Theorem 3. (Bertrand [1887]) Among all strings comprising
a 0s and b 1s, where a ≥ b, there are

(
a+b
a

)
−
(
a+b
a+1

)
strings

in which every prefix has at least as many 0s as 1s. Note
that when a = b = h,

(
a+b
a

)
−
(
a+b
a+1

)
= 1

h+1

(
2h
h

)
= Ch. The

number Ch is known as the hth Catalan number. The central
binomial coefficient

(
2h
h

)
, among other things, also counts the

number of strings of length 2h whose every prefix contains
more 0s than 1s. We refer to such strings as Catalan-type.

The following bounds on the central binomial coefficient
will be useful in our subsequent derivations.

Proposition 1. The central binomial coefficient may be
bounded as:

22h√
πh

(
1− 1

8h

)
≤
(

2h

h

)
≤ 22h√

πh

(
1− 1

9h

)
, ∀h ≥ 1.

(1)

IV. RECONSTRUCTION CODES

In what follows, we describe a family of efficiently encod-
able and decodable reconstruction codes that map strings of
any length k into strings of length n ≤ k + 1/2 log (k) + 6.

Using C1 and recalling that σi = wt(si, sn+1−i), we have∑n/2
j=1 σj = w1. When i = 2, the bits at positions 1, n con-

tribute once to w2, whereas the bits 2, . . . , n−1 all contribute
twice to w2. Using C2, we hence get σ1 + 2

∑n/2
j=2 σj = w2.

Generalizing for all Ci, i ≤ n/2, we have

1

i
σ1 +

2

i
σ2 + · · ·+ i− 1

i
σi−1 +σi +σi+1 + · · ·+σn/2 =

1

i
wi.

(2)
This gives a system of n/2 linear equations with n/2 un-
knowns that can be solved efficiently. Thus, for all error-free
composition sets, one can find Σn/2. Therefore, the problem
of interest is to determine s provided Σn/2 and C(s). [7,
Lemma 31] asserts that when wt(si1) 6= wt(snn+1−i), then
C(s), si1, and snn−i+1 determine the ordered pair (si+1, sn−i).

The previous lemma will be used to guide our construction
of reconstructible code based on Catalan-type strings. We
proceed as follows. Let I ⊆ [n]. The string formed by
concatenating bits at positions in I in-order is denoted by s|I .
To construct a string s of a reconstruction code SR(n) of even
length n we proceed as follows.

SR(n) ={s ∈ {0, 1}n, s1 = 0, sn = 1, (3)
∃ I ⊆ {2, . . . , n− 1} such that

for all i ∈ I, si 6= sn+1−i,

for all i 6∈ I, si = sn+1−i,

s[n/2]∩I is a Catalan-type string.}

For n odd, we define the codebook as SR(n) =

{sn/21 0 snn/2+1, sn/21 1 snn/2+1, s ∈ SR(n− 1)}.
The following proposition is an immediate consequence of

the construction described above.

Lemma 1. Consider a string s ∈ SR(n). For all prefix-suffix
pairs of length 1 ≤ j ≤ n/2, one has wt(sj1) 6= wt(snn+1−j).

The encoding algorithm that accompanies our reconstruc-
tion codebook can be easily implemented using efficient
rankings of Catalan strings and symmetric strings that are
ordered lexicographically.

The proof of Theorem 1 follows from the fact that SR(n) is
a reconstruction code, which may be easily established from
the guarantees for the backtracking algorithm and Lemma 1.

The size of SR(n) may be simply bounded as:

|SR(n)| ≥ 1

2

(n−2)/2∑
i=0

(n−2
2

i

)
2

n−2
2 −i

(
i
i
2

)
≥ 3 2n−5√

2π(n− 2)
.

The first inequality follows from the description of the code-
book, while the second follows from Proposition 1 and the
binomial theorem. As 2k ≤ |SR(n)|, simple algebraic manip-
ulation reveals that the redundancy of the reconstruction code
for information lengths k is at most 1/2 log (k) + 6.

V. ERROR-CORRECTING RECONSTRUCTION CODES

Our single composition error-correcting codes use the same
interleaving procedure described in the previous section, but
require adding a constant number of redundant bits. In partic-
ular, let SR(n− 2) be the code of odd length n− 2 described
in the previous section. Then, a single composition error-
correcting code SC(n) is constructed by adding two bits to
each string in SR(n − 2) and subsequently fixing the value
of one additional bit. These three redundant bits allow us to
uniquely recover the set Σn/2 in the presence of a single
composition error. Consequently, Lemma 3 can be used to
show that given Σn/2 and the erroneous composition set of s,
one can reconstruct s.

To prove Theorem 2, let C ′ denote the set obtained by
introducing a single error in the composition set C(s) of a
string s. Furthermore, let w′j denote the cumulative weight of
compositions in C ′j , and recall that wj stands for the cumula-
tive weight of compositions in C, such that wj = wn−j+1. It
is straightforward to prove the following proposition.

Proposition 2. Let j ∈ [n]. Then,

jw1 −
j−1∑
i=1

i σj−i − 2 ≤ wj ≤ jw1 −
j−1∑
i=1

i σj−i.

This result immediately implies the next proposition.

Proposition 3. Let j ∈ [n] and suppose that we are given
w1, σ1, . . . , σj−1. Then, the value wj mod 3 uniquely deter-
mines wj .

We also need the following three propositions.

Proposition 4. Given wt(s) mod 2, w′n and w′1, one can
recover w1.

Proof. If w′n = w′1, then clearly w1 = w′n = w′1. Hence,
suppose that w′n 6= w′1 and observe that |w′1 − w1| ≤ 1. The
last inequality follows since at most one composition error
is allowed. If w′1 mod 2 = wt(s) mod 2, then w1 = w′1;
otherwise, w1 = w′n. �

Proposition 5. Suppose that n is odd and that either dn2 e+ 1
or dn2 e is divisible by 3. Assume that s = s1 . . . sdn2 e . . . sn,
and let s′ = s1 . . . 1− sdn2 e . . . sn. Then,

dn2 e∑
i=1

wi(s) ≡
dn2 e∑
i=1

wi(s′) mod 3.

Proof. Suppose that sdn2 e = 1. Then, the bit sdn2 e contributes
dn2 e to wdn2 e and dn2 e−1 to wdn2 e−1. In summary, if sdn2 e = 1,
then

dn2 e∑
i=1

wi(s) =

dn2 e∑
i=1

wi(s′) +
dn2 e (dn2 e+ 1)

2
.

The result follows if either dn2 e + 1 or dn2 e is divisible by
3. �

Proposition 6. For odd n, if s1 . . . sdn2 e . . . sn ∈ SR(n),
then s1 . . . 1− sdn2 e . . . sn ∈ SR(n).

Our code for odd n is defined as follows (an almost identical
construction is valid for even n):

SC(n) =
{

s = s1 s
∗
1 s2 . . . sdn−2

2 e
. . . sn−3 s

∗
n sn−2 ∈ {0, 1}n :

s1 . . . sn−2 ∈ SR(n− 2),wt(s) mod 2 ≡ 0,
n
2∑

i=1

wi(s) ≡ 0 mod 3, where s∗1 ≤ s∗n
}
.

The size of the code SC(n) is |SR(n−2)|
2 , which follows

since we removed one information symbol from each coded
string in SR(n − 2) by requiring wt(s) mod 2 ≡ 0, and then
added two more redundant symbols. To construct a string in
SC(n), we first fix s∗1 and s∗n so that

∑dn2 e
i=1 wi(s) ≡ 0 mod 3.

Then, we choose sdn−2
2 e

to satisfy wt(s) ≡ 0 mod 2. From
Propositions 5 and 6, the resulting string belongs to SC(n).

For the next lemma, recall that C ′(s) is the result of a single
composition error in C(s).

Lemma 2. Suppose that s ∈ SC(n). Then, given C ′(s), one
can recover Σn/2.

Proof. In order to prove the claim, we show that given
C ′(s), one can recover w1, w2, . . . , wn, which we know
uniquely determine Σn/2 according to (2). Let j be such that
w′j 6= w′n+1−j . Since at most one single composition error is
allowed, there exists at most one such j. It is straightforward
to see that due to symmetry, either w′j 6= wj = wn+1−j
or w′n+1−j 6= wj = wn+1−j . Since wt(s) mod 2 ≡ 0
by construction, it follows that we can determine w1 based
on Proposition 4. Then, according to Proposition 3, we can
recover wj and all of w1, . . . , wn. One case left to consider is
when w′i = w′n+1−i for all i. In this case, w′n

2
6= wn

2
. Applying

Proposition 3 allows us to determine wn
2

for this case as well,
and this completes the proof. �

Next, let Ti be the set of compositions of all substrings
skj for which j < k ≤ i, or n + 1 − i ≤ j < k, or j ≤
i and n+ 1− i ≤ k.

Lemma 3. Let s ∈ SC(n). Given C ′(s), one can uniquely
reconstruct the string s.

Proof. Let j denote the index of the composition multi-set
Cj that contains an error. From Lemma 2, Σn/2 may be
determined in an error-free manner. Using the obtained Σn/2,
we run the backtracking algorithm and in the process, we
may run into non-compatible compositions for j > n

2 . For
the case that backtracking halts for j = n − i − 1, the
currently reconstructed sub-strings are si1, snn+1−i. Without loss
of generality, assume that σi+1 = 1 as otherwise one can fix
the error easily. Furthermore, note that Ti can be constructed
from Σn/2, si1, and snn+1−i.

One way in which incompatibility may manifest itself is
through Ti 6⊂ C ′, where j = n − i − 1. In this case, we
identify the element that is in Ti but not in C ′j , and add
its weight to w′j and compare it with w′n+1−j ; this allows
us to identify the erroneous composition. Next, suppose that
Ti ⊂ C ′. In this case, consider the two longest compositions
in C ′ \ Ti. The two longest compositions in C ′ \ Ti are the
compositions of a prefix-suffix pair of length j. Since we have
reconstructed the prefix and suffix of length i and we know
that σi+1 = 1, there are two possibilities for compositions
compatible with the prefix and two for the suffix of length
i+1. Out of the six pairs of compositions that may be chosen
from the four compositions, only two pairs cannot be directly
eliminated as candidates for the correct composition. In this
case, the following two prefix-suffix substrings are possible:
{si1 0, 1 snn−i+1}, {si1 1, 0 snn−i+1}. To show that only one of
the constructed prefix-suffix pairs will be valid (compatible),
it suffices to show the following: For any two strings s1, s2 ∈
SC(n) that have the same Σn/2, |C(s1) \ C(s2)| ≥ 4.

Let us assume that on the contrary, there are two strings s, t
such that |C(s) \ C(t)| = 2, and that they differ only in their
respective Cj sets (this condition is imposed by the Catalan
strings, see Figure 2).

Since the prefixes and suffixes of the strings of length i =
n− j − 1 are identical, we let s1, . . . , si and sn+1−i, . . . , sn
denote the first and last i bits of both strings. Let c(s) denote
the composition of the string s. Furthermore, let c(sl

′

l) denote
the composition of sl

′

l , l ≤ l′.
When n = 2(i+1)+1, the strings differ in two compositions

in Cn+1−i due to the above observations. Note that they also
differ in two compositions in their respective multisets Ci.

When n ≥ 2(i+1)+3 and σi+2 = 1, we let bs stand for the
(i+ 2)th bit in the string s, and bt stand for the (i+ 2)th bit of
string t. When σi+2 ∈ {0, 2}, we let b denote the (i+2)th bits
of the two strings, which are identical. Next, we determine
conditions under which Cj−1(s) = Cj−1(t). Note that the
compositions of substrings of length n− i−2 that contain the
bits i+ 1, . . . , n− i are identical for the two strings.
Case 1: σi+2 = 1. With a slight abuse of notation, we choose
to write compositions as sets containing both bits and other
compositions. On the left-hand-side of the equation below, the
compositions correspond to the substrings of s of length n−
i − 2 that may differ for the two strings. The right-hand-side

Fig. 2: The figure depicts two strings s, t satisfying the
assumptions used in the proof.

of the equation corresponds to the same entities in t. If the
equation holds, then the multisets Cj−1(s) and Cj−1(s) are
equal.
{c(si1), 0, bs, c},
{c(si2), 0, bs, c, 1− bs},
{c(snj+2), 1, 1− bs, c},
{c(sn−1j+2), 1, 1− bs, c, bs}

 =

{c(si1), 1, bt, c},
{c(si2), 1, bt, c, 1− bt},
{c(snj+2), 0, 1− bt, c},
{c(sn−1j+2), 0, 1− bt, c, bt}

Due to space limitations, we omit the exhaustive case-by-case
arguments that show that the above set equality is never true,
independently on how bs and bt are chosen.

Case 2: σi+2 ∈ {0, 2} Similar reasoning leads to a set
equality condition in which bs and bt are replaced by b.
Once again, it can be shown by an exhaustive case-by-case
analysis that the set equality never holds, independently on
the choice of b. This implies that the composition sets Cj−1(s)
and Cj−1(t) differ, which in turn implies that the composition
multisets of the two strings are at distance ≥ 4. �

The backtracking string reconstruction process based on an
erroneous composition set is straightforward: It takes O(n2)
time to compute the Tk multiset, and backtracking performs
O(n) steps. Thus, the decoding algorithm can computes the
original string in O(n3) time.

REFERENCES

[1] V. Zhirnov, R. M. Zadegan, G. S. Sandhu, G. M. Church, and W. L.
Hughes, “Nucleic acid memory,” Nature materials, vol. 15, no. 4, p. 366,
2016.

[2] A. Al Ouahabi, J.-A. Amalian, L. Charles, and J.-F. Lutz, “Mass spec-
trometry sequencing of long digital polymers facilitated by programmed
inter-byte fragmentation,” Nature communications, vol. 8, no. 1, p. 967,
2017.

[3] N. Goldman, P. Bertone, S. Chen, C. Dessimoz, E. M. LeProust,
B. Sipos, and E. Birney, “Towards practical, high-capacity, low-
maintenance information storage in synthesized dna,” Nature, vol. 494,
no. 7435, p. 77, 2013.

[4] R. N. Grass, R. Heckel, M. Puddu, D. Paunescu, and W. J. Stark, “Robust
chemical preservation of digital information on DNA in silica with error-
correcting codes,” Angewandte Chemie International Edition, vol. 54,
no. 8, pp. 2552–2555, 2015.

[5] S. H. T. Yazdi, Y. Yuan, J. Ma, H. Zhao, and O. Milenkovic, “A
rewritable, random-access DNA-based storage system,” Scientific re-
ports, vol. 5, p. 14138, 2015.

[6] S. H. T. Yazdi, R. Gabrys, and O. Milenkovic, “Portable and error-free
DNA-based data storage,” Scientific reports, vol. 7, no. 1, p. 5011, 2017.

[7] J. Acharya, H. Das, O. Milenkovic, A. Orlitsky, and S. Pan,
“String reconstruction from substring compositions,” arXiv preprint
arXiv:1403.2439, 2014.

[8] G. H. Hardy, “An introduction to the theory of numbers,” Bull. Amer.
Math. Soc., vol. 35, pp. 778–818, 11 1929.

[9] H. M. Kiah, G. J. Puleo, and O. Milenkovic, “Codes for DNA sequence
profiles,” IEEE Transactions on Information Theory, vol. 62, no. 6,
pp. 3125–3146, 2016.

[10] R. Gabrys and O. Milenkovic, “Unique reconstruction of coded se-
quences from multiset substring spectra,” in 2018 IEEE International
Symposium on Information Theory (ISIT), pp. 2540–2544, IEEE, 2018.

	I Introduction
	II Problem Statement
	III Some Technical Background
	IV Reconstruction Codes
	V Error-Correcting Reconstruction Codes
	References

